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Abstract: The objective of this study was to evaluate differences between the red onion cultivar and
breeding line using models based on selected fluorescence spectroscopic data built using machine-
learning algorithms from different groups of Trees, Functions, Bayes, Meta, Rules, and Lazy. The
combination of fluorescence spectroscopy and machine learning is an original approach to the non-
destructive and objective discrimination of red onion samples. The selected fluorescence spectroscopic
data were used to build models using algorithms from the groups of Trees, Functions, Bayes, Meta,
Rules, and Lazy. The most satisfactory results were obtained using J48 and LMT (Logistic Model
Tree) from the group of Trees, Multilayer Perceptron, and QDA (Quadratic Discriminant Analysis)
from Functions, Naive Bayes from Bayes, Logit Boost from Meta, JRip from Rules, and LWL (Locally
Weighted Learning) from Lazy. The average accuracy of discrimination of onion bulbs belonging
to ‘Asenovgradska kaba’ and a red breeding line equal to 100% was found in the case of models
developed using the LMT, Multilayer Perceptron, Naive Bayes, Logit Boost, and LWL algorithms.
The TPR (True Positive Rate), Precision, and F-Measure of 1.000 and FPR (False Positive Rate) of
0.000, as well as the Kappa statistic of 1.0, were determined. The results revealed the usefulness of
the approach combining fluorescence spectroscopy and machine learning to distinguish red onion
cultivars and breeding lines.

Keywords: onion bulb; onion cultivar; onion breeding line; fluorescence spectroscopy;
machine-learning algorithms; discrimination

1. Introduction

The onion (Allium cepa L.) is an old and developed agricultural crop. Its production
increased throughout the world. There are various onions, such as red, white, and yellow
containing bioactive compounds, e.g., phenolics, anthocyanins, and flavonoids which
are found in the greatest amount in red onions. Onion contains an average of 89.1%
of water, 9.3% of carbohydrates, 1.1% of protein, and 0.1% of fat, as well as vitamins
and minerals. As well as the flesh that is mostly used in the diet, the skin of the red
onion is also a source of valuable bioactive compounds. The flavonoid content in the
skin of the red onion can reach 2–10 g kg−1 compared to below 0.03 g kg−1 to above
1 g kg−1 in the edible parts [1]. Red onion skin may be a renewable raw material for
the extraction of bioactive compounds useful as functional components in value-added
products [2]. Anthocyanins may occur as pigments in red onions [3]. Anthocyanins are
present in the epidermal cells of red onions. The inner epidermis is normally white, but
anthocyanic red cells may be interspersed between anthocyanin-free white cells because
small patches can sometimes redden if containing vacuolar anthocyanin [4]. Onions
can be a source of additives inhibiting microbial spoiling and oxidative deterioration to
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retard the deterioration of foods. Due to the antioxidant and antimicrobial properties,
flavonoids from onions may be considered as additives to increase food shelf-life. Red
cultivars are characterized by the highest antioxidant activities [5]. Due to its properties,
the onion is used as food and for medical purposes, e.g., for the prevention or treatment of
cancer, obesity, coronary heart disease, type 2 diabetes, hypercholesterolemia, hypertension,
disturbances of the gastrointestinal tract, and cataract [6].

The chemical composition of red onion, including, e.g., the content of flavonols, an-
thocyanins, total phenols, sulfur dioxide, and reducing sugars, can differ depending on,
among others, the cultivar, line, and ecotype [7–10]. Therefore, distinguishing different
onion types may be important. The approach involving fluorescence spectroscopy and
machine learning can be considered useful for the discrimination of plant samples. It
happens that after obtaining the data, people are not able to extract useful information from
big datasets and make a decision. Machine learning enables processing and interpreting
the data using machines learning by themselves from the data without being explicitly pro-
grammed. Machine learning uses various algorithms to solve problems and one universal
algorithm does not exist. The choice of an appropriate algorithm depends on the number
of variables and the kind of problem [11]. Machine learning creates new opportunities for
multi-disciplinary agritechnologies. Applying machine learning to sensor data enables the
evolvement of farm management systems in artificial intelligence-enabled programs. It
provides recommendations and insights to support farmers in decision-making [12].

