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Abstract: Predicting the live weight of cattle helps us monitor the health of animals, conduct genetic
selection, and determine the optimal timing of slaughter. On large farms, accurate and expensive
industrial scales are used to measure live weight. However, a promising alternative is to estimate
live weight using morphometric measurements of livestock and then apply regression equations
relating such measurements to live weight. Manual measurements on animals using a tape measure
are time-consuming and stressful for the animals. Therefore, computer vision technologies are now
increasingly used for non-contact morphometric measurements. The paper proposes a new model for
predicting live weight based on augmenting three-dimensional clouds in the form of flat projections
and image regression with deep learning. It is shown that on real datasets, the accuracy of weight
measurement using the proposed model reaches 91.6%. We also discuss the potential applicability of
the proposed approach to animal husbandry.
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1. Introduction

More than one billion head of livestock are reviewed annually worldwide for their
breeding and commercial value, health, and prospects for use. At the same time, most
measurements and expert assessments are time-consuming and subjective. Live weight is
an important factor in animal productivity, providing an informative indicator for feeding,
health, breeding, and selection of livestock. In addition, the measurement of animal body
weight is one of the most important production tools available to farmers, playing an
important role in nutrition, productivity, health, and marketing [1].

Currently, there are two main approaches to measuring body weight [2], that is, the
use of industrial scales and indirect methods based on the relationship between body
morphological parameters and body weight. Manual measurement of animal body size is
time-consuming, labor-intensive, and expensive. Note that simply manual weighing an
animal under stress results in a 5–10% reduction in weight and productivity. In addition,
it is stressful for both the worker and the animal. Recently, non-contact estimation of
morphometric dimensions using low-cost sensors and machine vision methods has been
developed [3,4]. The use of non-contact technology significantly reduces the time spent on
manual and subjective grading to predict the live weight of livestock or direct weighing of
livestock using scales.

Body measurements are commonly used to predict the live weight of animals [5–7]. At
the same time, to accurately predict live weight, body size measurements can be used along
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with other parameters characterizing the animal: age, sex, body condition assessment,
genotype, body volume, body area, etc. Most recent studies have used multiple linear
regression analysis to predict body weight. However, these traditional methods are inade-
quate for accurate prediction [8]. Recently, various machine learning algorithms for live
weight prediction using animal morphology have been successfully applied [9–12]. These
studies have shown the potential of machine learning algorithms to accurately predict
the non-linear relationship between body weight and animal morphology [8]. Moreover,
live weight prediction can be based on automatically measured morphological traits using
2D vision systems [12,13] and 3D vision systems [1,4]. The authors of [14] proposed a
system for estimating the body weight of a dairy cow with an error of 5.2% based on
three linear measurements made using a 3D camera. However, a common disadvantage
of such systems is that the accuracy of weight estimation depends on many factors: the
prediction model, the quality of measuring morphological features, the choice of model
input variables, and insufficient evidence of effectiveness due to a small data sample.

Another promising approach to live weight prediction is to develop a model based
on image regression. Image regression is a widely used task in computer vision to predict
age, head posture, and facial key points [15]. The easiest way to predict the live weight of
cattle is to use RGB images and depth maps, point clouds, or reconstructed dense 3D whole
models [16,17]. The choice of the location of the cameras used to capture images of the
animal is also crucial. The side view of the animal provides more information but is
technologically more difficult due to the requirement to strengthen and clean the cameras.
The top view is more acceptable in real farm conditions, as there are no such restrictions.

In a preliminary study [17], the proposed MRGBDM model with a MAPE of 9.1%
using entire RGB images and depth maps yields the best performance. In this study, only
animal areas are selected on RGB-images. Then, 3D augmentation of color projections and
2.5D depth maps by means of rigid transformations in the form of three-dimensional rotation,
scaling, and translation is exploited to increase the accuracy of predicting the body weight.

The objective of this work is to develop a reliable model for predicting body weight
based on image regression using deep learning methods. For image regression, RGB images
and side view depth maps are used to predict the live weight of cattle. The advantage of
using only one view, such as side view, is as follows: no need to synchronize data between
several sensors, no need to perform complex labor-intensive procedures for external camera
calibration, no need to reconstruct a dense three-dimensional animal model, and the ability
to use only one camera, which will reduce the cost of contactless technology measurement
of the live weight of an animal.

