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Abstract: Many of the important traits of livestock are complex or quantitative traits controlled
by thousands of variants in the DNA sequence of individual animals and environmental factors.
Identification of these causal variants would be advantageous for genomic prediction, to understand
the physiology and evolution of important traits and for genome editing. However, it is difficult to
identify these causal variants because their effects are small and they are in linkage disequilibrium
with other DNA variants. Nevertheless, it should be possible to identify probable causal variants
for complex traits just as we do for simple traits provided we compensate for the small effect size
with larger sample size. In this review we consider eight types of evidence needed to identify causal
variants. Large and diverse samples of animals, accurate genotypes, multiple phenotypes, annotation
of genomic sites, comparisons across species, comparisons across the genome, the physiological role
of candidate genes and experimental mutation of the candidate genomic site.
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1. Introduction

Most of the traits that are important in livestock and crops are quantitative or complex
traits. Great improvement in these traits has been accomplished by selecting animals or
plants based on their phenotype and that of their relatives. In the last decade the rate
of genetic improvement has been increased by genomic selection or genomic prediction
(GP) [1]. The purpose of this review is to consider the value of knowledge about casual
variants (CVs) in genomic selection for complex traits in livestock. Three key aspects are
considered: is it worthwhile, how might we identify them and the success to date.

2. What Are the Advantages of Identifying Causal Variants?

We consider four possible benefits: more accurate GP, knowledge of the physiology
of the trait, knowledge of the evolution of the genomic sites controlling the trait, and to
provide targets for gene-editing.

More accurate genomic prediction. Genomic prediction (GP) is the prediction of breed-
ing value from genotypes at genetic markers, such as single nucleotide polymorphisms
(SNP) scattered throughout the genome. A training population recorded for the trait and
genotyped for the markers is used to estimate a prediction equation that takes marker
genotypes as input and outputs estimated breeding values. This prediction equation can
then be used to improve the prediction of breeding value in selection candidates.

The prediction equation is typically linear in the marker genotypes, like a multiple
regression equation, and it is tempting to interpret the regression coefficient of a marker
as the effect of that marker on the trait. However, this is incorrect. The markers usually
do not cause variation in the trait but are in linkage disequilibrium (LD) with the genetic
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variants that do cause variation in the trait. GP works because the markers are sufficiently
dense so that the genotypes at most casual variants can be predicted from the genotypes at
the markers.

The accuracy of GP might be improved by using causal variants in 3 ways: capturing
more of the genetic variance, estimating marker effects more accurately and avoiding the
reduction in accuracy due to recombination causing changes in LD pattern.

A panel of markers may not perfectly predict the genotypes at all causal variants.
For instance, causal variants that have a low allele frequency cannot be in high LD with
markers that have a high minor allele frequency [2]. Consequently the markers do not track
all the genetic variance and do not use all of it in their prediction. In human genetics the
genetic variance explained by SNPs is typically 1/3 to 2/3 of the genetic variance estimated
from pedigree analysis e.g., [3,4]. In livestock, when the model includes a genetic effect
following the markers and one following the pedigree relationship, the latter explains
1–50% of the total genetic variance [5–7]. The proportion explained by the markers varies
with the diversity of the population: if it includes multiple breeds then denser markers
are needed to capture all the causal variants. This model, with both an effect explained
by markers and one following pedigree, is also used in large scale estimation of breeding
values and again with 10–50% of the variance assumed to follow the pedigree relationship.
If the markers explain a fraction r2 of the genetic variance, the maximum accuracy of a
prediction based on these markers is r.

This maximum accuracy is not achieved in practice because the marker effects are
not estimated with perfect accuracy. The accuracy depends on the ‘effective number of
chromosome segments’ (Me) segregating in the population [8–10]. This number is low in
most livestock breeds because they have a low recent effective population size ([11–13]. For
instance, in Holsteins Me has been estimated at around 3000 to 7000 [9,10]). If the number
of causal variants was much less than the number of effective chromosomal segments,
we expect that their effects could be estimated more accurately than those of the markers
leading to more accurate GP Estimated Breeding Values (EBVs) [14]. Evidence suggests the
number of causal variants is >4000 for most traits, so the accuracy of their estimated effects
might be slightly greater than that of markers in a single breed analysis. However, in a
more diverse population, such as a mixture of breeds, the number of effective chromosomal
segments is larger and so the advantage of using causal variants might be higher [14].