2. Related Work

In the case of onions, the combination of fluorescence spectroscopic data and machine
learning proved to be useful for distinguishing different samples of onions subjected to
normal watering and drought mode [13]. The evaluation of differentiation of varieties
and breeding lines of potatoes using spectroscopic data and machine-learning algorithms
was successfully applied by Slavova et al. [14]. The combination of machine learning and
spectroscopy was also used, e.g., for the determination of fruit maturity [15,16]. Addi-
tionally, the machine-learning algorithms were applied in the previous research for the
cultivar discrimination of different fruit and vegetable samples, e.g., whole fruit, flesh
cross-sections, stones and seeds of peach [17], pits of sour cherry [18], flesh cross-sections
and seeds of pepper [19].

This study aimed at evaluating the differences between red onion cultivars and
breeding lines using models based on selected fluorescence spectroscopic data built us-
ing machine-learning algorithms from different groups of Trees, Functions, Bayes, Meta,
Rules, and Lazy. The combination of fluorescence spectroscopy and machine learning is an
original approach to the non-destructive and objective discrimination of red onion samples.

3. Materials and Methods
3.1. Materials

The materials are comprised of ‘Asenovgradska kaba’ cultivar and the red breeding
line of onions. The bulbs of ‘Asenovgradska kaba’ are large, flat and round with a very
characteristic conical back shape, flat to slightly concave on the neck, and strongly elongated
on the bottom, with an index of 0.8–0.9 and a weight of 120–150 g. The sheath scales are
colored purple-red. The fleshy inner scales are thick, loose, and purple-red as the outer
ones are more intensely colored, and the inner ones are weaker and only on the surface.
The red breeding line of onions was created by the method of the individual team. The
bulbs are medium-sized and weigh 80–100 g. The outer shells are red. The fleshy inner
scales are tightly arranged. The shape of the bulb is flat round with an index of 0.9. The
sample images of onion bulbs of ‘Asenovgradska kaba’ cultivar and the red breeding line
are presented in Figure 1.
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Figure 1. The sample images of onion bulbs of ‘Asenovgradska kaba’ cultivar (a) and red breeding
line (b).

The profile of the soil surface at ‘Asenovgradska kaba’ cultivar and the red breeding
line of onion is the furrow–furrow with a high flat bed with five rows in the scheme
85 + 25 + 25 + 25 + 25 cm and the sowing rate is 0.6 kg/da. The seeds are sown to a depth
of 3 cm. They are suitable for early spring sowing and have a faster rate of growth and
development, are grown by direct sowing of seeds and for a shorter growing season of
95–100 days under irrigated conditions from large bulbs.

The harvest time of ‘Asenovgradska kaba’ cultivar and the red breeding line of onions
is of great importance for the productivity, quality, and shelf life of the bulbs. They are
removed when 25 to 75% of the false stems are lying down. Removal starts between the
single and mass laying phases to complete the complete laying of the stems.

3.2. Fluorescence Spectroscopy

The fiber optic spectrometer allowing the generation of fluorescent emission signals
in the range of 200–1200 nm was used in this study (Figure 2). The experimental setup
consisted of a portable spectrometer model AvaSpec-ULS2048CL-EVO and a laser diode
(optical power 16 mW, emission wavelength 285 nm, DC). The red onion samples were
placed on a duralumin stand allowing the reception of an emission signal below 180◦ of U-
shaped optical fiber that reduced aberrations and allowed the generation of a better-quality
emission signal (Figure 2). The spectrometer resolution can range between 0.06–20 nm, and
that of the setting of 0.09 nm was used for this study. The fluorescence can be often weak
and, in all directions, in order not to saturate the receiver, the useful fluorescence signal can
be measured in a direction that is below 180◦ to the excitation radiation. The application
of a laser diode (LED) as a source in the circuit is preferable. Its spectral width is small.
LED used in this study had a relatively wide spectral width of radiation (about 30–40 nm)
and the angular distribution of its radiation was in a large angular range (±30◦). The
photodetector of the CMOS type model S9132 was chosen for the specific circuit because it
can detect emission radiation from red onion bulbs with very high intensity. The sensitivity
of the spectrometer ranged from 200 nm to 1200 nm. Its resolution was δλ = 5 nm.
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Figure 2. General view of the experimental installation used by fluorescence spectroscopy.