Neural network training requires high image quality. RGB images have a resolution
of 1920 × 1080 and a depth map of 512 × 424, which may distort or inaccurately describe
the characteristics of the object. First, RGB images and depth maps from the RGB-D sensor
are filtered to improve their quality [18]. The depth map is described by piecewise-smooth
areas bounded by sharp object boundaries, so the depth value changes abruptly, and a
small error around the object boundary can lead to significant artifacts and distortions.
Additionally, the depth map is noisy due to infrared reflections, and missing pixels without
any depth value look like black holes in the depth maps. Median and binomial filters [18]
are used to reduce noise and fill small holes. Noise and holes affect the accuracy of live
weight prediction based on image regression, so denoising and hole filling algorithms need
to be used for the live weight prediction model.

The input to a deep neural network can be 2D RGB images or depth maps. However,
deep neural networks with point cloud input can be explored in the future. With a limited
number of images available, there is little variability in the data, which can lead to over-
fitting. Moreover, since the sample set for training the neural network is quite small, it is
necessary to supplement the training data with synthesized and modified images. There are
two options for augmentation; that is, to complement raw 2D RGB images and depth maps,
and to project the point clouds obtained from the depth map onto the 2D image plane with
an orthogonal projection called a 2.5D depth map. The latter is a more complex and better



Agriculture 2022, 12, 1794 3 of 17

way to provide higher variability and similarity of modifications to reality. Previously, the
background is removed from the point cloud by extracting the scene from the frame, the
alignment of the animal’s pose, and then rigid transformations are added in the form of
three-dimensional rotations, scaling, and translation. The point cloud is projected onto
both the color components (color projection) and the depth map (2.5D depth maps).

Three models for live weight prediction of cattle based on RGB-D image regression and
deep learning are proposed. The best model yields a high weight measurement accuracy of
91.6%. The main contribution of this work is as follows:

• Efficient preprocessing of RGB images and depth maps, as well as creating a color
RGB projection and 2.5D depth map for subsequent live weight prediction based on
image regression with deep learning, are proposed;

• A method for 3D augmentation of color projection and 2.5D depth map using rigid
transformations in the form of three-dimensional rotations, scaling, and translation is
proposed, which significantly increases the limited dataset and improves the efficiency
of live weight prediction in the presence of variations in the posture and position of
the animal;

• An efficient model for predicting live weight based on image regression with deep
learning is proposed.

2. Related Works

In [2], four modeling approaches were identified for predicting the live weight of
cattle with different levels of complexity. For all models, three main components can be
distinguished, such as feature extraction, feature selection for modeling, and learning
model. All components can be automated.

First approach This is a traditional approach in which preliminary models for predict-
ing body weight are based on manual collection of morphometric measurements [19,20].
Some of the most informative morphometric measurements include chest girth, height at
withers, hip width/height, and body length. These dimensions are manually selected and
used as features for traditional regression models, resulting in single or multiple variable
prediction equations based on the number of selected dimensions across species. However,
this manual measurement of animal body size is time-consuming, laborious, and expensive,
which can lead to a loss of 5–10% of the animal’s weight and productivity due to stress.

Second approach To reduce stress on animals and significant costs associated with
the traditional approach, the second approach (the CV approach) uses CV systems and
images acquired with 2D (RGB and thermal imaging cameras) or 3D (depth and Microsoft
Kinect sensors, stereo cameras) electro-optical sensors as an alternative way to capture
morphometric measurements. This approach includes an additional step of manual or
automated preprocessing of acquired images and manual selection of animal biometric
and morphometric measurements, which are then used as predictor variables in statistical
models to predict body weight. When 2D images are acquired from only one camera, there
is no third dimension, which limits the choice of morphometric measurements for modeling.
For example, the HG circumference is reduced to the HG diameter or replaced by chest
depth measurements when extrapolating side or top view images [21]. This limitation can
be overcome with 3D cameras, but their excessive cost and more complex data processing
steps represent the current bottleneck for wider adoption. Alternatively, 2D images can be
used for morphometric measurements of perimeter and area, which are features in the model
and cannot be easily assessed with manual measurements. In [21], digital image analysis
was shown to be reliable in assessing the live weight of female Holstein calves. Compared to
traditional measurement methods, the use of digital image analysis reduces the costs, risks
for employers, and animal stress associated with measuring and weighing calves.

Third approach Since feature selection can be a complex task, especially with many
morphometric measurements, it is preferable to automate this process. Thus, the third
approach (the CV + ML approach) includes systems using CV methods as described in the
CV approach and machine learning (ML) methods to automate feature selection [12,22,23].
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Both the CV approach and the CV + ML approach involve some manual operations such
as image and feature selection, image segmentation, and extraction of morphometric
measurements. Since this approach uses manual operations, full automation is impossible.