The accuracy of GP is eroded if the LD in the target population is different to that in
the training population. For instance, LD changes over time due to recombination and
it differs between parts of a population if the population is not panmictic. Consequently,
prediction accuracy is not robust over time and space.

These predictions of accuracy using causal variants are largely borne out by simulation
studies [14,15]. However, simulation studies may not simulate the real world. We cannot
test the advantage of using causal variants in real data because we do not know what they
are. The best we can do at present is to test methods that attempt to find large sets of
markers closer to the causal variants than those on the panels normally used [16–18].

In real data, several studies have demonstrated an increase in the accuracy of genomic
prediction through use of selected sequence variants that were identified as being close
to causal variants e.g., [19–24]. These studies generally found the advantage of adding
sequence variants to marker panels was most apparent for mixed breed reference popula-
tions and/or for prediction into different breeds or crossbreds. That is, the predictions held
their accuracy better in animals less related to the training populations, compared to using
markers from a standard panel.

This indicates that there is indeed an advantage in the real world for attempting
to identify causal variants, or markers closer to CV, to improve robustness of genomic
prediction for individuals less closely related to training populations. The major challenge
is the large number of causal variants that need to be identified across the wide range of
economically important complex traits.
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Knowledge of the physiology, gene editing and evolution of the trait. Knowing how
a change in DNA sequence affects a complex trait such as milk yield is of great scientific
interest. The first step might be to identify the gene through which the mutation acts. If
the markers are dense enough it may be possible to guess the gene from a marker that is
associated with the trait. However, knowledge of the causal variant would help discover
the gene and the way in which the causal variant affects it (e.g., by changing the protein
sequence or regulation of expression). In human medicine, knowledge of the gene without
the causal variant may be enough to suggest a drug target to treat a disease. This could
also be the case in livestock diseases. Knowledge of the gene and the causal variant may be
used as targets for gene-editing [25].

The large-scale use of gene-editing for genetic improvement requires a large panel of
target sites with causal effects [26]. For gene-editing purposes, it may however suffice to
know the gene and whether it needs to be up-regulated or down-regulated, or whether it’s
functionality needs to be reduced or enhanced. I.e., it may not require knowing the causal
variant, although this would be of great help. Also, narrowing the causal variants down to
a set of approximately 10 potentially causative variants would be helpful for gene-editing,
where all 10 variants could be edited and tested for their effects.

It is also of scientific interest to know how the mutations affecting complex traits evolve.
For instance, does domestication lead to fixation of mutants that would be deleterious in
the wild or does it involve a change in allele frequencies at many loci? This cannot be
studied unless we know the causal variant because a marker in LD with the causal variant
may not share the same evolutionary history.

3. Why Is It Hard to Identify Causal Variants?

Success to date for unequivocally identifying causal mutations for complex traits
in livestock is limited and has generally been restricted to variants that have relatively
large effects e.g., [27–30]. However, large databases of livestock sequences (e.g., 1000 Bull
Genomes Project and SheepGenomesDB [31,32]) have enabled imputation to sequence of
many thousands of animals with phenotypes. As a result, there are a growing number of
published studies that have used imputed whole-genome sequence to identify putative
causal variants.

However, it is still difficult to identify causal variants because they are in LD with
other DNA variants and their effects are usually small. If two variants are in complete
LD it is impossible to tell from genetic data which is responsible for an effect on a trait.
Even if the LD is not complete, if the effect is small, enormous sample size is needed to be
confident which is causal and which is associated with the trait due to LD.

Other evidence, discussed below, such as that a mutation alters the activity of a
protein, may help build a case that it is causal. However, the ‘gold standard’ proof that a
mutation affects the trait, is to make a transgenic individual and show that the phenotype
is recapitulated. This is seldom practical in livestock and never in humans, although
gene-edited tissue-cultures may reveal some evidence.

4. Evidence for Causality

Since it is usually not possible to achieve the gold standard proof that a variant is
causal, we attempt to mount enough evidence that a variant is most likely causal [33].

