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Abstract: High-frequency imaging characteristics allow a geostationary satellite (GSS) to capture
the diurnal variation in vegetation canopy reflectance spectra, which is of very important practical
significance for monitoring vegetation via remote sensing (RS). However, the observation angle
and solar angle of high-frequency GSS RS data usually differ, and the differences in bidirectional
reflectance from the reflectance spectra of the vegetation canopy are significant, which makes it
necessary to normalize angles for GSS RS data. The BRDF (Bidirectional Reflectance Distribution
Function) prototype library is effective for the angle normalization of RS data. However, its spa-
tiotemporal applicability and error propagation are currently unclear. To resolve this problem, we
herein propose a synthetic angle normalization model (SANM) for RS vegetation canopy reflectance;
this model exploits the GSS imaging characteristics, whereby each pixel has a fixed observation
angle. The established model references a topographic correction method for vegetation canopies
based on path-length correction, solar zenith angle normalization, and the Minnaert model. It also
considers the characteristics of diurnal variations in vegetation canopy reflectance spectra by setting
the time window. Experiments were carried out on the eight Geostationary Ocean Color Imager
(GOCI) images obtained on 22 April 2015 to validate the performance of the proposed SANM. The
results show that SANM significantly improves the phase-to-phase correlation of the GOCI band
reflectance in the morning time window and retains the instability of vegetation canopy spectra in
the noon time window. The SANM provides a preliminary solution for normalizing the angles for
the GSS RS data and makes the quantitative comparison of spatiotemporal RS data possible.

Keywords: angle normalization; vegetation canopy reflectance; geostationary satellite; path length
correction; Minnaert model; GOCI

1. Introduction

A geostationary satellite (GSS) is characterized by a wide coverage area and strong
maneuverability. It can realize minute-level high-frequency observations of specific areas,
which greatly improves the efficiency of remote sensing (RS) data acquisition in cloudy
and rainy areas [1]. Imaging sensors deployed on the traditional GSSs only have a single
channel with a wide band range in the visible and near-infrared range (VNIR), and the
spatial resolution is usually less than 1 km (e.g., the Fengyun-2 satellites [2] and the
GOES (Geostationary Operational Environmental Satellite) generations before the GOES-R
series). In recent years, imaging sensors deployed on GSSs have developed capabilities
with multiple channels in the VNIR, and spatial resolutions have increased to 50–500 m
(e.g., the COMS (Communication, Ocean, and Meteorological Satellite) [3], the Gaofen-4
satellite [4], the Fengyun-4 satellites [5], the Himawari-8 satellite [6], the GOES-R series,
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the INSAT (Indian National Satellite System) satellite [7], the ELECTRO-L satellite [8], and
the MTG (Meteosat Third Generation) satellite [9]). The optimized design of GSSs extends
its application area from traditional meteorological, communications, and broadcasting to
land-surface and ocean-water-color RS monitoring.

Vegetation is an important part of the Earth’s ecosystem, and vegetation monitoring
is the most complex part of land-surface RS monitoring. Vegetation has typical spectral
characteristics and has a different canopy morphology due to differences in organizational
structure, seasonal phase, and ecological conditions. Changes in canopy morphological
features such as LAI (Leaf Area Index) and LAD (Leaf Angle Distribution) lead to changes
in canopy porosity and extinction of cross-sectional size [10]. Therefore, it strongly in-
fluences the reflection and scattering characteristics in the optical and microwave bands,
and this influence is perturbed by the terrain, illumination conditions, and observation
geometry. Consequently, angle normalization should be urgently applied to RS moni-
toring of vegetation, which is better applied to monitoring land-surface phenology [11],
biomass estimation [12], and surface vegetation patterns [13]. However, taking LAI and
LAD as input parameters will reduce the usability of the angle normalization model: it
is difficult to obtain ground observation of these features for large areas; remote sensing
inversion products are obtained using remote sensing reflectance, and these products will
introduce iteration errors. Therefore, it is necessary to use a simplified representation of
BRDF (Bidirectional Reflectance Distribution Function).

The angle normalization of RS data, and of reflectivity in particular, consists of nor-
malizing a uniform solar zenith angle and observation zenith angle, usually involving
topographic correction (TC), solar angle correction or normalization (SAC), and detector
angle correction or normalization (DAC). The digital elevation model (DEM)-based TC
methods are the most widely used in the existing TC methods [14–16]. In recent years,
many scholars have introduced non-Lambertian models and vegetation canopy structure
parameters into TC methods to improve the accuracy of vegetation-canopy spectral to-
pographic correction [17,18]. The existing SAC models use the cosine of the solar zenith
angle as the main correction factor [19]. More complex algorithms introduced the intercept
and slope for SAC models to solve the problem involving ground radiation signals in
the presence of atmospheric scattering and refraction from the adjacent background, but
no direct sunlight [20]. As for the DAC, only the 16-day synthetic products of MODIS
(Moderate Resolution Imaging Spectroradiometer)/VIIRS (Visible Infrared Imaging Ra-
diometer Suite) involving albedo and BRDF are currently widely recognized and applied.
The spatial resolution of these products is 500 m, and the core of the production algorithm
is the solution of a kernel-driven model [21,22].