The authors of [24] propose a weighing system for broiler chickens based on a 3D cam-
era. However, further development of broiler segmentation is required, as poor segmenta-
tion results in poor weight prediction. Improved segmentation can also solve the problem
of tracking broilers, which can lead to a better prediction of individual broiler weight by
progressively refining weight estimates across multiple images. In the study [25], a new
robust feature extraction method within the V3D computer vision system was developed
and applied to automatically estimate the height and body weight of heifers. The authors
of [1] used a low-cost depth camera (Microsoft Kinect v1) for non-contact extraction of pig
body dimensions and subsequent weight estimation based on two possible models (linear
regression and regression of the second degree).

The authors of [26] proposed an automatic weight prediction system for Korean cattle
using the Bayesian ridge algorithm on an RGB-D image. This system consists of segmentation,
extraction of features, and estimation of the weight of Korean cattle. The prediction system is
based on the Bayesian ridge algorithm, rather than on RGB-D image regression.

Fourth approach The fourth approach based on CV and DL (the CV + DL approach)
represents the first step towards fully automating the body weight prediction process using
digital images. The DL modeling component typically includes image selection, morphome-
tric feature extraction, and selection as part of complex neural network architectures such
as Convolutional Neural Networks (CNN), Recurrent Convolutional Neural Networks
(RCNN/RNN), and Recurrent Attention Models (RAM). Preliminary animal studies using
this approach have shown significant improvements in body weight prediction over more
traditional approaches. However, there is still a room for improvement, especially in the
accurate automatic segmentation of animals in images with complex, mixed backgrounds
with a similar color to objects or several objects.

The authors of [27] proposed a structure-from-motion (SfM) photogrammetry method
as a non-invasive and low-cost approach to 3D reconstruction of the pig body. The authors
of [28] developed preprocessing algorithms including instance segmentation, distance
independence, denoising, and rotation correction. They can save pig body information and
remove environmental influences. After processing, the images are passed to the weight
prediction model. Their weight prediction model was developed in BotNet. The authors of
the paper [29] show that convolutional neural networks do a good job of calculating weight
in 2D images. However, incorrect data can greatly reduce the accuracy of the system. While
the authors have achieved a much lower error rate than models trained on hand-selected
features, there is still more work to be done to eliminate the large errors that can result from
these invalid data points, as they can occur when the model is implemented in practice.
The authors of [30] proposed a method for estimating the weight of pigs from images
without restrictions on pose and lighting. The pig weight estimation method without
restrictions on pig posture and image capture environment uses only 2D features for the
weight estimation model and the latest advances in machine learning. New features were
introduced to describe posture: curvature and deviation. However, the original images may
have problems with multiple pigs or only part of the body. The authors of [31] presented a
fat measurement system for Angus cows and bulls that uses curvature to describe body
shape. The authors of [32] illustrate the success of using 3D cameras to assess body weight
and milk properties by measuring the back characteristics of dairy cows.

3. Materials and Methods
3.1. Datasets

Experiments are carried out on two open datasets from [3]. The first dataset contains
the RGB-D data, weights, and manual measurements of 154 Hereford cattle. The Hereford
cattle belonged to a private farm with concentrated feed at the age of 12 to 15 months. The
animals weighed between 243 and 605 kg. The dataset was collected by an RGB-D imaging
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system consisting of two Microsoft Kinect v2 cameras. Two RGB-D cameras are located on
the right and left sides of the animal passage at a distance of about 2 m from the animal.
Figure 1 shows RGB images and depth maps of cattle taken with two Microsoft Kinect
cameras. In experiments, RGB images and depth maps were used on the right and left
sides separately. The complete dataset consists of 5220 RGB images and 5220 depth maps
on the right side, and 4620 RGB images and 4620 depth maps on the left side.
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Figure 1. RGB images and depth maps of the Hereford cattle.

