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Abstract: Crop yield forecasting allows farmers to make decisions in advance to improve farm
management and logistics during and after harvest. In this sense, crop yield potential maps are
an asset for farmers making decisions about farm management and planning. Although scientific
efforts have been made to determine crop yields from in situ information and through remote sensing,
most studies are limited to evaluating data from a single date just before harvest. This has a direct
negative impact on the quality and predictability of these estimates, especially for logistics. This
study proposes a methodology for the early prediction of tomato yield using decision tree ensembles,
vegetation spectral indices, and shape factors from images captured by multispectral sensors on board
an unmanned aerial vehicle (UAV) during different phenological stages of crop development. With
the predictive model developed and based on the collection of training characteristics for 6 weeks
before harvest, the tomato yield was estimated for a 0.4 ha plot, obtaining an error rate of 9.28%.

Keywords: decision tree ensemble; crop yield; UAVs

1. Introduction

Tomato (Solanum lycopersicum) is the most produced vegetable worldwide, with a
volume of 187 MTons in 2020 [1]. The varietals differ in their exterior appearance (shape and
color) and internal traits (flavor, texture, and hardness). There are also varietals intended
for fresh consumption and others for agroindustrial processing. In particular, processed
tomatoes reached annual volumes close to 40 MTons during 2021 [2].

With the systematic increase in the area devoted to tomato cultivation, there is growing
research to test new varietals and related agronomic management practices to improve
quality and yield [3,4]. Yield estimation is critical for crop management [5]. Timely and
reliable estimates enable better management decisions, such as irrigation, fertilizers, and
pesticides. In addition, it supports the logistic planning of field operations (stock scheduling,
labor) and post-harvest (storage, handling, packing, and anticipated product sales) [6].
Therefore, the generation of potential yield maps would allow farmers to make evidence-
based decisions for crop management and planning [3,7,8].

In this way, precision agriculture plays an important role. For example, unmanned
aerial vehicles (UAVs) monitor crops in time and space [9–11]. UAVs can fly at low altitudes
and often enough to provide information throughout the phenological development period
of a crop [12–15]. However, their main disadvantage is that they require qualified operators
to perform flights and data post-processing [10,16,17].
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Although in recent years some work has used sensors onboard UAVs as a data source
to estimate tomato yield, the literature on this subject remains sparse. However, it is
important to highlight various focus methods used by some researchers. For example,
Senthilnath et al. [18] detected the number of fruits in tomato plants in an advanced
stage of development, where plants lose their leaves, using a 5-megapixel (5 Mpx) RGB
camera mounted on a UAV that flew at a height of 20 m. Johansen et al. [19] estimated
the production of individual tomato plants using a 12.4 Mpx RGB camera on board a UAV
flying at a height of 13 m, covering a time record during the last eight weeks before harvest
(WBH). Subsequently, the authors developed a machine-learning-based predictive model,
obtaining the best results for dates near harvest, with RMSE of 168.9 g and 175.7 g in one
and four WBH, respectively. However, the results for 8, 7, and 6 WBH significantly underes-
timated the yield. Similar results were obtained by Johansen et al. [20]. Ashapure et al. [3]
estimated the production of tomato plant groups using 14 Mpx RGB cameras on board
a UAV during the 2016 season and 20 Mpx during the 2017 and 2018 growing seasons
to perform a multitemporal plant development characterization. On flight days, it also
collected meteorological information: relative humidity, precipitation, air temperature,
solar radiation, and crop evapotranspiration. Based on the data captured in the flights
and meteorological information, they developed a predictive model based on a radial
basis function neural network. Initially, the model was trained independently for the
growing seasons 2016, 2017, and 2018, achieving a performance estimation model with
a goodness of fit (R2) between 0.78 and 0.89. They also trained a model using data from
the 2016 growing season that successfully predicted performance for data sets from the
2017 and 2018 growing seasons with R2 ≥ 0.70. However, in their results and conclusions,
there is no measure of error to quantify the magnitude of difference between real and
estimated production. Enciso et al. [13] validated measurements on high grounds of plants,
canopy cover, and normalized difference vegetation index (NDVI), using an RGB camera
with a resolution of 20 Mpx and a multispectral camera with 1.2 Mpx on board a UAV,
flying at 30 m over the field and compared the results to field data (NDVI was measured
using a Green Seeker Handheld Crop Sensor, Trimble). The results showed that there are
no significant differences (p ≥ 0.05) between field measurements and UAV data for the
variable height of the plant and the canopy cover. However, significant differences were
found when comparing the NDVI from field measurements with the data obtained by the
UAV. The authors attributed this low correlation to wavelength differences between the
Green Seeker instrument and the multispectral camera. Tatsumi et al. [21], using multiple
machine learning algorithms, predicted the masses of the fresh tomato shoots, the weight
of the fruits, and the number of fruits. The authors collected 10 RGB and multispectral
images by a UAV on two dates 3 months and 3 days before harvest during the 2020 tomato
growing season. From these images, first- and second-order statistics were extracted for
each plant. The prediction accuracy of shoot mass, fruit weights, and number of fruits
by models constructed from all variables (RMSE = 8.8–28.1%) was better than that from
first-order statistics (RMSE = 10.0–50.1%).