The viewing angle on a per-pixel basis is constant, while the sun angle of GSS RS data
changes from hour to hour, unlike those from sun-synchronous satellite sensors, and wide-
field imaging characteristics magnify this difference [1], so it is urgent to normalize angles in
the quantitative vegetation applications of GSS RS data. The operational BRDF and albedo
algorithm uses a multi-day period of cloud-free angular surface reflectance that adequately
samples the viewing geometry (at least seven observations) to fit an appropriate kernel-
driven, RossThick-LiSparse-Reciprocal semi-empirical bidirectional reflectance model for
the given surface location. However, the MODIS/VIIRS and sentinel-2A BRDF products
have a lower spatial or temporal resolution, their applications are faced with the problem
of spatial and temporal adaptability. Therefore, the research on angle normalization of RS
data remains a hot topic and is the focus of this paper.

In this paper, the high-frequency and wide-field imaging characteristics of GSS sensors
are fully exploited to propose a synthetic angle normalization model (SANM) for RS vege-
tation canopy reflectance. The GOCI (Geostationary, Ocean Color Imager) data obtained
from GSS COMS were used to construct and verify the proposed SANM while considering
the characteristics of diurnal variations in vegetation canopy spectra. The proposed SANM
can provide a reference for the production of angle-normalization products for GSS RS data



Agriculture 2022, 12, 1658 3 of 13

and optimize the temporal resolution of angle-normalization products for RS vegetation
canopy reflectance, which has important applications and practical significance.

2. Materials and Methods
2.1. Synthetic Angle Normalization Model Overview

The SANM proposed herein is based on the definition of angle normalization for RS
data, using GSS RS data to get the normalized reflectance with the terrain slope, solar,
and detector zenith angle are all 0◦. The framework of the proposed model is presented
schematically in Figure 1; the order of three core steps (TC, SAC, and DAC) was designed
to satisfy the SAC and DAC models’ assumption that the ground objects are aligned
horizontally. Based on the literature research and comparison, the TC step uses the path-
length correction (PLC) model, the SAC step uses the cosine of the solar zenith angle as the
correction factor, and the DAC combines the imaging geometric coordinate rotation and
the Minnaert model.
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Figure 1. Schematic showing the workflow of the proposed method.

These three core steps are described in detail in the following three subsections. The
angles and reflectance symbols used in each step and model application are described in
Table 1.

The cosine of the angle between any two directions cos(θ1−2) can be calculated as:

cos(θ1−2) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2) (1)

where θ1 and θ2 are zenith angles, and ϕ1 and ϕ2 are azimuth angles.
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Table 1. Symbols used in the SANM.

Symbol Explanation

θS Solar zenith angle
ϕS Solar azimuth angle
θD Detector zenith angle
ϕD Detector azimuth angle
θT Slope
ϕT Slope aspect

θD−S
Angle from observation direction to the solar incidence direction;

derived from Equation (1)

θS−T
Angle from solar incidence direction to ground surface normal

(solar incidence angle); derived from Equation (1)

θD−T
Angle from observation direction to ground surface normal;

derived from Equation (1)
ρt Vegetation canopy reflectance observed by sensor

ρPLC Vegetation canopy reflectance after PLC model processing

ρpre
Vegetation canopy reflectance after PLC model and

SACM processing
ρMinnaert Vegetation canopy reflectance after Minnaert model processing

ρnom Vegetation canopy reflectance after SANM processing

2.2. Topographic Correction for Vegetation Canopies-PLC

Vegetation grows geotropically; the terrain affects only the angle of the vegetation
relative to the surface rather than the geometric relationship between the sun and the vege-
tation [23]. The TC method for vegetation canopies based on PLC [18] satisfies Assumption
I, in which the radiance collected by the sensor is only from single scattering from leaves
(i.e., the contributions from soil reflectance and from multiple scattering from leaves are
negligible). In order to reduce the influence of mixed pixels and meet this assumption as
far as possible, we select the mountainous area and field crop with full vegetation cover-
age to verify the algorithm. The relationship between ρt and ρPLC can be formulated as
follows [18]:

ρPLC = ρt
St(ϕS) + St(ϕD)

S(ϕS) + S(ϕD)
(2)

where S(ϕS) and S(ϕD) are the path lengths along the solar and viewing directions over
flat terrain, respectively, and St(ϕS) and St(ϕD) are their counterparts over sloping terrain.