The second dataset consists of 121 young Aberdeen Angus cattle [33]. At the time of
the experiments, the average age of the animals was 16.5 months, and the average body
weight was 615 kg. The dataset contains the following data: RFID chip number, RGB
images, depth maps and point clouds, and live weight. This database is in the public
domain [34]. Two Microsoft Kinect v2 cameras are located on the right and left sides
of the animal passage at a distance of about 2 m from the walking animal. Each depth
camera was connected to a laptop, and all laptops were connected to a local network. The
synchronously acquired RGB-D images were recorded on the respective laptop for each
camera. Data collection and storage were implemented based on the Kinect v2 SDK. Each
camera was initialized with a trigger signal and started capturing frames at a rate of 30 Hz.
The time on the laptops was synchronized, and the best point cloud match could be chosen
within the shortest time intervals between the three devices. The resolution of RGB images
and depth images is 1920 × 1080 and 512 × 424 pixels, respectively. Figure 2 shows RGB
images and depth maps of cattle taken with two Kinect cameras. The complete dataset
consists of 4180 RGB images and 4180 depth maps on the right side, and 3860 RGB images
and 3860 depth maps on the left side.
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Figure 2. RGB images and depth maps of the Aberdeen Angus cattle.

3.2. Preprocessing of Data

Due to the high resolution RGB image, the detection result of the target area in the
image is more reliable than the result of 3D point cloud detection. Therefore, the existing
detection model YOLO v4 [35] was used to detect several regions of different sizes in one
2D image, and the model was further trained to detect areas of the head, thigh, and body
of an animal in a 2D image. The presence of three areas of the body, thigh, and head of the
animal uniquely defines the frame for the whole animal. As shown in Figure 3, regions
are identified with three colors, and the detected regions are represented by a 2D window.
Thus, all the initial data were processed to select only frames with whole animals.
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The accuracy of the measurement and prediction of live weight can be affected by
the posture of the animal. According to [35], the requirements for correct posture can
be summarized as follows: the four hooves of the animal being measured must form
a rectangle, and the trunk branch must be an almost straight line. The authors of [36]
proposed a skeleton extraction method that provides a better way to estimate posture
for subsequent body weight prediction. Because body weight estimation methods can
be susceptible to incorrect animal postures, a posture selection scheme must be defined
to ensure that the correct posture is selected for subsequent measurements. In the data
sequence, we consider only those frames on which all the legs of the animal are present.
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The first processed dataset for 154 animals consists of 1701 RGB images and 1701 depth
maps on the right side, and 1406 RGB images and 1406 depth maps on the left side. The
second processed dataset for 121 animals consists of 1536 RGB images and 1536 depth
maps on the right side, and 1327 RGB images and 1327 depth maps on the left side.

3.3. Denoising of Data

Impulse noise often occurs in color digital images due to sensor malfunctions, trans-
mission errors, and analog-to-digital conversion errors. To improve the quality of color
images, it is important to use efficient approaches to estimate distortion parameters and
then remove impulse noise. Noise on color images is removed using morphological filtering,
where damaged pixels are detected and then removed using morphological filtering [18].

The depth map is described by piecewise smooth areas bounded by sharp object
boundaries. Therefore, the depth value changes abruptly, and a small error around the edge
of the object can lead to significant artifacts and distortions. Additionally, the depth map is
noisy due to infrared reflections, and missing pixels without any depth value look like black
holes in the depth maps. Noise and holes can affect the accuracy of body weight prediction,
so noise reduction and hole filling algorithms must be used. A switchable two-sided filter
to remove noise from the RGB-D depth map is utilized [37]. Bilateral filtering switching
is applied only to those pixels of the depth map that are at the edges and show abrupt
changes in the signal. First, regions with sharp changes and edges in the RGB image are
detected, and then filtering is applied only to the corresponding regions in the depth map.

Recently, many methods have been proposed for filtering 3D point clouds. The
ROR algorithm implemented in PCL [38] gives the best result in terms of point cloud
reconstruction accuracy using the Hausdorff metric among existing algorithms. ROR
removes outliers well if the number of neighbors in a certain search radius is less than a
given threshold. An example of a processed point cloud with a threshold for the number of
neighbors equal to 20 within a radius of 0.05 is shown in Figure 4.
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3.4. Removing the Background from a Point Cloud

An important step in point cloud processing is to remove the background from the
point cloud. Two point clouds are needed, that is, one cloud with a frame without an
animal, and the other cloud with the animal. To do this, the entire sequence of frames
obtained during recording is used to find a frame without an animal. Next, a point-by-point
comparison of cloud points is performed. If the distance of the corresponding points in
these clouds in three-dimensional space exceeds a specified threshold value, then the point
is transferred to a new point cloud without background. An example of how the algorithm
works with the threshold equal to 0.1 is shown in Figure 5.
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3.5. Pose Normalization and Lines of Symmetry Calculation