Recording the spectrum of excitation source and emission can be possible due to
spectral installation based on fluorescent signals. The excitation spectrum meant the
dependence of the emission intensity for one wavelength when scanning on the excitation
wavelength. This spectrum was represented as a dependence of the wavelength of light on
the light intensity incident on the photodetector in the spectrometer. The emission spectrum
was the emission wave distribution measured for a constant excitation wavelength.

The laser radiation was removed from the source and fell on the red onion sample.
Then, the emission signal fell on a U-shaped optical fiber with a core diameter of 200 µm
with a numerical aperture of 0.22 and a step index of refractive index. Then, it was taken to
the detector. In the spectrometer, the light signal was converted to electrical–digital using a
USB 2.0 wire, downloaded to a computer with the use of AvaSoft8 software and exported to
Excel. This allowed analysis, processing, and visualization of the results of the study. The
fluorescence data were used for the development of discriminative models to distinguish
of ‘Asenovgradska kaba’ cultivar and the red breeding line of red onion bulbs.

3.3. Statistical Analysis

The bulbs of the onion of ‘Asenovgradska kaba’ cultivar and the red breeding line were
distinguished using the WEKA machine learning application (Machine Learning Group,
University of Waikato, Hamilton, New Zealand) [20–22]. There are 5 graphs each from
‘Asenovgradska kaba’ and the red breeding line. A difference in the emission fluorescence
signal of ‘Asenovgradska kaba’ and the red breeding line, as well as variety and selection
line, is clearly observed. The spectral shift in wavelength and signal intensity level is due to
a difference in the content of biologically active substances of a particular variety (Figure 3).
The applied procedure of the red onion sample distinguishing is presented in Figure 4.
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Figure 4. The procedure of distinguishing red onion samples using fluorescence spectroscopy data
and machine learning.

The dataset consisted of 1353 attributes for each class (‘Asenovgradska kaba’ cultivar
and red breeding line). These attributes were the measurements at different wavelengths
in the considered range of 200–1200 nm. The attribute selection was carried out using the
Ranker with the OneR Attribute Evaluator to choose the features with the highest discrimi-
native power. The attributes were ranked by their individual evaluations. The worth of
an attribute was evaluated using the OneR classifier at the following parameters: seed
for the cross-validation, 1; the number of folds for the cross-validation, 10; the minimum
number of objects in a bucket, 6; using the training data to evaluate attributes rather than
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cross-validation, False. Ten attributes were selected to maintain the ratio of attributes (10)
to the number of cases (100) of 1:10. Then, the discriminative models were developed based
on selected data using a 10-fold cross-validation mode. This mode randomly divides a
set of selected data into 10 parts and each part is considered as the test set in turn and
the remaining 9 parts are used as the training sets. Finally, the average of 10 estimates for
learning performed 10 times using different training sets are computed. Different machine-
learning algorithms from the groups of Trees, Functions, Bayes, Meta, Rules, and Lazy were
tested to choose algorithms providing the most satisfactory discrimination performance
metrics. The confusion matrices, average accuracies, as well as the values of TPR (True
Positive Rate), FPR (False Positive Rate), Precision, F-Measure, and Kappa statistic were
determined based on Equations (1)–(7).

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

TPR = Recall = TP/(TP + FN) (2)

FPR = FP/(FP + TN) (3)

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F−Measure = 2 × ((Precision × Recall)/(Precision + Recall)) (6)

Kappa =

(TP+FP)(TP+FN)
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

+ (TN+FP)(TN+FN)
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

where TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative; TPR:
True Positive Rate; FPR: False Positive Rate.

The criteria for the evaluation of the obtained results were the highest average accuracy
and accuracies of discrimination for both ‘Asenovgradska kaba’ and the red breeding line
and the highest values of TPR (True Positive Rate), Precision, F-Measure, and the Kappa
statistic, as well as the lowest values of FPR (False Positive Rate). The most satisfactory
results are the TPR, Precision, and F-Measure, and the Kappa statistic is equal to 1.000
and the FPR is equal to 0.000. Such results indicate the complete correctness of the sample
discrimination. All cases belonging to one actual class are correctly included in this class
and all cases from the second class are correctly classified as a second class.