The path length along the direction of gravity is unity under any terrain conditions.
The geometry of the extinction path at different angles is shown in Figure 2.
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Figure 2. Path length of a (solar) beam through a canopy: (a) canopy on a horizontal surface;
(b) canopy on an inclined surface. Green bold lines represent the path length along the zenith
direction; it has unit magnitude. Red bold lines represent the path length along the direction normal
to the vegetation canopy; its magnitude is cos(θT). Black bold lines represent the path length (S) along
an arbitrary direction in the vegetation canopy.
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The path length in an arbitrary direction can be calculated as:

S(θ1, ϕ1, θT, ϕT) =
cos(θT)

cos(θ1−T)
=

1
cos(θ1)[1 + tan(θ1) tan(θT) cos(ϕ1 − ϕT)]

(3)

where θ1 is θD or θS, ϕ1 is ϕD or ϕS, and θ1−T is θS−T or θD−T.

2.3. Correction of Solar Angle

The solar angle includes the θS and the ϕS. The θS strongly influences the surface solar
irradiance, whereas the ϕS only affects the image detail [24]. Therefore, the existing SAC
models only involves the θS. Considering the BRDF characteristics of the land objects, we
use the ϕS to calculate θD−S as a comprehensive angle to carry out the alternative correction,
see section “Correction of Detector Angle” for details.

The classical SAC model (SACM) formula is usually expressed as [25]:

ρpre = ρPLC/ cos(θS) (4)

2.4. Correction of Detector Angle

After the TC and SAC steps, ρpre corrects for the influence of terrain and solar zenith
angle, it does not take into account the difference in BRDF caused by imaging geometric
differences between different phases. We rotated the coordinate to create an equivalent
condition where the observation zenith angle is 0◦ (see Figure 3). Specifically, each pixel is
simplified into a point object to ensure the BRDF character is unchanged; and finally, the
four imaging geometric angles are converted to θD−S in DAC.
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Figure 3. Schematic diagram of (a) the real imaging geometry and (b) the equivalent imaging geometry.

The Minnaert function was proposed for the TC of non-Lambertian albedo [26], where
the k coefficient of the Minnaert function is the simplified representation of BRDF, and it
is a constant in a given area. Note that the traditional k coefficient was found by simply
applying a linear regression analysis with all types of objects in the Minnaert model early
used for a single RS datum, and the optimized k coefficient was solved by applying a
polynomial fit in the slope grading strategy in the modified Minnaert model to better
represent the terrain change. However, the above Minnaert model ignores the influence of
the ground object on the k coefficient. In this paper, the k coefficient is solved pixel by pixel
using the high-frequency imaging feature of GSS RS data.

The DAC formula based on coordinate rotation and the Minnaert model can be
expressed as:

ρMinnaert = ρpre cos(θT)/[cos(θT) cos(θD−S)]
k (5)
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The θT of each pixel has been corrected to 0º after the application of Equation (4), so
Equation (5) can be further reduced to:

ρnom = ρpre/[cos(θD−S)]
k (6)

Note that the diurnal variation in the vegetation canopy spectra based on field experi-
ments [27] and related studies [28] shows that the local time period before 11:00 (called the
morning time window) and after 13:30 (called the afternoon time window) are the periods
when the vegetation canopy spectrum itself is relatively stable; whereas the local time
period from 11:00 to 13:30 (called the noon time window) is when the vegetation canopy
spectrum changes drastically. Thus, to ensure that the vegetation canopy spectrum itself
is relatively stable for data screening, we find the k coefficient as a function of the time
window for each pixel.

2.5. Study Area and Data

The study area was located at the junction point of Jiangsu province and Anhui
province of China (117◦57′43′ ′ E~118◦38′13′′ E, 32◦09′43′′ N~32◦24′14′′ N) (see Figure 4a).
The study area spans in altitude from −52 to 392 m (see Figure 4b), and its slope ranges
from 0◦ to 30◦. The conventional crops include wheat, rice, rapeseed, soybean, etc., and
forests include poplar, Masson pine, etc.
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Figure 4. (a) Geographic location and (b) DEM of the study area.

The GOCIs onboard the Communication, Ocean, and Meteorological Satellite (COMS),
observation area of 2500 × 2500 km is centered on the Korean Peninsula (130◦ E, 36◦ N)
and supports a spatial resolution of 500 m; the spectral features are shown in Table 2. The
GOCI is capable of producing images at hourly intervals and receives images eight times a
day from 08:15 to 15:45 CST (China Standard Time UT + 8:00).

Table 2. GOCI satellite band parameter information.

B1 B2 B3 B4 B5 B6 B7 B8

Band length (nm) 412 443 488 555 660 680 745 865
Band width (nm) 20 20 20 20 20 10 20 40

The GOCI images acquired on 22 April 2015 were used for model verification because
of the advantageous winter wheat growth cycle and the good spatial distribution of the
cloud coverage for the GOCI images. In the study area, 22 April 2015 was during the
jointing stage of winter wheat; the crops appeared to be growing well with full ground
coverage. However, the GOCI images received after 14:00 CST on 22 April 2015 suffered
from thin cloud coverage in the study area, so these two images were not used in the data
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processing and analysis. Subsequently, each image is represented by the imaging hour
in CST.