A common starting point to identify causal variants for complex traits is to undertake
a genome wide association study. The data that is collected for the training population
in GP is the same as the data used in a genome wide association study (GWAS) to map
the causal variants to a part of the genome. However, high precision mapping requires
higher marker-density than GP, preferably sequence genotypes, and this may be achieved
by imputation of the missing high-density genotypes. Bayesian GP methods that allow
some markers to have no effect on the trait can also be used to map causal variants and to
describe the genetic architecture of the trait [34–36]. If all sequence variants are included in
the data, then the analysis can potentially identify the causal variants. An output of such
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analyses is the probability that a variant is included in the model. If all sequence variants
are available in the data then a sequence variant that has a probability of 100% to affect the
trait is supposedly causal. In human genetics this process is called fine scale mapping and
is usually applied to a segment of the genome in which it is believed a causal variant exists.
This seldom leads to a single causal variant but more likely to a set of variants which is
believed with 90% probability to include the causal variant. Even this conclusion may be
wrong if the true causal variant is not included in the analysis. This is likely for classes of
causal variants that are difficult to genotype and impute such as structural variants.

To build the case that a variant is causal there are 8 types of data which are helpful—
larger sample size, use of actual instead of imputed genotypes, other traits which map to
the same location, annotation of genomic sites, comparisons across species, comparisons
between parts of the genome, genes with a known role in the physiology of the trait and
experimental mutation of the site.

4.1. Increase Sample Size and Diversity

Obviously increasing sample size increases power to distinguish between variants that
are not in complete LD. Increasing the genetic diversity of the sample (e.g., by using multiple
breeds) decreases the LD and so increases the probability of distinguishing between sites
in LD and causal effects. An approach to increase sample size, now gaining popularity
in livestock, is a meta-GWAS that combines the summary statistics from a number of
individual GWAS studies e.g., [37–39]. The major advantage of this approach in addition to
increasing power and diversity, is that it alleviates the difficulties associated with sharing
raw data across groups and countries.

Despite large sample size, a SNP other than the CV may be more significant than
the CV due to sampling error. Consider a region with a single CV and compare the CV
with a SNP that is in LD with the CV. What is the probability that the SNP is more highly
significant than the CV? Let bCV = the estimated effect of the CV and bSNP = the estimated
effect of the SNP. Then bCV − bSNP ~N(b(1 − r),(1 − r) s2/(Npq)) where b = true effect of
the CV, r = the LD i.e., the correlation between the CV and the SNP, s = standard deviation
of the residuals, N = sample size, p and q = 1 − p are the allele frequencies at both the CV
and the SNP, which are assumed to be the same. Therefore, the probability that bSNP > bCV
is the probability that x~N(0,1) > tsqrt(1 − r) where t = bsqrt(Npq)/s is a t statistic for the
true effect of the CV.

Table 1 shows how this probability varies with the LD between the SNP and CV (r)
and the true t-value for the CV (t). For instance, if a CV explains 0.0001 of the phenotypic
variance and we have a sample size N = 100,000 then the E(t) = sqrt(10). (If the CV explains
0.01 of the phenotypic variance but N = 1000, then E(t) is also sqrt(10)). From the table
if t = 3 and r = 0.94, the probability that the SNP is more significant than the CV is 0.23.
This probability is the probability that a single SNP is more significant than the CV. If
this probability = P then the probability that one of n conditionally independent SNPs
(conditional on their correlation to the CV) is more significant than the CV = 1 − (1 − P)n.
This probability is high if r is close to 1 and n is high. The number of conditionally
independent SNPs may be seen as an effective number of SNPs that are in high LD with
the CV, which may be smaller than the actual number of SNPs that are in high LD with the
CV, especially when these SNPs are incorporated in LD blocks.

In a Bayesian analysis the choice of variant as the putative CV depends on the posterior
probability which in turn depends on the likelihood and the prior probability (π). The
difference in log(likelihood) between a CV and a SNP in LD with it is:

log(πCV/πSNP) + 0.5 × t2 × (1 − r)2 (1)

Thus if t is small and r approaches 1, the choice of the variant as the putative CV
depends on the priors. The use of prior information that identifies potential CVs (see
section ‘Annotation of genomic sites’) may thus be important in Bayesian analyses.
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After a Bayesian analysis is conducted and reveals a quantitative trait locus (QTL)
region, we can calculate the difference in posterior probability (PP) between the putative
CV, i.e., the highest PP in the QTL region and the second highest PP. This reveals the (log)
odds ratio of the putative CV being the true CV versus the second highest PP pointing to
the CV. Also, it is possible to identify a set of SNPs that collectively give a PP > 0.9 as a 90%
confidence set that is likely to contain the CV.