Bilateral symmetry is an important and universal concept for describing animals. The
symmetrical plane of the animal is used to obtain the X, Y, and Z axes. Finding suitable
orientations often helps in the automated search and processing of 3D objects. In addition,
pose normalization helps machine learning algorithms take into account pose information,
making object recognition predictions more accurate. A fast bilateral symmetry detection
algorithm for a point cloud is proposed. First, the principal component analysis (PCA)
algorithm detects the initial symmetry. Then, by exhaustive search of the symmetry planes
passing through the center of gravity relative to the initial symmetry plane, the optimal
symmetry plane in terms of the modified Hausdorff metric is found. The proposed method
consists of the following steps:

1. Construction of an axis-aligned box bounding the animal in the point cloud. The
algorithm is implemented in PCL, and it is equivalent to taking minimum/maximum
values at each coordinate of the point cloud;

2. Place the origin of the coordinate system at the center of gravity of the point cloud;
3. Estimation of the initial symmetric plane ax + by + cz = 0 using the PCA algorithm;
4. The covariance matrix of the point cloud is calculated, and its eigenvalues and nor-

malized eigenvectors are obtained;
5. Calculation of the center of gravity

(
gx, gy, gz

)
as follows:

gx =
1
n

n

∑
i=1

pi
x, gy =

1
n

n

∑
i=1

pi
y, gz =

1
n

n

∑
i=1

pi
z (1)

where
{(

pi
x, pi

y, pi
z

)}
, i = 1, . . . , n is the point from the point cloud, and where n is

the number of the point cloud C;
6. An exhaustive search of symmetry planes passing through the center of gravity(

gx, gy, gz
)

relative to the initial symmetry plane in order to find the optimal symmetry
plane in terms of the modified Hausdorff metric:

(a) splitting the point cloud into two smaller clouds CR and CL with the help of
the initial symmetry plane ax + by + cz = 0 as follows:{

p ∈ CR, apx + bpy + cpz ≤ 0,
p ∈ CL, apx + bpy + cpz > 0

}
, (2)

where p =
(

px, py, pz
)

is the point of the point cloud;
(b) construction of the mirror reflection C′R of the point cloud CR as follows:

p′x =
(
1− 2a2)px − (2ab)py − (2ac)pz, (3)

p′y =
(
1− 2b2)py − (2ab)px − (2bc)pz, (4)

p′y =
(
1− 2b2)py − (2ab)px − (2bc)pz, (5)
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where
(

px, py, pz
)

is the point of the cloud CR, and
(

p′x, p′y, p′z
)

is the corre-
sponding point of the cloud C′R;

(c) calculation of the Hausdorff metric dH between C′R and CL using the average
distance as follows:

dH(CR, CL) = max

(
1
|C′R| ∑

x∈C′R

min
y∈CL

d(x, y),
1
|CL| ∑

y∈CL

min
x∈C′R

d(x, y)

)
, (6)

where |C′R| and |CL| are the number of points in the clouds C′R and CL,
respectively, and d is the Euclidean metric.

The first step requires n operations to split the cloud into two smaller clouds. As a
result, there should be approximately 1

2 n points in each resulting cloud. The complexity
of calculating the metric is O

(
n2) because each element from one cloud is taken and the

distance between it and all the elements of another cloud is calculated. Hence, the algorithm
has complexity O

(
n2).

The results of the PCA are good enough only for the X axis. In the case of the Y and Z
axes, the deviations are quite noticeable but lie within fairly small limits, say 0.1 from the
coordinates of the axes. Therefore, in order not to try all the planes, one can take the planes
obtained as a result of the PCA and slightly change the values of a, b, and c in their plane
equations. The correctness of the algorithm can be assessed visually by looking at the object.

To evaluate the accuracy of the proposed symmetry detection algorithm on real data,
the proposed algorithm is compared with the PCA algorithm. Symmetry planes along the
X, Y, and Z axes for the PCA algorithm are displayed as a red-colored plane, and for the
proposed algorithm they are displayed as a green-colored plane. The results of symmetry
detection on real data are shown in Figure 6. For the scanned animal model, the symmetry
plane along the X axis from the PCA algorithm coincides with the proposed algorithm. For
the Y and Z axes, the proposed algorithm slightly corrects the errors.
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Figure 6. Planes of symmetry of a cow.

