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Abstract: Salinity stress is one of the major environmental constraints responsible for the reductions
in agricultural productivity. Salinity affects crop growth, by causing osmotic and ionic stresses, which
induce oxidative damage due to increased reactive oxygen species (ROS). Exogenous application of
natural compounds can reduce the negative impacts of salinity stress on plants. This study evaluated
the antioxidant capacity of chitosan, a biopolymer to reduce the salt-induced oxidative damage
on sorghum plants. Morpho-physiological and biochemical attributes of sorghum plants stressed
with 300 mM NaCl, in combination with chitosan (0.25 and 0.5 mg/mL), were assayed. Salt stress
decreased growth, fresh (66.92%) and dry (48.26%) weights, affected the shape and size of the stomata,
caused deformation of the xylem and phloem layers, and increased the Na+/K+ (1.3) and Na+/Si+

(5.4) ratios. However, chitosan effectively reversed these negative effects, as supported by decreased
Na+/Si+ ratio (~0.9) and formed silica phytoliths. Oxidative stress was exerted as observed by
increased H2O2 (44%) and malondialdehyde (125%) contents under salt stress, followed by their
reduction in chitosan-treated sorghum plants. Salt increased proline (318.67%), total soluble sugars
(44.69%), and activities of SOD (36.04%) and APX (131.58%), indicating sorghum’s ROS scavenging
capacity. The antioxidant capacity of chitosan was measured by determining its ability to reduce
oxidative damage and minimizing the induction of the antioxidant defense system. Chitosan reduced
oxidative stress markers, proline, total soluble sugars, and the antioxidant enzyme activities by more
than 50%. Fourier Transform Infrared Spectra of chitosan-treated samples confirmed a reduction
in the degradation of biomolecules, and this correlated with reduced oxidative stress. The results
suggest that chitosan’s antioxidant capacity to alleviate the effects of salt stress is related to its role in
improving silicon accumulation in sorghum plants.

Keywords: anatomical structure; antioxidant; chitosan; FTIR; oxidative stress; ROS; silicon; Sorghum
bicolor

1. Introduction

Salinity is one of the abiotic stresses that continues to affect agriculture by decreasing
crop growth and yield globally [1]. About 7% of total land around the world and close to
20% of irrigated land areas are affected by salinity [2]. Moreover, in arid and semi-arid areas,
manual or artificial irrigation is one of the ways to improve agricultural productivity [3].
However, poor irrigation, lack of rainfall, and other environmental factors are the main
drivers of salinity increase in the ecosystem [4]. Salinity negatively affects plants by
causing osmotic stress and ion toxicity, which lead to secondary stress and hence oxidative
damage of cell membranes, and macromolecules such as lipids, proteins, and nucleic acids,
leading to the deactivation of several cellular and metabolic processes [5–7]. Salinity-
induced oxidative damage is primarily attributed to the excessive production of reactive
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oxygen species (ROS) including singlet oxygen (1O2), superoxide radical (O2
•−), hydrogen

peroxide (H2O2), and hydroxyl radical (•HO), which are regulated by the enzymatic and
non-enzymatic antioxidants [8]. Salinity stress also causes nutrient imbalance, which affects
photosynthesis, stomatal conductance, and ionic imbalance due to the accumulation of
toxic ions (Na+ and Cl+), thus, hindering the absorption of essential elements (K, P, Mg,
Si among others) [9]. Exclusion or compartmentalization of toxic Na+, while lowering
Na+/K+ or increasing K+/Na+ ratios [10,11], is one of the common strategies employed by
plants to adapt under salt stress. Furthermore, salinity stress induces various biochemical
changes within plant tissues, aiding in a positive gradient in osmotic potential between
the soil and plant tissue for survival. This is commonly associated with the accumulation
or loss of biomolecules including carbohydrates, lipids, or amines and the synthesis of
organic molecules such as proline [12]. These changes can be rapidly detected by infrared
spectroscopy, which proved vital in detecting infected leaves and stems of Brassica napus [13]
and salinity-induced changes in Calophyllum inophyllum [12].