Table 1. The probability that a SNP in LD with the CV is more significant than the CV. (t = true t-value
for the CV, r = LD correlation between CV and SNP).

t r 0.5 0.75 0.875 0.9375 0.96875 0.984375 0.992188 0.996094

1 0.23975 0.308538 0.361837 0.401294 0.429842 0.450262 0.464784 0.475082
2 0.07865 0.158655 0.23975 0.308538 0.361837 0.401294 0.429842 0.450262
3 0.016947 0.066807 0.144422 0.226627 0.297942 0.35383 0.395441 0.425634
4 0.002339 0.02275 0.07865 0.158655 0.23975 0.308538 0.361837 0.401294
5 0.000203 0.00621 0.03855 0.10565 0.18838 0.265986 0.329266 0.37733
6 1.1 × 10−5 0.00135 0.016947 0.066807 0.144422 0.226627 0.297942 0.35383
7 3.72 × 10−7 0.000233 0.006664 0.040059 0.107962 0.190787 0.268051 0.330874
8 7.71 × 10−9 3.17 × 10−5 0.002339 0.02275 0.07865 0.158655 0.23975 0.308538

4.2. Use of Actual Instead of Imputed Genotypes

Imputed genotypes may show reduced trait-associations due to imputation inaccura-
cies. The latter implies that a causal variant, whose genotypes are imputed, may show a
lower GWAS signal than another site that is merely in LD with the causal site [40]. It is thus
suggested to use accurate, actual genotypes instead of imputed genotypes when trying to
distinguish between causal and LD sites.

4.3. Multiple Trait Analysis

If a variant affects multiple traits then multi-trait analysis increases power in a similar
way to increasing sample size (For different approaches to multi-trait analysis see [41,42]).
This is particularly useful if the causal variant has a large effect on one of the traits. For
instance, [43] found that a small effect on milk yield was associated with a large effect on
milk phosphorus concentration and this locus had a large effect on the expression of the
gene SLC37A1.

One class of traits which may be useful is the expression of genes that can be measured
using RNA sequencing. Variants affecting gene expression are called expression QTL
(eQTL). An allele of an eQTL may affect the expression of a gene on the same chromosome
(cis eQTL) or the expression of the gene from both homologous chromosomes (trans eQTL).
cis eQTL are located close (usually <1 mb) to the gene they regulate and typically have
large effects on the expression of the gene. cis eQTL can be mapped with a smaller sample
size than most QTL because they have large effects. However, moderate sample sizes are
still needed. For instance, 1000 individuals measured for a cis eQTL that explains 10% of
phenotypic variance in expression of the gene, gives the same power as 100,000 individuals
for a QTL explaining 0.1% of the phenotypic variance in a quantitative trait. Considerations
for eQTL studies are which tissue and timepoint on which to measure gene expression.
Trans eQTL, which affect the expression on genes on other chromosomes typically have
smaller effects than cis eQTL.

4.4. Annotation of Genomic Sites

Genomic sites are annotated in several ways and this can be helpful in evaluating the
likelihood of causality. For instance, sites can be coding or non-coding and within coding,
they may be synonymous or non-synonymous. We assume that non-synonymous coding
sites are more likely to affect a trait than other sites but this may not be correct. Two of
the best-known variants affecting milk production in dairy cattle are thought to be coding
variants in DGAT1 and GHR [44,45].
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While there is considerable annotation now available for genic regions in livestock,
there is still relatively little known about the function of intergenic sites. In human genetics,
the ENCODE and Roadmap projects have provided publicly available resources listing
functional regions in the human genome [46,47]. The Functional Annotation of Animal
Genomes (FAANG) global collaboration aims to provide a similar resource for livestock [48]
Many of these annotations are based on assays that identify parts of the genome with a
function such as open chromatin, histone marks, transcription factor binding sites. Using a
small number of individuals and often multiple tissues, these types of annotation identify
very localised regions genome-wide that have an influence on gene expression. The anno-
tations can be specific to tissues, developmental stages, rearing conditions, or the disease
status of the animal. Although there have been some attempts to lift over such annotations
from the human genome this has not generally provided high enough resolution [49].