We first used the GDPS (the GOCI data-processing system) to process GOCI L1B data
to obtain the Rayleigh-corrected reflectance, the latitudes and longitudes of the four corner
points and the center point, the solar angles and observation angles of each pixel, etc. We
then subset the reflectance products according to the coordinate range of the study area.
Furthermore, for comprehensive considerations of the synchronous ground observation
experiment on winter wheat [29] and the GOCI pixel NDVI covering the samples, we
took 0.6 as the NDVI threshold and used LAND_NDVI products to screen the ground
object type, and the model was applied only to the 5292 selected vegetation pixels. Finally,
after projection conversion and resembling operations, the 90 m Chinese resolution digital
elevation data product was used to calculate the topographical factors (slope and aspect) of
each pixel of the GOCI reflectance products after geometric registration and resampling.

2.6. Method Evaluation Strategies

Numerous strategies have been used to assess the performance of topographic correc-
tion methods and solar normalization methods [18,30]. To obtain an objective evaluation,
we used three different methods:

(i) Correlation analysis between reflectance in different imaging periods. Because the
vegetation canopy spectrum is relatively stable in the morning time window, the
effective angle normalization model should strengthen the reflectance correlation of
different imaging phases in the morning time window and make the slope of the
linear regression equation closer to unity. Conversely, the vegetation canopy spectrum
changes drastically in the noon time window, so the effective angle normalization
model should weaken the reflectance correlation of different imaging phases and
make the slope of the linear regression equation further depart from unity.

(ii) Analysis of the correlation between the cosine of the imaging geometry angles and
reflectance. This is one of the most widely used quantitative evaluation methods. The
efficiency of the normalization methods can be quantified by using R2 and the imaging
geometry angles of the corresponding linear regression. The ideal normalization
method should make R2 approach zero [31].

(iii) Radiometric stability. Theoretically, the maximum (minimum) reflectance in the
original image before correction should appear in the sunny (shady) slope and will
decrease (increase) after topographic correction. Consequently, a successful correc-
tion method will reduce the reflectance range. Moreover, the median reflectance is
relatively stable and invariable after correction [30].

3. Results

According to the typical vegetation spectral characteristics, the bands 400–730 nm and
730–900 nm are two typical spectral bands in the winter wheat canopy spectrum [29]. GOCI
band 5 (650–670 nm) and band 8 (845–885 nm) are used to produce NDVI (Normalized
Difference Vegetation Index) products and were selected for model application analysis.

3.1. Correlation between Different Imaging Phases

To comprehensively compare how normalizing the angles affects the treatment of the
models of the GOCI reflectance bands, Table 3 shows the detailed regression results for the
band 5 reflectance and band 8 reflectance for different imaging hours.

Table 3 shows that the correlations for the band 8 reflectance between different imaging
phases are significantly better than for the band 5 reflectance in the corresponding phases,
which is consistent with the diurnal variation in the field-measured reflectance spectra of
the vegetation canopy [29]. The slope of the linear fit and R2 in Table 3 further indicates that
the normalization has no effect on the results of the PLC model for the GOCI reflectance
correlation between different imaging phases, the SACM suffers from over-correction, and
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the SANM not only significantly reduces the over-correction of the SACM but also preserves
the instability of the vegetation canopy reflectance spectra in the noon time window.

Table 3. Slope and R2 of fit for GOCI band 5 reflectance and GOCI band 8 reflectance between
different imaging times.

Imaging Hour Linear Fit
Band 5 Reflectance Band 8 Reflectance

Ori PLC SACM SANM Ori PLC SACM SANM

Morning
window

08–09
Slope 1.014 0.998 0.802 0.976 0.924 0.917 0.731 1.021

R2 0.768 0.767 0.771 0.889 0.901 0.900 0.901 0.951

08–10
Slope 1.144 1.116 0.785 1.008 0.857 0.848 0.589 0.994

R2 0.844 0.832 0.847 0.993 0.862 0.856 0.860 0.997

09–10
Slope 0.958 0.957 0.831 0.891 0.904 0.903 0.785 0.914

R2 0.792 0.794 0.793 0.833 0.906 0.906 0.906 0.925

Noon
window

11–12
Slope 0.804 0.808 0.797 0.786 0.877 0.878 0.871 0.814

R2 0.705 0.708 0.705 0.718 0.871 0.872 0.871 0.855

11–13
Slope 0.847 0.849 0.887 0.801 0.859 0.859 0.902 0.689

R2 0.324 0.327 0.328 0.368 0.798 0.799 0.798 0.703

12–13
Slope 0.848 0.849 0.890 0.846 0.962 0.962 1.016 0.860

R2 0.298 0.302 0.298 0.353 0.883 0.884 0.884 0.850

3.2. Sensitivity to Imaging Geometry Angles

Band 8 normalization has a consistent effect with band 5, but with higher reflectance,
so we take band 5 reflectance from 08:15 CST as an example; Figure 5 compares the cosine
of the imaging geometry angle with the reflectance before and after each normalization
model (i.e., the PLC model, the SACM, and the proposed SANM).