Flight heights below 20 m improve the spatial resolution of the images [3,19,20]. Low-
altitude flights are an important drawback in developing an operational methodology to
predict crop yield, as they involve more overflights to cover larger areas. To overcome this
limitation, fixed-wing UAVs have greater autonomy and can cover large areas in a single
flight [22].

It should be noted that the aforementioned studies evaluated the crop on certain dates
without granting any importance to the effect of the cumulative behavior of the variables
measured throughout the phenological development of the plant (temporal behavior),
which could provide valuable information for estimating production. However, to our
knowledge, the question of when and how many flights or field campaigns suffice for
accurate estimations has not been answered.

Taking into account the advantages and limitations exposed in the current state of
the art, the objective of this study is to propose a methodology for the early estimation of
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tomato production that combines decision trees ensembles (DTE) [23], spectral vegetation
indices, and form factors (FF) [24] captured at various dates to maximize accuracy while
minimizing monitoring costs.

2. Materials and Methods
2.1. Field Trials

The study site is located in Parral, Maule Region, Chile (36◦06′ S, 71◦50′ W) (Figure 1),
at 137 m above sea level (a.s.l.). The study site belongs to the warm-temperate suprathermal
agroclimatic zone, with a semiarid humidity regimen. Its annual median precipitation is
720 mm, and during vegetative periods its average maximum and minimum air tempera-
tures are 29.7 and 7.6 ◦ C, respectively [25]. The soil texture is clay loam. The root depth
reached 0.3 m, choosing this depth for effective water management.

Figure 1. The geographic location of the study site. Parral, Maule Region, Chile (lat. 71°49′53.29′′ W,
long. 36°5′56.21′′ S).

We carried out a varietal improvement experiment on a plot 0.4 ha containing 88 parcels
(22 varieties of tomatoes processed with four repetitions) considering a random parcel
distribution (Figure 2). Each parcel was made up of 3 rows of 6 m, with a planting frame
over and between rows of 0.25 m and 1.5 m, respectively. To avoid border effects at the
boundaries of the east and west rows, a filler row was added on both sides of the exper-
iment [13]. The tomato plants were transplanted on 8 October 2019 and harvested on
20 February 2020. The irrigation system used was drip irrigation with 0.2 m between the
emitters on the lateral and 1.5 m between the irrigation laterals (one lateral per row of
tomatoes). The flow per emitter was 1.1 L·h−1. The irrigation frequency was daily, and the
irrigation time varied according to the water demand of the crop monitored by a reference
meteorological station near the study site.

2.2. Images Acquisition from UAV

For image acquisition, the UAV Ebee SQ platform was used, equipped with a multi-
spectral Parrot Sequoia camera [26]. The Parrot camera records spectral wavelengths in
green (530–570 nm), red (640–680 nm), red edge (730–740 nm), and near–infrared (Nir)
(770–810 nm) and has a resolution of 1.2 Mpx. Before each flight, the Parrot Sequoia camera
was radiometrically calibrated using the AIRINOV calibration panel [27].
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Figure 2. Experimental design that consider 22 varietals, and 4 repetitions, using a planting frame of
3 rows of 6 m, with an above and between rows of 0.25 m and 1.5 m, respectively, on a 0.4 ha farm.