4. Results

The confusion matrices and average accuracies of distinguishing ‘Asenovgradska kaba’
cultivar and the red breeding line of onion bulbs based on fluorescence spectroscopic data
are presented in Table 1. The models were built based on selected fluorescence spectroscopic
data using machine-learning algorithms from different groups. The results obtained using
J48 from the group of Trees, LMT from Trees, Multilayer Perceptron from Functions, QDA
from Functions, Naive Bayes from Bayes, Logit Boost from Meta, JRip from Rules, and
LWL from Lazy were chosen to be presented. The accuracies and other metrics were the
most satisfactory for these algorithms. The average accuracy of 100% was obtained for
models built using LMT, Multilayer Perceptron, Naive Bayes, Logit Boost, and LWL. It
meant that all examined onion bulbs were correctly classified. 100% of cases belonging
to the actual class ‘Asenovgradska kaba’ were correctly included in the predicted class
of ‘Asenovgradska kaba’ and 100% of cases of onion bulbs of the red breeding line were
correctly classified as a red breeding line. For other machine-learning algorithms, also high
accuracies were observed. An average accuracy of 95% was found for models built using
J48 and JRip. In the case of both algorithms, ‘Asenovgradska kaba’ samples were correctly
discriminated in 100%. Onion bulbs belonging to the red breeding line were correctly
distinguished from onion bulbs of ‘Asenovgradska kaba’ in 90%. The remaining 10% of
cases belonging to the red breeding line were incorrectly included in the predicted class of
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‘Asenovgradska kaba’. The models built using the QDA algorithm provided 90% average
accuracy. Both classes of the red breeding line and ‘Asenovgradska kaba’ were correctly
distinguished in 90% from each other. Additionally, 10% of bulbs of the red breeding
line were incorrectly classified as ‘Asenovgradska kaba’ and 10% of bulbs belonging to
‘Asenovgradska kaba’ red onion were incorrectly included in the predicted class of the red
breeding line. Such results are very promising and show that it is possible to distinguish a
cultivar from a line of red onions with an accuracy of up to 100% using models built based
on the selected fluorescence spectroscopic data using selected machine-learning algorithms.

Table 1. The accuracies of discrimination of onion bulbs belonging to ‘Asenovgradska kaba’ cultivar
and red breeding line based on selected fluorescence spectroscopic data.

Classifier
Predicted Class (%)

Actual Class Average Accuracy (%)
‘Asenovgradska kaba’ Red Breeding Line

J48
(Trees)

100 0 ‘Asenovgradska kaba’
950 90 red breeding line

LMT
(Trees)

100 0 ‘Asenovgradska kaba’
1000 100 red breeding line

Multilayer Perceptron
(Functions)

100 0 ‘Asenovgradska kaba’
1000 100 red breeding line

QDA
(Functions)

90 0 ‘Asenovgradska kaba’
900 90 red breeding line

Naive Bayes
(Bayes)

100 0 ‘Asenovgradska kaba’
1000 100 red breeding line

Logit Boost
(Meta)

100 0 ‘Asenovgradska kaba’
1000 100 red breeding line

JRip
(Rules)

100 0 ‘Asenovgradska kaba’
950 90 red breeding line

LWL
(Lazy)

100 0 ‘Asenovgradska kaba’
1000 100 red breeding line

In addition to accuracies, other discrimination performance metrics of discrimination
‘Asenovgradska kaba’ cultivar and the red breeding line of red onion bulbs belonging to,
for example, TPR (True Positive Rate), FPR (False Positive Rate), Precision, F-Measure, and
Kappa statistic were computed, and the obtained results are shown in Table 2. In the case
of models developed using LMT (Trees), Multilayer Perceptron (Functions), Naive Bayes
(Bayes), Logit Boost (Meta), and LWL (Lazy) algorithms, the values of TPR Precision, and
F-Measure were equal to 1.000 for both ‘Asenovgradska kaba’ and the red breeding line of
red onion. The Kappa statistic reached the value of 1.0. The values of FPR (False Positive
Rate) of 0.000 were determined for each class. The model developed using QDA was
characterized by the lowest Kappa statistic of 0.8, TPR, Precision, and F-Measure of 0.900 for
‘Asenovgradska kaba’ cultivar and the red breeding line and FPR of 0.100 for both classes.
Additionally, for the J48 and JRip algorithms, high values of TPR (1.000 for ‘Asenovgradska
kaba’ and 0.900 for the red breeding line), Precision (0.909 for ‘Asenovgradska kaba’ and
1.000 for the red breeding line), F-Measure (0.952 for ‘Asenovgradska kaba’ and 0.947 for
the red breeding line) and Kappa statistic (0.9), and low TPR (0.100 for ‘Asenovgradska
kaba’ and 0.000 for the red breeding line) were obtained (Table 2).
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Table 2. The performance metrics of discrimination of onion bulbs of ‘Asenovgradska kaba’ and red
breeding line based on selected fluorescence spectroscopic data.