As described here the annotation of genomic sites does not rely on genetic variation
in them and so does not suffer from LD in the way that analysis of genetic differences in
a trait does. Also, it means that it is only necessary to assay a small number of animals.
However, there are a great many of these sites in the genome and it is not clear which if any
of them would affect a particular trait of interest. Neither is it obvious how genetic variants
within the region might affect their function. For instance, Chipseq assays for methylation
‘tags’ on histones are thought to identify genome regions of 200–1000 bp that are enhancers
and promoters influencing gene expression. A SNP that lies within such a region might
affect the function of the enhancer or promoter but it might have no effect on that function.
We can compare animals with different genotypes at this SNP and determine whether or
not the genotype affects the assay result. If it does affect the assay, the SNP may also affect
the expression of the gene and hence economically important phenotypes. However, this
requires relatively larger sample sizes and if there are multiple SNPs in LD it may still be
difficult to tell which is causal. That is, this is a genetic analysis of a new trait defined by an
assay for a function in the DNA. In this respect it is similar to expression QTL which are
polymorphisms that affect gene expression. Ideally, we would like to combine an assay
that identifies a specific region of the genome as functional with genetic evidence that a
polymorphism in that region affects its function.

Although functional annotations are not trait specific, they have been shown to be
enriched for putative causal variants discovered from trait specific GWAS [22,49–51]. There-
fore, when considered jointly with the effect of genetic variants on specific traits, these
annotations are a valuable tool towards identifying causal variants. Below we consider
how to appropriately weight this information.

4.5. Comparisons across Species

If the same allele is conserved at a site across many species it must be subject to
selection and therefore must have some function. Such conserved sites are enriched among
sites affecting complex traits [16].

4.6. Comparisons across the Genome

If there is a phenotype that varies across the genome it is possible to learn the DNA
sequence associated with the phenotype. For instance, assays can detect regions of open
chromatin by their hypersensitivity to DNase (DHS regions). By comparing DNA sequences
under DHS regions with those not under DHS regions you can identify sequences that
lead to these sites and variations in the sequence that cause an increase or decrease in
the probability of such a region [52]. This process identifies sites that affect a molecular
phenotype and it does so without the confusion caused by LD. However, there is no proof
that these sites affect a phenotype in which we are interested.
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4.7. Genes with a Role in the Physiology

If a mutation is proposed to affect a complex trait through a given gene it adds to
the evidence if that gene has a known role in the trait. This was the case for the two milk
production QTL affecting the protein coding sequence of DGAT1 and GHR.

4.8. Experimental Mutation of the Site

Only rarely will we make a transgenic animal to prove that a genomic variant is
causal for the trait of interest. However, we can test transformed cell lines for a molecular
phenotype such as gene expression. This has been done for a single proposed mutation
(e.g., DGAT1) but can now be done for thousands of sites in massively parallel reporter
assays [53] The effect of a regulatory variant may be tissue specific so it may be necessary
to have cell lines from multiple tissue types.

5. Combining Information from Different Sources

Given many sources of information which might predict which sites are likely to
have an effect on phenotype, it is beneficial to construct a multiple regression equation
to predict the probability that a site affects phenotype. The method called Bayes RC is a
Bayesian method in which genetic markers can be classified according to the annotations
they have [35]. Then the probability that each class of markers is associated with the
trait is estimated. Potentially a multiple regression equation could be used instead of
a classification.

A common method in human genetics is stratified LD score regression [54]. This uses
the chi-square statistic for each marker in a single SNP regression analysis of GWAS data.
This measures the variance of the trait associated with the marker which may also indicate
the proportion of similar markers that have a non-zero effect on the trait. In a single SNP
regression GWAS, the apparent effect of the SNP is due to the SNP itself and all those in
LD with it. Therefore, in LD score regression the independent variable is the sum of LD r2

between the focal SNP and all surrounding SNPs. In stratified LD score regression separate
LD scores are calculated for each annotation of the surrounding SNPs.