Plants also activate the production of osmolytes such as proline and soluble sugars
to protect cells against the detrimental effects of salt stress through osmoregulation [13].
Proline also acts as a ROS scavenger in the form of a non-enzymatic antioxidant to coun-
terbalance osmotic stress [14]. While the antioxidant defense system is one of the main
ROS scavenging pathways, this system consumes energy, which results in halted growth to
conserve energy for defense as part of stress tolerance in plants [15]. The negative effects of
salinity stress and its impact on the enzymatic antioxidant scavenging defense system have
been reported for many agricultural crops including Vicia faba [16], Phaseolus vulgaris [17,18],
Tricum aestivum [19], Ocimum basilicum [20] Lupinus termis [21], Zea mays [22], as well as
Sorghum bicolor [10,23], among others. The most investigated antioxidant enzymes, which
act as ROS reducing agents under stress conditions include superoxide dismutase (SOD),
peroxidase (POD), catalase (CAT), the ascorbate–glutathione (AsA-GSH) cycle enzymes
such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehy-
droascorbate reductase (DHAR), glutathione reductase (GR), and glutathione peroxidases
(GPX) [24,25]. There is a steady balance between ROS production and antioxidant defense
systems within plant cells [24,26]. Furthermore, during unfavorable conditions, over-
production of ROS demolishes the equilibrium and causes cellular damage, resulting in
programmed cell death as well as decreasing plant productivity [27].

The plant’s epidermis forms part of the first line of defense against stress and plays
an important role in water relation [28]. While the guard cells which form the stomata are
located on the epidermal tissue, they mediate photosynthesis and transpiration rates. These
microscopic gates are at the forefront in the exchange of carbon dioxide and water vapor
in plants [29]. Guard cells regulate the stomatal aperture, and when NaCl accumulates
in plants they induce a rapid closure of the stomata as observed in Brassica napus under
salinity [30], among other plants and serve as a salt tolerance mechanism [31]. Due to the
sensitivity of guard cells to various environmental changes such as humidity, CO2, and
light [29], stomatal conductance was shown to be heavily restricted in Olea europaea [32],
Saccharum officinarum [33], and Vigna radiata [34] under various abiotic stresses.

As a reinforcement, plants, especially grass-like crops, often rely on external factors
for increased adaptation [35]. Grasses may absorb nutrients such as silicon (Si) from
their environment to form silica deposits on their epidermis, known as silica phytoliths,
which lend support and structure due to their resilient nature [36,37]. Additionally, Si is
known to play a role in ion compartmentalization, immobilization of toxic metals, and
reduce oxidative stress [38,39] Although these silica microstructures positively influence
stress tolerance in plants, abiotic stresses negatively impact their formation and thus
compromise plant structure [40]. Their characteristics under abiotic stress remain unclear,
however, a decrease in phytoliths was observed in Triticum turgidum under PEG-induced
osmotic stress [40]. Therefore, stress management strategies that induce stress tolerance
to plants without compromising growth are necessary. Different compounds with elicitor
properties, which mitigate salt stress linked to plant defense mechanisms, have been
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identified as bio-stimulants [41], among these compounds, chitosan and its derivatives
deserve special attention.

Chitosan (poly [1,4]-2-amino-2-deoxy-D-glucose) is a biopolymer which is produced
from the deacetylation of chitin, obtained from fungi and the exoskeleton of crustaceans [42].
Chitosan has a unique structure, which is characterized by three functional groups includ-
ing the amino group and primary and secondary hydroxyl groups that are responsible for
enhancing its affinity [43]. Due to its excellent properties including non-toxicity, biodegrad-
ability, biocompatibility, and affordability, chitosan has been applied in several fields
including the agricultural sector. It was first applied as a bio-stimulant in 1983 due to its
ability to act as a proteinase inhibitor through the production of phytoalexin [44]. Since
then, chitosan has been showing significant improvement in germination, growth, and
flowering of different crop species such as cereals, fruits, and medicinal crops [45]. In
addition to its antimicrobial activity, chitosan promoted germination parameters in Begonia
hiernalis and Zea mays [46,47], encouraged early flowering in ornamental plants [48], and
improved biomass (fresh and dry weights) in Solanum tuberosum [49]. The role of chitosan
to improve salt stress tolerance has been reported in several plant species including Lactuca
sativa L [13], Glycine max [50], Zea mays [51], Triticum aestivum [52], Carthamus tinctorium
L. and Helianthus annuus L. [41,53], Plantago ovata [54], and Vigna radiata [55]. Moreover,
chitosan’s effectiveness in promoting salt tolerance might be due to improved water use
efficiency, mineral nutrients uptake, photosynthesis, and reduced oxidative stress [13,56].
To date, only a few studies have reported on the application of chitosan in sorghum to
improve yield [57], seed germination, and antifungal activity [58]. With all these interesting
and significant characteristics of chitosan in agriculture, its mechanism of action and its
role in alleviating salt stress in sorghum still remain elusive.