Table 1 shows the flight planning for the Ebee SQ parameters in the EmotionAg soft-
ware. Data collection dates are presented in Table 2. Five ground control points (GCP)
were established at the study site (Figure 3), four at the corners and one at the center of
the plot. The GCPs were kept fixed throughout the study period [4,13] for the orthomosaic
generation process in each of the flights performed during the study period. Orthomo-
saics were generated by Pix4Dmapper software following the developer’s recommenda-
tions (https://support.pix4d.com/hc/en-us/articles/202557359-Getting-Started-Index,
accessed on 2 August 2021).

Table 1. Parameters for flight planning.

Parameter Ebee SQ

Camera Parrot Sequoia
Flight Height 42.5 m
Lateral Overlap 80%
Vertical Overlap 80%
Number of Images Per Flight 41 per band
Spatial Resolution 4 cm

Table 2. Data collection dates.

Flight Date Day after Transplant Weeks before
Harvest (WBH)

1 21 November, 2019 44 12
2 30 November 2019 53 11
3 11 December 2019 64 10
4 11 January 2020 95 5
5 25 January 2020 109 3
6 29 January 2020 113 3
7 5 February 2020 120 2

2.3. Agronomic Measurements

Agronomic measurements were obtained on harvest day (20 February 2020). The
criterion for the day of harvest is when 80% of the fruits reached the color of commercial
ripeness and the average sugar content of an aqueous solution of ◦Brix ≥ 5. The harvest
measurements were made on 2 m length in the middle row of each parcel, as shown
in Figure 4. The data collected were: (i) yields, total weight of all fruits with caliber

https://support.pix4d.com/hc/en-us/articles/202557359-Getting-Started-Index
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greater than 30 mm; and (ii) counting by hand of red, turning, and green fruits, ruling out
low-caliber fruits (<30 mm) [20].

Figure 3. Location of the ground control points (GCP).

Figure 4. Harvest strategy: 2 m on a line in the middle row of each of the parcels.

2.4. Images Segmentation

To separate the zones with tomato plants (tomato plant class, TP) from bare soil
(no tomato plant class, NTP), the study area was segmented for different phenological
stages. Since image segmentation is a time-consuming task when performed manually and
also depends on the operator performing the segmentation, the process was automated.
In this work, the proposed segmentation process used the normalized vegetation index
(NDVI) [28] from images captured by the multispectral Parrot Sequoia camera.

NDVI =
(Nir− Red)
(Nir + Red)

(1)

Each of the NDVI maps was oversegmented with the superpixel (SP) technique known
as SLIC (simple linear iterative clustering) [28,29]. To adjust the segmentation, we generated
10% of SP from the total image pixels and set the compactness to 2, that is, the most irregular
form that SP can have. Then, multilevel thresholds using the Otsu thresholding method
were applied to SP histograms [30]. The thresholds were selected using the maximum
variation method between classes [31] to separate the TP and NTP classes. Finally, a small
object elimination process was performed to avoid noise in class assignments via an area
threshold. In [4,19], the authors reported that the minimum area used to define a tomato
plant was <150 cm2. This value becomes inadequate in close flights at the transplant stage
since small tomato plants are not detected or considered. This may have a negative impact



Agriculture 2022, 12, 1655 6 of 13

on the crop yield forecast. Therefore, in our work, all tomato plants with areas <40 cm2

were eliminated.
To assess the ability of the implemented algorithm, the segmented images were com-

pared with manually segmented images obtained for the same dates using Dice coefficient
(Equation (2)) [32]. The Dice similarity coefficient is used as a statistical validation of both
the reproducibility of manual segmentation and the spatial overlap accuracy of automated
segmentation methods. The values of Dice range from 0, indicating no spatial overlap
between two sets of binary segmentation results, to 1, indicating complete overlap.