Classifier Predicted Class TPR FPR Precision F-Measure Kappa Statistic

J48
(Trees)

‘Asenovgradska kaba’ 1.000 0.100 0.909 0.952
0.9red breeding line 0.900 0.000 1.000 0.947

LMT
(Trees)

‘Asenovgradska kaba’ 1.000 0.000 1.000 1.000
1.0red breeding line 1.000 0.000 1.000 1.000

Multilayer Perceptron
(Functions)

‘Asenovgradska kaba’ 1.000 0.000 1.000 1.000
1.0red breeding line 1.000 0.000 1.000 1.000

QDA
(Functions)

‘Asenovgradska kaba’ 0.900 0.100 0.900 0.900
0.8red breeding line 0.900 0.100 0.900 0.900

Naive Bayes
(Bayes)

‘Asenovgradska kaba’ 1.000 0.000 1.000 1.000
1.0red breeding line 1.000 0.000 1.000 1.000

Logit Boost
(Meta)

‘Asenovgradska kaba’ 1.000 0.000 1.000 1.000
1.0red breeding line 1.000 0.000 1.000 1.000

JRip
(Rules)

‘Asenovgradska kaba’ 1.000 0.100 0.909 0.952
0.9red breeding line 0.900 0.000 1.000 0.947

LWL
(Lazy)

‘Asenovgradska kaba’ 1.000 0.000 1.000 1.000
1.0red breeding line 1.000 0.000 1.000 1.000

TPR—True Positive Rate; FPR—False Positive Rate.

5. Discussion

The carried out research is the first approach to distinguishing red onion cultivars and
lines using innovative models built based on features selected from very large data sets
obtained by fluorescence spectroscopy and processing using machine-learning algorithms
from various groups of Trees, Functions, Bayes, Meta, Rules, and Lazy to build models
based on selected features. The developed procedures can support quality assessment and
decision-making. By applying novel approaches to assessing the differentiation of samples,
combining the different characteristics obtained using a non-destructive technique and
artificial intelligence, distinguishing cultivars and lines within one species can be objective
and efficient, and not damage the sample. Therefore, the obtained results can be very useful
in practice. Such statements may have large application potential.