The correlation is extremely weak between the original band 5 reflectance with
cos(θS−T), cos(θD−T), and cos(slope): R2 for the linear fit is 2.88 × 10−4 (see Figure 5a),
0.001 (see Figure 5e), and 0.011 (see Figure 5i). These results are attributed to the small
difference in imaging geometry when the study area is small. The use of the PLC model
significantly improves the correlation between the band 5 reflectance and cos(θS−T) and
cos(θD−T): R2 for the linear fit increased to 0.038 (see Figure 5b) and 0.03 (see Figure 5f).
The use of the SACM significantly reduced the correlation between band 5 reflectance and
cos(θS−T) and cos(slope): R2 for the linear fit decreased to 1.402 × 10−4 (see Figure 5c) and
0.01 (see Figure 5k). The use of the SANM significantly improved the correlation between
band 5 reflectance and cos(θD−T): R2 for the linear fit increased to 0.015 (see Figure 5h) from
the original 0.001 (see Figure 5e); whereas the correlation is significantly reduced between
band 5 reflectance and cos(θS−T) and cos(slope): R2 for the linear fit decreased to 1.6 × 10−4

(see Figure 5c) and 0.004 (see Figure 5k). These results indicate that the normalization by
SANM proposed herein has a better effect on the solar angle of incidence and slope (i.e., a
lower R2); however, it presents a poor normalization effect on θD−T.

3.3. Radiometric Stability

Theoretically, after correction, the reflectance ranges should be contained in their
counterparts before correction [30]. Box plots of band 5 reflectance and band 8 reflectance
from the uncorrected and corrected images shows that each angle normalization for a given
model has the same effect on the reflectance of bands 5 and 8, and the reflectance distribu-
tion is more concentrated when the mean reflectance is lower (see Figure 6). Figure 6 also
shows that the PLC model did not change the distribution of the GOCI band reflectance
and the variations in the imaging phases: the SACM suffered from over-correction, which
increased with the solar zenith angle, and the SANM significantly improved the over-
correction problem of the SACM. The band reflectances were stable in the morning time
window and decreased in the noon time window after SANM processing, which is consis-
tent with the intraday variation of the field-measured reflectance spectra of the vegetation
canopy [28].
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Figure 5. (a) Density scatter plots between the original Rayleigh-corrected GOCI band 5 reflectance
(Band5-ori) at 08:15 CST and cos(θS−T), the red line is linearly fit to data; (b) Same as (a) except using
the GOCI band 5 reflectance after PLC correction (Band5-PLC); (c) Same as (a) except between the
GOCI band 5 reflectance after ASCM correction with Band5-ori as ρt (Band5-SACM); (d) Same as
(a) except between the GOCI band 5 reflectance after SANM normalization (Band5-SANM); (e) Same
as (a) except using the cos(θD−T); (f–h) Same as (e) except using Band5-PLC, Band5-SACM, and
Band5-SANM, respectively; (i) Same as (a) except using the cos(θT); (j–l) Same as (i) except using
Band5-PLC, Band5-SACM, and Band5-SANM, respectively.

Figure 6a shows that the mean original reflectance of band 5 increases from 08:15 to
11:15 CST, after which it decreases. After PLC processing, band 5 reflectance underwent
no significant change in range or distribution (Figure 6b) compared with Figure 6a and
retained the variations of band 5 reflectance for the various imaging phases. Figure 6c
shows that, because of the over-correction problem, large differences exist in the band 5
reflectance after SACM processing. The mean reflectance of band 5 after SACM processing
decreased along the imaging phase and increased up to the 04 phase. Figure 6d shows
that the band 5 reflectance in the 00 phase to the 03 phase are more similar after SANM
processing, and the band 5 reflectance in the 04 phase and 05 phase are lower than those for
the other phases after SANM processing. Since all selected pixels found almost no shadows,
the reduction in the reflectance range is inconspicuous.
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Figure 6. Box plots of (a) the original Rayleigh-corrected GOCI band 5 reflectance; (b) the GOCI band
5 reflectance after PLC correction (Band5-PLC); (c) the GOCI band 5 reflectance after ASCM correction
with Band5-ori as ρt (Band5-SACM); (d) the GOCI band 5 reflectance after SANM normalization
(Band5-SANM) in each imaging time for the morning time window and the double-peak time
window; (e–h) same as (a–d) correspondingly except using band 8 reflectance.

4. Discussion

With the help of GSS RS data, the proposed SANM can improve the time resolution of
angle-normalized products for RS reflectance from a vegetation canopy to the hourly level.
However, the following problems exist in the model-construction process:

In the TC step, the extinction path-length formula is derived as a hypothetical condition
for a dense canopy without considering the effects of a sparse canopy [32]. However, the
actual vegetation canopy structure usually has daily, quarterly, and annual variations and
regional differences, which strongly impact the BRDF and biomass retrieval [33]. In the
subsequent model optimization, we propose to introduce vegetation cover factor variables
to distinguish how a dense canopy versus a sparse canopy affects the reflectance spectrum
from a vegetation canopy [34,35].