Another method is to define different genomic relationship matrices among all the in-
dividuals for each category of genetic markers [16,55]. For instance, a genomic relationship
matrix (GRM) based on coding SNPs and one based on random SNPs. Then it is possible
to estimate the genetic variance associated with each type of GRM thus indicating which
annotations identify markers causing the most variance in a complex trait.

Xiang et al. [16] illustrate some of these approaches. They developed a score (called
FAETH) for polymorphic sites in cattle based on a number of annotations and combined
this with multi-trait genetic analysis to find approximately 50,000 SNPs that were more
likely to be causal or close to causal variants. A SNP chip containing these SNPs gave
higher accuracy of genomic EBVs than previous SNP panels.

6. Creditable Sets Instead of Single Causal Variants

The focus in this review is on complex or quantitative traits but the same problems
occur in identifying the mutation causing phenotypes that can be caused by a single
mutation such as many genetic abnormalities. The effect size in this case is large, so the
sample size needed is smaller but the problem of LD between a causal variant and other
variants is the same. Perhaps these mutations are easier to identify than those for complex
traits because they are often coding mutations. However, almost never is the transgenic
animal made to confirm we have identified the correct mutation. Therefore, we should
be able to build an equally strong case that we have identified the causal mutation for a
complex trait as we do for Mendelian traits provided we increase sample size. Despite this,
success in identifying variants affecting complex traits has been low.

In some chromosomal regions, mutations at several sites may cause similar effects,
e.g., due to affecting the expression of a gene, or reducing the functionality of a gene’s
transcript. For instance, in the DGAT1 region, next to the known site, other sites may
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have similar trait effects. In such cases, attempts to find ‘the’ causal mutation will at best
result in the discovery of the biggest of the mutations, but the conclusion that herewith ‘the’
mutation is found is wrong.

In view of the latter, and the difficulty in finding ‘the’ causative mutation (if it exists),
a useful aim for a GWAS study may be find a set of e.g., 10 potential causal variants for
every QTL. The latter will affect our aims for the detection of causal variants:

• Accuracy of GP: all 10 variants will be in very high LD with the causative mutation, and
the LD is not expected to change markedly with genetic distances, i.e., the reduction in
GP accuracy of having a set of 10 potential instead of 1 causal variant will be limited.
Genotyping costs will be increased, but genotyping costs are generally small.

• Knowing the gene that affects the trait without knowing the causal variant will be
useful for the study of the trait physiology but not as useful as also knowing the
causal variant.

• The same holds for the evolution of the sites.
• A set of 10 potential causal variants will enhance the costs of the initial stages of a

gene-editing program, where the effect of the gene-edit on the trait is tested. This stage
will require 10 such tests instead of 1. However, if the causal variant is not amongst the
set of 10 potential causative variants, the gene-editing program will not be successful.

It seems that the accuracy of GP and the gene-editing results are little affected by
having a set of 10 potential instead of 1 causal variant, as long as the actual true causal
variant is amongst these 10. However, the study of the trait physiology and site evolution
will be compromised.

7. The Future

We have argued above that it would be beneficial to identify the genomic variants
causing variation in quantitative traits. Although success to date is limited, we believe that
the opportunity exists for greater success in the near future by combining the approaches
discussed above. Increasing sample size is being achieved through the commercial use
of GP but this could be accelerated by international collaboration to build larger and
more diverse data sets. International collaboration is already contributing to annotation
of livestock genomes, for instance, through FAANG and livestock GTEx. Two further
improvements are now within reach—identification of structural variants and massively
parallel reporter assays (MPRA). Most current genotype data is on SNPs but it is likely
that causal variants include structural variants. Using short read sequencing it has been
hard to call genotypes at structural variants but the use of long read sequencing should
improve this situation. MPRA test the effect of specific mutations uncomplicated by LD
but they require a phenotype that can be measured in vitro such as gene expression. An
approach which has been underutilized is discovering functional genome sequences by
comparing parts of the genome [56]. This requires a phenotype that is associated with a
specific location in the genome, for instance, the height of ChiPseq peaks. By comparing
the sequence under Chipseq peaks, it is possible to discover the sites that determine where
these functional elements occur. This leads to identification of causal variants without
complication from LD but does not directly target phenotypes that can only be observed
on whole animals.
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