Dice =
2× |X ∩Y|

X + Y
(2)

where X is the predicted set of pixels, and Y is the ground truth.

2.5. Data Sets

The data sets contain information on the production measured in the harvest zones
(Figure 4): vegetation indices obtained for each segment on each flight date (Table 2), mean
reflectance values (obtained from the Green, Red, Red Edge, and Nir bands of the Parrot
Sequoia camera), and form factors (FF).

Considering the results obtained in Ramos et al. [33], in this work NDVI (Equation (1)),
and normalized difference red edge index (NDRE) (Equation (3)) were used [34,35].

NDRE =
(Nir− Red Edge)
(Nir + Red Edge)

(3)

and the form factors (FF): canopy cover (FFC) (Equation (4)) [9], size (FFS) (Equation (5)),
and density (FFD) (Equation (6)) [24]. These form factors are positively correlated with
tomato production [36].

FFC =
ATP
HA

(4)

FFS =
ATP
PTP

(5)

FFD =
P2

TP
ATP

(6)

where ATP and PTP are the area and perimeter of the tomato plant class, respectively, and
HA is the harvest area. These descriptors are shown in Figure 5

Later, determinations were made about the cumulative behavior of attributes, through
their temporal integration for a time window given by the number of flights considered
(Equation (7)). This allowed us to obtain the FFC’, FFS’, and FFD’ attributes, and with
the accumulated value of the spectral bands, the NDVI’ and NDRE’ vegetation indices
were obtained.

Φ′ =
n

∑
i=1

Φi (7)

where n is the flight until the cumulative attribute value is desired. and Φ represents the
attribute values for a regular flight in the harvest zone. Before training the models, the
attributes were scaled between 0 and 1 to avoid some attributes having more weight in the
construction of the model.

With the characteristics NDVI’, NDRE’, FFC’, FFS’, and FFD’, 3 training sets were
created, for time windows of 6, 4, and 2 weeks before harvest (WBH). These training sets
were used to forecast the yield of processing tomato through a DTE [37]. With the additional
goal of comparing the strategy of using training sets with characteristics accumulated over
time, results were obtained for training sets made up of the same characteristics (NDVI,
NDRE, FFC, FFS, and FFD) for specific dates, that is, on flight dates previous to 6 WBH,
4 WBH, and 2 WBH (Table 2).
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Figure 5. Harvest area and their components

2.6. Forecasting Models for Processing Tomato Yield

A DTE algorithm was used to generate forecasting models for tomato yield. Models
trained on this algorithm were used by other authors in production for both processing
tomato [19,20] and other crops [33,38,39]. The strategy of generating models using DTE
consists of obtaining a set of individual decision trees (DT), each of which is trained with
a sample slightly different from the training data. The prediction of a new observation
is obtained by adding the predictions of all individual trees that form the model. For a
more detailed description of the algorithm, we recommend the work presented in [33,37].
Bagging and boosting are common ways to create ensembles of DTs. Bagging is a tech-
nique used to reduce the variation of predictions via a combination of results from various
classifiers, each modeled with different subsets taken from the same population. Boosting
consists of changing the results from various weak classifiers to obtain a robust classi-
fier [33].

The advantage of DTE models is that they are robust regarding atypical values and
noise apart from not overfitting as more trees are added, rather they produce an error gener-
alization limit value. This generalization error depends on the force of the individual trees
in the ensemble and the correlation between them, that is, the precision of the individual
classifiers and the dependence between them [37].

To create predictive models, we tested two different DTE algorithms: bagging (DTE-
Bag) and boosting (DTE-Boost). Input yield data were converted to quartiles to normalize
among varietals. From each quartile, data were randomly selected for training, test, and
validation sets; 70% of the data from each quartile was used to train and calibrate the model,
with a distribution of 70% for training and 30% for calibration, while the remaining total of
30% of the data from each quartile was used for model testing.