In the SAC step, we used the simplest cosine correction model and did not consider
whether the fit to the reflectance and cosine of the solar zenith angle passes through the
origin, which depends on atmospheric scattering and refraction from adjacent pixels [36].
Subsequent research should introduce the intercept and slope into the SAC step for opti-
mization. However, the difficulty is the determination of the intercept, especially in the
case of large changes in solar angle caused by the wide field and high frequency of GSSs.

In the DAC step, we set the time window when solving for the Minnaert model
k coefficient. The given time window only considered few a diurnal variations of the
reflectance spectra from the vegetation canopy, which limited the effective data used for
calculating the k coefficient. In the follow-up study, a database will be created of the diurnal
variations of reflectance spectra from canopies of different types of vegetation through
literature research and field measurements so as to screen data to more accurately solve for
the k coefficient. In addition, the distribution of the k coefficient obtained herein exceeded
the conventional range of 0–1 (see Figure 7), which may be due to the GSS imaging regions
that are located in the backscattering area [26]. Subsequent research should study how the
scattering orientation affects the k coefficient and determine the range of the k coefficient
under the conditions of fixed observation angle.
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Figure 7. Density scatterplots between the slope and factor k in SANM for GOCI images band 5
(a) and band 8 (b) ground object reflectance.

5. Conclusions

By using the PLC model, the cosine model for solar-angle normalization, and the
Minnaert model, we herein establish a SANM for the reflectance of the GSS RS vegetation
canopy. GOCI images were used to test the SANM, and a multi-criteria analysis was used
in the evaluation. With the PLC model, normalization has no effect on the correlation
of the GOCI reflectance between different imaging phases. However, the correlation is
significantly improved between the band reflectance with the cosine of the solar angle of
incidence and the cosine of the angle from the observation direction to the ground surface
normal. The SACM significantly reduced the correlation between band 5 reflectance with
the cosine of the solar angle of incidence and slope, but it suffered from over-correction.
Whereas the SANM significantly improved the over-correction problem for the SACM and
also preserved the instability of the vegetation canopy spectra in the noon time window.
The use of the SANM significantly reduced the correlation between the band reflectance
with the cosine of the solar angle of incidence and the slope. For normalizing the angle of
the high-frequency GSS RS, the SANM outperformed all other methods, which indicates
that it has a strong potential for applications and for monitoring land-surface phenology,
estimating biomass, etc.

Author Contributions: Conceptualization, Y.L. (Yinghao Lin) and Q.T.; methodology, Y.L. (Yinghao
Lin) and B.Q.; software, Y.W. and Y.X.; validation, Y.L. (Yinghao Lin), X.Z. and Y.W.; writing—original
draft preparation, Y.L. (Yinghao Lin) and Q.T.; writing—review and editing, Y.L. (Yinghao Lin) and
Y.L. (Yang Lian); visualization, Y.L. (Yinghao Lin) and Y.X.; funding acquisition, Y.L. (Yinghao Lin)
and Y.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Key R&D and Promotion Projects of Henan Province, grant
number 222102320163; China High-resolution Earth Observation System, grant number 80-Y50G19-
9001-22/23; Major Project of Science and Technology of Henan Province, grant number 201400210300;
National Natural Science Foundation of China, grant number 42071318; National Defense Basic
Research Projects of China, grant number JCKY2020908B001; National Basic Research Program of
China, grant number 2019YFE0126600 and Kaifeng science and technology development plan, grant
number 2002001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The GOCI data and GDPS can be downloaded from: http://kosc.kiost.
ac.kr/index.nm?menuCd=54&lang=en (accessed on 10 June 2022).

http://kosc.kiost.ac.kr/index.nm?menuCd=54&lang=en
http://kosc.kiost.ac.kr/index.nm?menuCd=54&lang=en


Agriculture 2022, 12, 1658 12 of 13

Acknowledgments: The author would like to thank all contributors to this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hashimoto, H.; Wang, W.; Dungan, J.L.; Li, S.; Michaelis, A.R.; Takenaka, H.; Higuchi, A.; Myneni, R.B.; Nemani, R.R. New

generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun.
2021, 12, 684. [CrossRef] [PubMed]

2. Yang, J.; Jiang, L.; Shi, J.; Wu, S.; Sun, R.; Yang, H. Monitoring snow cover using Chinese meteorological satellite data over China.
Remote Sens. Environ. 2014, 143, 192–203. [CrossRef]

3. Wang, M.; Ahn, J.-H.; Jiang, L.; Shi, W.; Son, S.; Park, Y.-J.; Ryu, J.-H. Ocean color products from the Korean Geostationary Ocean
Color Imager (GOCI). Opt. Express 2013, 21, 3835. [CrossRef] [PubMed]