Sorghum (Sorghum bicolor (L.) Moench) is the 5th most important cereal crop in the
world after maize, rice, wheat, and barley and the 2nd in Africa after maize, serving
as a staple food for both humans and animals [59]. Sorghum is a highly productive C4
photosynthetic crop that is moderately tolerant to drought and salinity, thus, it has great
potential to serve as a model crop to investigate the mechanisms of stress tolerance in
cereal crops [50,60–63]. However, sorghum is sensitive to high salt at early growth stages
and longer salt exposure can limit early seedling establishment and reduce growth and
yields [64]. Few studies have been conducted on the improvement in sorghum’s tolerance
to salt stress, using calcium and ZnO nanoparticles [10,23]. With the salinity predicted
to affect ~50% of the arable land by 2050, several strategies are important to maintain
sorghum growth, development, and yield under abiotic stresses. Thus, the current study
elucidated the antioxidative capacity of chitosan to reduce ROS formation and prevent
oxidative damage without affecting sorghium’s normal growth.

2. Materials and Methods
2.1. Sorghum Germination and Growth Condition

Sorghum (Sorghum bicolor (L.) Moench) seeds were purchased from Agricol, Bracken-
fell, Cape Town, South Africa. Sorghum seeds were prepared, germinated, and seedlings
grown as described previously [23]. Briefly, seeds were decontaminated by firstly surface
sterilizing with 70% ethanol for 5 min, followed by a 1 h incubation in 5% NaClO while
shaking and subsequently washed using autoclaved double distilled water (ddH2O). Seeds
were then imbibed with autoclaved ddH2O, while shaking overnight in the dark. After
air-drying under the laminar flow, seeds were sown and then allowed to germinate on
a sterile water-imbibed paper towel and placed in the growth chamber set at 25 ◦C with
complete darkness. After 7 days, seedlings were transferred into potting (one seedling per
pot) soil containing a mixture of double grow, all-purpose organic potting soil (bought from
Stodels Garden Center, Eversdal Road, Bellville, Cape Town, SA) and vermiculite (2:1).
Experimental pots were positioned in a complete randomized block design, divided into
four groups (control; salt treatment; salt + 0.25 mg/mL chitosan; and salt + 0.5 mg/mL chi-
tosan) and seedlings were allowed to grow in the greenhouse under controlled conditions
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(25 ◦C/±3 ◦C day/night and 16 h/8 h dark regimes). Seedlings were treated following
a method as explained by [64] with some modifications. Briefly, the pots ((size: 21 × 16
and 5 cm height) as shown in Figure 1A–D) containing seedlings were watered with about
100 mL of nutrient solution (Dr Fisher’s Multifeed, 19:8:16 (43), Reg. No./Nr. K5293, Act
No./Wet Nr. 36 of/van1947)), that was applied every second day for a week followed by
watering with only distilled water for a week. On day 14 after planting, sorghum seedlings
were irrigated with salt (300 mM NaCl) and chitosan (Sigma-Aldrich, (C3646-25G), isolated
from shrimp shells, ≥75% deacetylated) solutions. Chitosan stock was prepared by dis-
solving in 0.1 M acetic acid, and further diluted to 0.25 and 0.5 mg/mL using ddH2O. The
irrigation was completed every second day for 1 week, after which plants were harvested
on day 28 after sowing.
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2.2. Growth Parameters

Growth attributes including plant phenotype, shoot length, fresh weights (FWs), and
dry weights (DW) were measured as described previously [23]. Briefly, FWs were obtained
by weighing fresh samples, on a Mettle Toledo AE50 analytical balance (Marshall Scientific,
Hampton, US). DW were determined after oven-drying fresh samples at 55 ◦C or until a
constant weight was attained.