Symmetry lines are calculated for the entire cloud using the proposed method. Further,
to align the cloud, using the found coefficients of the plane and the Cartesian basis of its
own subspace, the pose of the animal is aligned parallel to the normalized plane OXZ.
Figure 7 shows an example of an aligned point cloud.
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Symmetry lines are calculated for the entire cloud using the proposed method. Fur-
ther, to align the cloud, using the found coefficients of the plane and the Cartesian basis 
of its own subspace, the pose of the animal is aligned parallel to the normalized plane 
OXZ. Figure 7 shows an example of an aligned point cloud. 
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3.6. Calculation of Depth Map Projection (2.5D Depth Map)

The following algorithm is proposed to calculate flat projections of point clouds. The
cloud obtained at the previous step is transferred to the origin of coordinates (i.e., the
extreme point of the parallelepiped into which the cloud is inscribed moves to the point
(0, 0, 0)). Using the OpenCV library, an empty image of 299 × 150 is created in memory.
The maximum parameters for the width and height of the animal are 2.5 and 1.35 m,
respectively. All point coordinates of the cloud are normalized to the size of the image, and
the x and y coordinates of the point from the cloud in the empty image are set to the z color
value. The resulting image is saved in BMP file format. Figure 8 shows an example of such
an alignment.
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3.7. Color Projection

Since the clouds are initially very sparse (the number of points in them is relatively
small), their color projections have large distances between pixels. A simple increase in
the number of points in the cloud does not lead to an acceptable result, so an algorithm is
proposed for calculating the color projection. The algorithm is based on median filtering
in each window. Therefore, the window radius is set, the central pixel is replaced by the
average value of all pixels that fall into the window, while the replacement condition is
that there are at least k pixels in the square, because a small number of pixels gives an
unacceptable result. As a result of numerous experiments, the window size of 7 gives
an acceptable result, and the value 13 was chosen as k. The complexity of the proposed
algorithm for calculating the color projection is estimated as O

( nm
s
)
, where n and m are the

width and height of the image, and s is the area of the window. Figure 9 shows an example
of the color projection.
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3.8. Image Preprocessing for Neural Networks
3.8.1. Image Resize

The depth map resolution is 512 × 424 pixels and the RGB image resolution is
1920 × 1080 pixels, so the image needs to be resized to the aspect ratio defined as r = w/h,
where r is the aspect ratio, and w and h are the width and height of the image, respectively.
Aspect ratio is considered for image resizing as a parameter that helps preserve the best
quality of the original image in the downscaling and upscaling procedures. Most of the
pre-trained models use an image size of 224 × 224 (width, height), which is used as the
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target size. When increasing the image size, cubic interpolation is usually used, and when
decreasing the image size, area interpolation gives the best results.

3.8.2. Signal Range Normalization

After image preprocessing, depth maps and RGB images can have different ranges
of pixel values. Therefore, before training the model, the data must be normalized to
ensure the same range of pixel values. There are three main pixel value scaling methods
supported by the ImageDataGenerator class from the Keras library: pixel normalization
(scaling pixel values to the range of 0–1), pixel centering (scaling pixel values to zero
mean), and pixel standardization (scaling pixel values to zero mean and unit variance).
The pixel standardization algorithm achieves the best performance. The StandardScaler
normalization algorithm is based on removing the mean and scaling to unit variance, and
is defined as:

v = x−u
s , (7)

where x represents the current feature value, and n is the normalized feature value, u is the
mean of the training samples, and s is the standard deviation of the training samples.

3.9. Deep Learning Models

Deep learning is a general machine learning technique in which a model is trained
without specialized algorithms for specific problems but uses hierarchical or layered learn-
ing. Currently, the Convolutional Neural Network (CNN) is the most popular architecture
used in computer vision. Deep learning from the Keras library is used.

The model (MRGBDM) for predicting cow live weight is shown in Figure 10, where
inputs are RGB images and depth maps, or a color projection or a 2.5D projection. The model
contains three convolution blocks (con1, conv2, and conv3) and two fully connected layers
(FC and OUT). The conv1 block has two layers with 64, 3 × 3 filters, the conv2 block has
two layers with 128, 3× 3 filters, and the conv3 block has three layers with 256, 3 × 3 filters.
The conv1, conv2, and conv3 blocks are followed by subsampling layers with a kernel
size of 2 × 2. The Rectified Linear Unit (ReLU), which is not shown in Figure 10, is the
activation function applied after each convolutional layer and fully connected layer.
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Figure 10. MRGBDM Convolutional Neural Network.