4. Wang, M.; Cheng, Y.; Chang, X.; Jin, S.; Zhu, Y. On-orbit geometric calibration and geometric quality assessment for the
high-resolution geostationary optical satellite GaoFen4. ISPRS J. Photogramm. Remote Sens. 2017, 125, 63–77. [CrossRef]

5. Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm
testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719.
[CrossRef]

6. Yumimoto, K.; Nagao, T.M.; Kikuchi, M.; Sekiyama, T.T.; Murakami, H.; Tanaka, T.Y.; Ogi, A.; Irie, H.; Khatri, P.;
Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorologi-
cal satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [CrossRef]

7. Di, A.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Mei, L.; Wang, J.; She, L.; Hu, Y.; He, X.; et al. Dust aerosol optical depth retrieval and
dust storm detection for Xinjiang Region using Indian national satellite observations. Remote Sens. 2016, 8, 702. [CrossRef]

8. Bloshchinskiy, V.D.; Kuchma, M.O.; Andreev, A.I.; Sorokin, A.A. Snow and cloud detection using a convolutional neural network
and low-resolution data from the Electro-L No. 2 Satellite. J. Appl. Remote Sens. 2020, 14, 1. [CrossRef]

9. Aminou, D.M.; Lamarre, D.; Stark, H.; Van Den Braembussche, P.; Blythe, P.; Fowler, G.; Gigli, S.; Stuhlmann, R.; Rota, S. Meteosat
Third Generation (MTG) status of space segment definition. In Sensors, Systems, and Next-Generation Satellites XIII; SPIE: Berlin,
Germany, 2009; Volume 7474, p. 747406.

10. Du, H.; Liu, Q.; Li, J.; Yang, L. Retrieving crop leaf area index by combining optical and microwave vegetation indices: A feasibility
analysis. Yaogan Xuebao/J. Remote Sens. 2013, 17, 1587–1611. [CrossRef]

11. Babcock, C.; Finley, A.O.; Looker, N. A Bayesian model to estimate land surface phenology parameters with harmonized Landsat
8 and Sentinel-2 images. Remote Sens. Environ. 2021, 261, 112471. [CrossRef]

12. Puliti, S.; Breidenbach, J.; Schumacher, J.; Hauglin, M.; Klingenberg, T.F.; Astrup, R. Above-ground biomass change estimation
using national forest inventory data with Sentinel-2 and Landsat. Remote Sens. Environ. 2021, 265, 112644. [CrossRef]

13. Novillo, C.J.; Arrogante-Funes, P.; Romero-Calcerrada, R. Improving land cover classifications with multiangular data: MISR
data in mainland Spain. Remote Sens. 2018, 10, 1717. [CrossRef]

14. Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens.
1982, 8, 84–106. [CrossRef]

15. Blesius, L.; Weirich, F. The use of the Minnaert correction for land-cover classification in mountainous terrain. Int. J. Remote Sens.
2005, 26, 3831–3851. [CrossRef]

16. Ekstrand, S. Landsat TM-based forest damage assessment: Correction for topographic effects. Photogramm. Eng. Remote Sens.
1996, 62, 151–161.

17. Li, H.; Xu, L.; Shen, H.; Zhang, L. A general variational framework considering cast shadows for the topographic correction of
remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 161–171. [CrossRef]

18. Yin, G.; Li, A.; Wu, S.; Fan, W.; Zeng, Y.; Yan, K.; Xu, B.; Li, J.; Liu, Q. PLC: A simple and semi-physical topographic correction
method for vegetation canopies based on path length correction. Remote Sens. Environ. 2018, 215, 184–198. [CrossRef]

19. Kowalik, W.S.; Marsh, S.E.; Lyon, R.J.P. A relation between landsat digital numbers, surface reflectance, and the cosine of the solar
zenith angle. Remote Sens. Environ. 1982, 12, 39–55. [CrossRef]

20. Li, L. The Influence of the Satellite Observation and Sunshine Direction on Vegetation-Shade—A Case Study of Qinghai-Tibet Railway;
China University of Geosciences: Beijing, China, 2016.

21. Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the
VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens.
Environ. 2017, 201, 256–274. [CrossRef]

22. Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L.; Huang, H.; Li, Z. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance
anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens.
Environ. 2017, 199, 25–38. [CrossRef]

23. Chance, C.M.; Hermosilla, T.; Coops, N.C.; Wulder, M.A.; White, J.C. Effect of topographic correction on forest change detection
using spectral trend analysis of Landsat pixel-based composites. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 186–194. [CrossRef]

24. Li, L.; Hu, Y.; Gong, C.; He, H. Solar elevation angle’s effect on image energy and its correction. J. Atmos. Environ. Opt. 2013, 8,
11–17.