The anatomic structure and the element distribution were also analyzed to observe
the positive effects of chitosan on the growth of sorghum plants under salt stress. The
anatomical structure (epidermis, xylem, and phloem) and element distribution of sorghum
plants were analyzed at the University of Cape Town, South Africa, using High-Resolution
Scanning Electron Microscopy (HRSEM) as described previously [23,65]. All spectra were
analyzed using the built-in Oxford Inca software suite, while microphotographs were
captured using the Tescan MIRA field emission gun scanning electron microscope operated
at an acceleration voltage of 5 kV using an in-lens secondary electron detector.

2.3. Hydrogen Peroxide Content (H2O2)

Hydrogen peroxide (H2O2) was analyzed following an optimized method [66]. About
0.15 g of ground plant material were homogenized with 0.25 mL trichloroacetic acid (TCA),
0.5 mL potassium iodide (1 M), and 0.25 mL potassium phosphate buffer (10 mM, pH 6.0).
Tubes were then vortexed and centrifuged for 15 min at 10,000 rpm (at 4 ◦C). Samples were
transferred to 96 microwell plates and allowed to incubate at room temperature for 20 min.
Absorbances were read at 390 nm using a FLUOstar® Omega (BMG LABTECH, Orten-
berg, Germany) microtiter plate reader and H2O2 solution was measured by generating a
standard curve.

2.4. Malondialdehyde Content (MDA)

Lipid peroxidation was determined by measuring malondialdehyde (MDA) formation
following the thiobarbituric acid method as described by [67]. Fresh shoot samples (50 mg)
were homogenized with 2 mL of 1% trichloroacetic acid (TCA (w/v)). The homogenate
was centrifuged at 10,000 rpm (4 ◦C) for 10 min. Aliquots of 1 mL of the extract was added
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to 2 mL of 20% TCA containing 0.5% thiobarbituric acid (TBA). Small holes were created
in the cap of the 2 mL Eppendorf tubes using a syringe needle to prevent the tubes from
bursting due to pressure from the heat. The mixture was boiled for 30 min at 95 ◦C and then
allowed to cool on ice. The mixture was then centrifuged at 10,000 rpm for 15 min and the
absorbance of the supernatant was measured at 532 nm using the FLUOstar® Omega (BMG
LABTECH, Ortenberg, Germany), microtiter reader. The measurements were corrected for
nonspecific turbidity by subtracting the absorbance at 660 nm.

2.5. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis of Biomolecules

The FTIR spectrum of sorghum shoots was analyzed using a PerkinElmer Spectrum
100-PC FTIR Spectrometer (PerkinElmer (Pty) Ltd., Midrand, South Africa) as described
by [23]. Samples were prepared using the KBr pellet method, where ~2 g of dry sorghum
shoot tissue and 0.4 g of a pre-dried KBr were grounded in a mortar using a pestle to
provide a homogeneous mixture. Then, the pellet mixture (~2 g) was scanned on a FTIR
spectrometer. About 2 g of dry sorghum shoot tissues were analyzed on a wider spectral
window between 450 and 4000 cm−1.

2.6. Proline Content

The proline content was examined as described previously [68], with slight modifica-
tions. About 100 mg of ground sorghum shoots were re-suspended in 500 µL of 3% aqueous
sulfosalicylic acid (3 g sulphuric acid (Mr = 218.185 g/mol), dissolved in 100 mL ddH2O),
followed by centrifugation at 13,000 rpm for 20 min. About 300 µL of the supernatant was
mixed with 600 µL of 2.5% ninhydrin reaction mixture (1.25 g of ninhydrin dissolved in
30 mL of 99% acetic acid and 20 mL 6 M H3PO4) and boiled for 10 min in a water bath set
at 95 ◦C. The sample was placed on ice and allowed to cool, and then equal volumes of
toluene were added, and the optical density was measured at 520 nm using a FLUOstar®

Omega (BMG LABTECH, Ortenberg, Germany) microtiter plate reader. The proline content
was determined from a standard curve using pure proline as a standard.

2.7. Total Soluble Sugars

The total soluble sugars were determined as described previously [69] with some
modifications. About 100 mg of grounded plant material were homogenized in 10 mL of
ice-cold 80% acetone. The mixture was then centrifuged at 10,000 rpm for 10 min at 4 ◦C
and 1 mL of the supernatant was added to a tube containing 3 mL of anthrone reagent
(0.15 g anthrone, dissolved in 100 mL of 96% H2SO4). The samples were then placed in a
boiling water bath set at 95 ◦C for 15 min, followed by a cooling reaction on ice until cold.
The optical density was read at 620 nm using the Helios® Epsilon visible 8 nm bandwidth
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The total soluble sugar
content was determined by generating a standard curve using glucose and the content was
expressed as mg µg−1 FW.