The model (MRGB) for cow live weight prediction is shown in Figure 11, where only
RGB images are input. The model contains 3 convolution blocks (con1, conv2, and conv3)
and two fully connected layers (FC and OUT). The conv1 block has 32, 3 × 3 filters, the
conv2 block has 64, 3 × 3 filters, and the last convolution block, conv3, has 128 3 × 3 filters.
After blocks conv1, conv2, and conv3, subsampling layers with a kernel size of 2 × 2 are
used. ReLU, which is not shown in Figure 11, is the activation function applied after each
convolutional layer and fully connected layer.
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Figure 11. MRGB Convolutional Neural Network.

The model (MDM) for cow live weight prediction is shown in Figure 12, where only
depth maps are input. The model contains 3 convolution blocks (con1, conv2, and conv3)
and two fully connected layers (full and out). The conv1 block has 64, 3 × 3 filters, the
conv2 block has 64, 3 × 3 filters, and the last convolution block, conv3, has 256, 3 × 3 filters.
After the conv1, conv2, and conv3 blocks, maximum pooling layers with a kernel size of
2 × 2 are used.
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The main goal of the proposed models is to estimate the live weight of a cow using
an input RGB image or/and an input depth map. The live weight regression of the input
image is calculated using loss functions as follows:

PY(Θ) =
1
n

n

∑
i=1
‖ Fy(Xi, Θ)−Yi ‖2, (8)

where Θ is the set of parameters of the CNN model, Xi is the input RGB image or/and the input
depth map, and n is the number of the training dataset. PY is the loss between the estimated
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weight Fy(Xi; Θ) (the output of the fully connected layer OUT) and the ground truth weight
Yi. The loss function is minimized using mini-batch gradient descent and backpropagation.

Initially, the dataset was randomly divided into training (70%) and test (30%) subsets.
In addition, 20% of the training subset is used for validation of deep learning. Hyperpa-
rameter optimization is important for solving the problem of choosing the set of optimal
hyperparameters. A traditional way to optimize hyperparameters using cross-validation
search (GridSearchCV) is exploited, which is simply an exhaustive search over a man-
ually specified subset of the deep network’s hyperparameter space. With the help of
GridSearchCV, optimal hyperparameters were found for all models used.

3.10. Data Augmentation

With a small number of images available, there is little variety in the data, which can
lead to overfitting. To solve this problem, it is necessary to supplement the training data
with synthesized and modified images. To supplement the data, a combination of rotation
transformations along the three axes X, Y, and Z by ± 5 degrees and a shift in height and
width by ±50 cm was used, which corresponds to a shift along the X and Y axes, as well as
random scaling in the range of 0.8m–1.2m, which is responsible for a shift along the Z axis.
When using data argumentation, the total data size increased by 10 times. In total, the first
complete dataset consists of 31,070 RGB images and 31,070 depth maps for 154 Hereford
cattle. The second complete dataset consists of 28,630 RGB images and 28,630 depth maps
for 121 Angus cattle.

3.11. Transfer Learning

Deep learning models require a lot of data to properly and accurately train. In the
field of agriculture, it is difficult to obtain such large datasets due both to the limited
number of studies carried out on a single farm and the amount of work required for manual
measurements of animals. Therefore, the transfer learning approach is utilized. To do this,
it is necessary to reuse pre-trained CNN models created for other tasks by retraining them
for the problem. The pretrained EfficientNet model used in this paper has been previously
used for image classification [39]. Transfer learning is used as a feature extractor, i.e., all
layers are frozen, and only the top layer of the original classifier is retrained for new target
classes. After that, it is necessary to set up a neural network to predict the live weight of
the animal from RGB images and depth maps, or color projections and 2.5D projections.
We carry over all the weights from EfficientNet but replace the last fully connected layer
(FC8) with a new last fully connected layer and a softmax layer. The new last layer has a
size of 1, and the weights are initialized randomly from a Gaussian distribution with a zero
mean and a standard deviation of 0.01. A SGD with mini-batches of 32 samples is used,
and a learning rate of 0.001 for the pretrained layers and a learning rate of 0.01 for the last
output layer is set.

3.12. Performance Evaluation of Models

To evaluate the performance of the models, the mean absolute error (MAE) and mean
absolute percentage error (MAPE) are used.

MAE =
1
n

n

∑
i=1
|yi − fi| (9)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣ (10)

where n is a number of samples of the dataset, y is the mean of all known values of live
weight, yi, i = 1, . . . , n is a known value of live weight, and fi, i = 1, . . . , n is a predicted
value of live weight.