Each tree of the training group was created using 80% of the characteristics, which
were randomly chosen. This process is with replacement; that is, the same characteristic
can be used many times, generating a random vector, independent of previous random
vectors, but with the same distribution [37]. To analyze the test error, we used RMSE (root-
mean-square error). The number of trees needed for the model to achieve convergence was
also defined, and the most important predictors were determined within the characteristic
entered into the model obtained from the DTE algorithm[37].

3. Results and Discussion

Based on the segmentation of NDVI using the SLIC algorithm, Figure 6 shows the
histograms that highlight the and NTP classes for different stages of the phenological devel-
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opment of the crops. Table 3 reports the quality of the segmented images. Dice’s similarity
criterion obtained from segmenting all the images was on average 0.955. The greatest simi-
larities occurred for the maximum phenological development periods of plants (flowering,
fruit development, and maturity) from late December to early February. For the dates with
available images, the greatest similarity occurred 113 days after transplant (Figure 7a,b).
The lowest similarity occurred 44 days after transplant (Figure 7c,d) when plants had a
small coverage area, so even small classification errors impacted the final results.

Table 3. Quality assessment of the segmentation algorithm. Comparison between manual and
automatic NDVI map segmentation for different tomato phenological stages.

Date Phenological Stage Dice

21 November 2019 Establishment 0.896
30 November 2019 Vegetative Growth 0.938
11 December 2019 Flowering 0.947
11 January 2020 Fruit Development 0.976
25 January 2020 Fruit Development 0.978
29 January 2020 Maturity 0.979
05 February 2020 Maturity 0.971
20 February 2020 Maturity 0.957

(a) (b)

(c) (d)

Figure 6. Histogram of NDVI maps segmented via SLIC for different tomato phenological conditions:
(a) establishment (Vegetative growth) (30 November 2019); (b) flowering (11 December 2019); (c) fruit
development (11 January 2020); and (d) maturity (5 February 2020).

The proposed segmentation algorithm allows automatic segmentation of tomato
plants, thereby avoiding the intervention of trained personnel to correct classification
errors. Refs. [4,19] required manual plant delineation to correct classification errors in
the eCognition Developer 9.3 program, and [13] used the Canopedo algorithm [40] to
differentiate background pixel plants via a threshold.

To obtain predictive tomato yield models using the DTE-Bag and DTE-Boost methods,
the number of parcels that met the requirement of having a linear 2 m for harvest was
analyzed (Section 2.3). Of the 88 parcels, 58 met this requirement; therefore, our training
set had 58 observations.
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(a) (b)

(c) (d)

Figure 7. NDVI maps and their segmented image (TP and NTP) for date: 21 November 2019 (a,b),
44 days after transplant, and 29 January 2020 (c,d), 113 days after transplant.

The tomato production histogram of 58 parcels for developing the forecasting model is
shown in Figure 8. The predictive models obtained via DTE-Bag converged for more than
30 decision trees for both approaches, i.e., characteristics sets accumulated over time and the
sets of specific characteristics. For DTE-Boost, convergence occurred in the 70-tree group for
both sets of characteristics accumulated over time and in the sets of specific characteristics.

Figure 8. The tomato production histogram for the 58 parcels used in the training and validation of
the production model based on DTE-Bag.
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The results in Table 4 show that with the combination of characteristics accumulated
over time and the DTE-Bag method, the RMSE of the models decreased as the evaluation
dates approached the harvest date. This behavior occurred only when DTE-Bag was used
with accumulated characteristics, maintaining an error percentage at <10%. Thus, models
trained with accumulated characteristic sets and the DTE-Bag method obtained the best
results in forecasting tomato yield at harvest. The model for 2 WBH had an RMSE of
12.87 Ton/ha, while the RMSE of the model created for 6 WBH was 14.38 Ton/ha, so an
estimate at 2 WBH had a benefit of only 1.5 Ton/ha in RMSE, compared to an estimate at
6 WBH that allows more time for logistic planning.

Table 4. Forecasting tomato yield for models generated via DTE-Bag and DTE-Boost for 6, 4, and
2 WBH.