The application of spectroscopy including, e.g., fluorescence spectroscopy or visible
and infrared reflectance spectroscopy is considered as an innovative approach to plant
quality evaluation. The advantages include objectiveness, non-destructiveness, no sample
preparation, rapidness, accuracy, and effectiveness. Spectroscopy can be used, among oth-
ers, to diagnose plant diseases [23] or for the direct estimation of sensory qualities of intact
fruit and the determination of physicochemical features [24]. Fluorescence spectroscopy
may have advantages over other techniques for assessing fruit quality. Fluorescence
spectroscopy uses a larger area for analysis than colorimetric measurements which is ad-
vantageous when the sample is heterogeneous. In the case of visual classification, there are
limitations related to inaccurate, subjective personal perceptions of sample appearance and
the dependence of manual evaluation performed by a human on external conditions [25].
Often, the evaluation of fruit quality by spectrometry may require additional use of mul-
tivariate modeling or chemometric analysis [26]. Multivariate analysis techniques can be
applied to extract significant spectral data. For the processing of spectral features, artifi-
cial intelligence can be used. For example, surface-enhanced Raman spectroscopy (SERS)
combined with machine-learning algorithms applied to classify coffee beverages [27]. Com-
bining reflection spectroscopy with machine learning allowed for the evaluation of the
presence of acrylamide precursors in potato samples [28]. In the case of grained almonds,
machine-learning algorithms were applied for the detection of aflatoxins B based on fluo-
rescence spectroscopy data [29]. Raman spectroscopy, multivariate analysis and machine
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learning allowed for the successful rapid detection of foodborne pathogens [30]. The appli-
cation of Raman spectroscopy coupled with machine learning was also used to evaluate
edible oils [31]. Total synchronous fluorescence spectroscopy and deep learning were used
for the rapid identification of the sesame oil authenticity [30]. Promising own results and
literature data may prompt further research involving spectroscopy and machine learning
for the quality evaluation of fruit and vegetables. Future research may also compare the
usefulness of machine learning to build models based on spectroscopic data with models
including data obtained using other non-destructive techniques, such as image analysis.
Digital image analysis allows the determination of the morphological, textural, and optical
parameters and their interpretation in a non-destructive, inexpensive, and fast way. Among
the morphological parameters, image processing allows computing the geometric parame-
ters including shape factors and linear dimensions. Textural image analysis can allow for
quantitative analysis of textures to evaluate object quality. Image textures as numerical
data can be different for objects even if they are characterized by the same number of pixels
and color histograms but a dissimilar color distribution that can be difficult to relate to
changes perceived visually. The features extracted from images may be useful for objec-
tive and reliable discrimination samples with the use of, for example, machine-learning
algorithms. It can be of great practical importance for cultivar discrimination, detection
of species, disease, or evaluation of the plant quality [17,32]. The exemplary results of
previous studies available in the literature indicated the usefulness of both the textural and
geometric features of images for cultivar discrimination. The results obtained for sweet
cherries [33] revealed that there are features of endocarp images of sweet cherries that allow
distinguishing cultivars with an accuracy of 100%. The complete discrimination (100%) of
endocarp of ‘Kordia’ vs. ‘Lapins’ and ‘Kordia’ vs. ‘Büttner’s Red’ was determined in the
case of models built for several sets of features, including combined textures selected from
all channels R, G, B, L, a, b, X, Y, Z, separate sets including textures selected for individual
color spaces RGB, Lab, and XYZ, individual channels G, L and Y and for models combining
selected textural and geometric features for all applied classifiers (Naive Bayes from Bayes,
Logistic from Functions, Multi Class Classifier from Meta, PART from Rules, and LMT
from Trees). All three cherry endocarp cultivars of ‘Kordia’, ‘Lapins’ and ‘Büttner’s Red’
were distinguished with the correctness of up to 98% for the model built based on a set of
combined selected texture and geometric features using the Logistic algorithm [34]. In the
case of distinguishing pits of the sour cherry cultivars of ‘Debreceni botermo’, ‘Kelleris’,
‘Łutówka’, and ‘Nefris’, an accuracy of 96.25% was obtained for the model including the
selected textures from images converted to all used color channels (R, G, B, L, a, b, X,
Y, Z) built using Multilayer Perceptron from the group of Functions. In the case of the
analysis carried out for pairs of cultivars, it was confirmed that the ‘Łutówka’ pits were
completely distinguished (100%) from the other cultivars for each pair, each model (for
selected textures from all channels, for individual color spaces and color channels) and
each used machine learning algorithm [18]. With a sufficiently large amount of data, it
may be a good idea to use deep learning as a subset of machine learning to process data.
Deep learning can ensure the high accuracy of discrimination as a result of the training
and inference phase using high computational and storage requirements. The training
process is computationally intensive and space-consuming. The complexity of the data
models makes training quite expensive. Additionally, the cost to the users can raise because
of the need of using costly graphic user interfaces and machines [35]. Therefore, further
experiments with more data can be carried out to compare the usefulness of traditional
machine learning and deep learning to distinguish different red onion samples.

6. Conclusions

The selected fluorescence spectroscopic data and machine-learning algorithms were
used to distinguish bulbs of red onion belonging to ‘Asenovgradska kaba’ cultivar and the
red breeding line. The obtained accuracy reached 100%. The algorithms of LMT, Multilayer
Perceptron, Naive Bayes, Logit Boost, and LWL proved to be the most effective. It confirmed
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the usefulness of the applied approach to evaluate the differentiation of different cultivars
and lines within the same species. Thus, the obtained results are very promising. The
combination of fluorescence spectroscopy and machine-learning algorithms can be used
in practice to discriminate different red onion cultivars and breeding lines. Furthermore,
future research may include more red onion cultivars and lines as well as other types of
onion including white and yellow onions. The developed procedure can also be used to
discriminate different samples of other vegetables and fruit.
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