Agriculture 2022, 12, 1794 14 of 17

4. Results

We trained models on the Tesla V100 GPU for 27 epochs. The optimizer used was
Adam. The learning, The batch size was set to the maximum possible within the allowable
range of 16 GB of video memory. The model of each epoch was tested on the test dataset,
and if the model had a lower MAE value (mean absolute error between the predicted weight
and the true value) than on the training set, it was saved. There were 48,000 images in the
training dataset and 11,700 images in the test dataset, with 123 Hereford and 96 Angus
animals. The test dataset consisted of 31 Hereford and 25 Angus animals that were not
associated with the training dataset.

The results showed that models get better when data augmentation and fine-tuning are
used. In this work, in addition to RGB images and depth maps, color, and 2.5D projections
are also used.

The experimental results are shown in Table 1. The original MRGBDM, MRGB, MDM
networks, and EfficientNet (ENET) are trained, using different combinations of RGB images
and depth maps as input, as well as RGB projections and depth map projections. Table 1
contains the final accuracy of cattle live weight prediction for each model tested. The best
model is the proposed MRGBDM model, with a MAPE of 8.4 using RGB images and depth
maps. It can be seen that the use of RGB projection and map projection can significantly
reduce the MAE and MAPE errors. One can observe that the depth map contains many
valuable features for image regression, in contrast to the RGB image. The performance of
the pretrained ENET is worse compared with that of the MRGBDM and MRGB models.

Table 1. Live weight prediction results for cattle using the proposed MRGBDM, MRGB, and MDM
models and the pre-trained EfficientNet (ENET) model on training and test datasets.

Input to
CNN Model

Training Data Test Data

MAE MAPE Accuracy MAE MAPE Accuracy

Raw RGB
images and
depth maps

MRGBDM 37.9 9.1 90.9 40.1 9.6 90.4

MRGB 46.9 11.1 88.9 50.3 11.9 88.1

MDM 40.5 9.5 90.5 43.5 10.2 89.8

ENET 41.1 9.8 90.2 43.6 10.4 89.6

Color and
depth map
projections

MRGBDM 34.2 8.1 91.9 35.5 8.4 91.6

MRGB 42.5 10.1 88.9 45.6 10.8 89.2

MDM 37.6 8.9 91.1 39.7 9.4 90.6

ENET 38.9 9.2 90.8 41.8 9.9 90.1

The results of this study show that the MRGBDM model can be used to predict the
live weight of cattle. It is interesting to note that in a preliminary study [17], the conclusion
was similar. In contrast, instead of using entire RGB images and depth maps, animal
area selection from RGB-D images and 3D data augmentation are performed. This led
to an increase in the accuracy of body weight prediction. The obtained results can help
researchers and farmers implement deep learning algorithms for accurate body weight
prediction using image regression. From our point of view, indirect automated live weight
estimation should consist of non-invasive morphometric measurements based on computer
vision, followed by body weight prediction using deep learning.

5. Conclusions

Non-contact weight measurement saves time and stress for cattle. The best option is to
measure the weight from RGB images and depth maps. Two cattle datasets were used for
experiments, that is, 154 Hereford and 121 Aberdeen Angus animals. To use deep neural
networks, several problems need to be solved, such as environmental variability, noise, and
missing parts of the data, the position in space of the animal, scaling, and a small sample of
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training data. Therefore, algorithms for preprocessing RGB images and depth maps were
designed, including noise suppression on RGB images and depth maps, background removal,
and normalization of animal posture data. After processing, the data is fed into the weight
prediction model. In this paper, it was proposed to use RGB projection and depth map
projection as an input to a deep neural network instead of raw RGB images and depth maps,
which made it possible to increase the reliability of cattle live weight prediction.

To predict the live weight of cattle, three models based on image regression were
used. An evaluation of the performance of the proposed MRGBDM, MRGB, MDM, and
pre-trained ENET models was obtained using neural network fine-tuning and data augmen-
tation methods. The best model is the proposed MRGBDM model with the RGB and depth
map projections. Experimental results on real data showed that the proposed MRGBDM
model provides a high weight measurement accuracy of 91.6% (MAPE is 8.4).

Non-contact measurement of the live weight of cattle can be used in agriculture: for an
objective assessment of breeding animals during grading; to assess the commercial value of
livestock during the work of livestock auctions in different countries; to justify the further
use of young animals, including for fattening, with the prospect of eliminating the need to
perform a genetic examination of animals for the presence of genes; and to develop an analog
technology for assessing the health and productivity of animals in industrial complexes.

In the future, to improve the accuracy of image regression, one can use a pre-processed
point cloud as the input to a deep neural network. It is also desirable to expand the training
database with new data, such as different breeds, age groups, and weight groups.
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