Accumulated Characteristics Specific Characteristics
DTE-Bag DTE-Boost DTE-Bag DTE-Boost

6 WBH

RMSE (Ton/ha) 14.38 16.65 14.07 13.34
Percentage error 9.28% 10.82% 8.86 % 8.5 %
Standard deviation (Ton/ha) 9.86 10.61 11.17 8.57
RMSE maximum (Ton/ha) 41.16 40.09 42.29 30.43

4 WBH

RMSE (Ton/ha) 13.65 13.22 15.67 16.13
Percentage Error 8.81% 8.58% 10.14% 10.26%
Standard deviation (Ton/ha) 11.09 10.67 8.25 13.20
RMSE maximum (Ton/ha) 43.81 36.88 29.28 41.52

2 WBH

RMSE (Ton/ha) 12.87 14.47 14.30 17.05
Percentage error 8.17% 9.14% 9.26% 11.33%
Standard deviation (Ton/ha) 11.11 13.13 10.80 13.09
RMSE Maximum (Ton/ha) 45.20 53.75 41.91 38.72

In a more detailed analysis of the estimation errors obtained with DTE-Bag and the
attribute sets accumulated for validation parcels, we observed that the worst predictions
occurred when production levels were below the high ranges (Figure 9). This is due to
training data imbalances, as they are mostly close to the average value (154.8 Ton/ha), thus
impeding learning for extreme production values (Figure 8).

Figure 9. Percentage error in the forecast of tomato yield using the test set.
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In Figure 10a–c, we see the characteristics accumulated over time for 6, 4, and 2 WBH,
which were the most influential in generating the production model using the DTE-Bag
method. We demonstrated that the characteristics that contributed the most informa-
tion to the model were FFS’, NDRE’, and FFC’. This result is consistent with that ob-
tained by [20], which found that the leaf area of the plant allowed the identification of the
best-performing plants.

(a) (b)

(c)

Figure 10. Characteristics accumulated which most influenced forecasting crop yield model genera-
tion using the DTE-Bag method, for: (a) 6; (b) 4; and (c) 2 WBH.

In Table 5 the mean values of accumulative attributes for the low (124–141 (Ton/ha)
and high (176–193 (Ton/ha)) range production (Figure 8) are shown. As can be observed,
unlike the other four attributes, the NDVI’ value did not vary for 6, 4, and 2 WBH for both
low and high production ranges. This indicates that it is not a good attribute to consider in
the training of the predictive model. This is consistent with the result shown in Figure 10.

Table 5. Mean value of accumulative attributes for low (124–141 (Ton/ha)) and high 176–193 (Ton/ha)
ranges of production, for 6, 4, and 2 WBH.

Low Range Production High Range Production
Attribute 6 WBH 4 WBH 2 WBH 6 WBH 4 WBH 2 WBH

NDVI’ 0.56 0.59 0.60 0.71 0.72 0.70
NDRE’ 0.51 0.55 0.60 0.68 0.70 0.74

FFC’ 0.36 0.52 0.83 0.42 0.59 0.91
FFS’ 0.34 0.48 0.76 0.40 0.57 0.86
FFD’ 0.47 0.57 0.80 0.39 0.47 0.68

4. Conclusions

Based on the results obtained in this work, we demonstrated that it is possible to
forecast tomato yield using an approach based on DTE using information obtained from
a UAV.

The cumulative behavior in time of the characteristics used to train a DTE-Bag was
useful information for an early forecast of tomato yield.
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We were able to forecast tomato yield 6 weeks before harvest, with a percentage error
of 9.28% compared to the average production volume (154.5 Ton/ha). We also established
that when estimating production 2 weeks before harvest, the RMSE decreases only by
1.5 Ton/ha on average. Therefore, estimating 6 weeks before harvest can directly impact
corrective measures for field management during the phenological development of the
crop. This study also showed that an early forecast of tomato yield is possible based on a
harvest area and not only on individual plants, thus avoiding the need to distance tomato
plants from each other to perform estimates. Taking into account our findings and the fact
that the flight height in this project was 42.5 m, the developed methodology can be scaled
from a small study site to a large-scale plantation.
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