http://doi.org/10.1038/s41467-021-20994-y
http://www.ncbi.nlm.nih.gov/pubmed/33514721
http://doi.org/10.1016/j.rse.2013.12.022
http://doi.org/10.1364/OE.21.003835
http://www.ncbi.nlm.nih.gov/pubmed/23481840
http://doi.org/10.1016/j.isprsjprs.2017.01.004
http://doi.org/10.1007/s13351-017-6161-z
http://doi.org/10.1002/2016GL069298
http://doi.org/10.3390/rs8090702
http://doi.org/10.1117/1.JRS.14.034506
http://doi.org/10.11834/jrs.20133035
http://doi.org/10.1016/j.rse.2021.112471
http://doi.org/10.1016/j.rse.2021.112644
http://doi.org/10.3390/rs10111717
http://doi.org/10.1080/07038992.1982.10855028
http://doi.org/10.1080/01431160500104194
http://doi.org/10.1016/j.isprsjprs.2016.03.021
http://doi.org/10.1016/j.rse.2018.06.009
http://doi.org/10.1016/0034-4257(82)90006-2
http://doi.org/10.1016/j.rse.2017.09.020
http://doi.org/10.1016/j.rse.2017.06.019
http://doi.org/10.1016/j.jag.2015.09.003


Agriculture 2022, 12, 1658 13 of 13

25. Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans.
Geosci. Remote Sens. 1998, 36, 1324–1338. [CrossRef]

26. Gao, M.; Gong, H.; Zhao, W.; Chen, B.; Chen, Z.; Shi, M. An improved topographic correction model based on Minnaert. GISci.
Remote Sens. 2016, 53, 247–264. [CrossRef]

27. Lin, Y.; Shen, H.; Tian, Q.; Gu, X. Improving leaf area index retrieval using spectral characteristic parameters and data splitting.
Int. J. Remote Sens. 2020, 41, 1741–1759. [CrossRef]

28. Guo, J.; Wang, Q.; Tong, Y.; Fei, D.; Liu, J. Effect of solar radiation intensity and observation angle on canopy reflectance
hyperspectra for winter wheat. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 157–163. [CrossRef]

29. Lin, Y.; Shen, H.; Tian, Q.; Gu, X.; Yang, R.; Qiao, B. Mechanisms underlying diurnal variations in the canopy spectral reflectance
of winter wheat in the jointing stage. Curr. Sci. 2020, 118, 1401–1406. [CrossRef]

30. Sola, I.; González-Audícana, M.; Álvarez-Mozos, J. Multi-criteria evaluation of topographic correction methods. Remote Sens.
Environ. 2016, 184, 247–262. [CrossRef]

31. Yin, G.; Li, A.; Zhao, W.; Jin, H.; Bian, J.; Wu, S. Modeling Canopy Reflectance over Sloping Terrain Based on Path Length
Correction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4597–4609. [CrossRef]

32. Kane, V.R.; Gillespie, A.R.; McGaughey, R.; Lutz, J.A.; Ceder, K.; Franklin, J.F. Interpretation and topographic compensation of
conifer canopy self-shadowing. Remote Sens. Environ. 2008, 112, 3820–3832. [CrossRef]

33. Yang, G.; Pu, R.; Zhang, J.; Zhao, C.; Feng, H.; Wang, J. Remote sensing of seasonal variability of fractional vegetation cover and
its object-based spatial pattern analysis over mountain areas. ISPRS J. Photogramm. Remote Sens. 2013, 77, 79–93. [CrossRef]

34. Wen, J.; Liu, G.; Gong, Z.; Pang, Y.; Cai, Z.; Xua, J. Aquatic Vegetation Canopy Spectral Characteristics under Different Coverage
Percentages. J. Appl. Spectrosc. 2018, 85, 885–890. [CrossRef]

35. Gao, R.; Xie, Y.; Gu, X.; Han, J.; Sun, Y.; Liu, J. A model of topographic radiance correction in view of fractional vegetation cover.
Sci. Surv. Mapp. 2016, 41, 132–138.

36. Schott, J. Remote Sensing: The Image Chain Approach; Oxford University Press: New York, USA, 2007; Volume 45, ISBN
9780195178173.

http://doi.org/10.1109/36.701082
http://doi.org/10.1080/15481603.2015.1118976
http://doi.org/10.1080/01431161.2019.1674461
http://doi.org/10.11975/j.issn.1002-6819.2016.10.022
http://doi.org/10.18520/cs/v118/i9/1401-1406
http://doi.org/10.1016/j.rse.2016.07.002
http://doi.org/10.1109/TGRS.2017.2694483
http://doi.org/10.1016/j.rse.2008.06.001
http://doi.org/10.1016/j.isprsjprs.2012.11.008
http://doi.org/10.1007/s10812-018-0734-1

	Introduction 
	Materials and Methods 
	Synthetic Angle Normalization Model Overview 
	Topographic Correction for Vegetation Canopies-PLC 
	Correction of Solar Angle 
	Correction of Detector Angle 
	Study Area and Data 
	Method Evaluation Strategies 

	Results 
	Correlation between Different Imaging Phases 
	Sensitivity to Imaging Geometry Angles 
	Radiometric Stability 

	Discussion 
	Conclusions 
	References