2.8. Enzyme Activity Assays

Samples for the determination of enzyme activities such as superoxide dismutase
(SOD, EC, 1.15.1.11, BRENDA, The Comprehensive Enzyme Information System) and
ascorbate peroxidase (APX, EC, 1.11.1.11, BRENDA, The Comprehensive Enzyme Infor-
mation System) were prepared as previously described [70]. Plant material (0.5 g) was
homogenized with 3 mL of 50 mM phosphate buffer (pH 7). The homogenate was filtered,
followed by centrifugation at 18,000 rpm for 15 min using a refrigerated centrifuge set at
4 ◦C. The supernatant was stored at -20 ◦C until further assays were conducted.

2.8.1. Superoxide Dismutase (SOD, EC, 1.15.1.11)

Total SOD activity was estimated by observing the reduction of photochemical of ni-
troblue tetra zolium (NBT) at 520 nm through a reaction mixture prepared as described [71].
Briefly, 1 mL of 75 µM riboflavin (0.283 g ribloflavin (CAS = 83−88−5) dissolved in 1
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mL of dH2O) was added into a 3 mL reaction mixture (12 mM methionine, 75 µL NBT,
50 mM potassium phosphate buffer (pH 7), 50 mM sodium carbonate (Na2CO3), and 0.1
mL enzyme extract). Plates were exposed to light for 20 min and absorbances were read
at 560 nm using a FLUOstar® Omega (BMG LABTECH, Ortenberg, Germany) microtiter
reader.

2.8.2. Ascorbate Peroxidase (APX, EC, 1.11.1.11)

Ascorbate peroxidase activity was assayed by estimating the decrease in optical density
as a result of ascorbic acid at 290 nm. The reaction was prepared by mixing 50 mM
potassium phosphate (pH 7), 0.1 mM EDTA, 0.5 mM ascorbate, 0.1 mL enzyme extract, and
0.1 mL of 0.1 mM H2O2 was added to initiate the reaction. The decrease in absorbance was
estimated and measured at 290 nm using a FLUOstar® Omega (BMG LABTECH, Ortenberg,
Germany) microtiter reader.

2.9. Statistical Analysis

All experiments (including plant growth and treatments and all assays) were repeated
at least three times and data were statistically analyzed using a two-way ANOVA using
GraphPad prism 9.2.0 (https://www.graphpad.com, by Dotmatics, accessed on 20 October
2021). The data in the figures and tables represent the mean± standard deviation. Statistical
significance between the control and treated plants was determined using Bonferroni’s
multiple comparison test and represented as **** = p ≤ 0.0001, *** = p ≤ 0.001, ** = p ≤ 0.01,
and * = p ≤ 0.05. Pearson’s correlation (r) matrix was calculated using the “GGally” and
“mvtnorm” packages in R software.

3. Results
3.1. Chitosan Improves Sorghum Growth under Salt Stress
3.1.1. Biomass

Salt stress severely affected sorghum growth as depicted in Figure 1 and Table 1.
Salt caused a considerable reduction in sorghum growth and leaf expansion (Figure 1B)
as compared to the control (Figure 1A). The phenotype of the chitosan-treated sorghum
plants under salt stress showed growth improvement (Figure 1C,D). Furthermore, salt
decreased shoot length (52%), fresh weight (66.9%), and dry weight (48.3%) of sorghum
plants. However, exogenous application of chitosan improved shoot length by 33.9%
(0.25 mg/mL chitosan) and 24.3% (0.5 mg/mL chitosan). Furthermore, FW and DW were
restored by the exogenous application of chitosan, where 0.25 mg/mL chitosan increased
FW by 79.5%, whereas 0.5 mg/mL chitosan increased FW by 30.9%, while DW increased
by 53.02% (0.25 mg/mL chitosan) and 46.31% (0.5 mg/mL chitosan) in salt-stressed plants.

Table 1. Effects of chitosan on growth parameters of salt stressed Sorghum bicolor. Data represented
are mean ± SD.

Chitosan
(mg/mL)

NaCl
(mM)

Shoot Length
(mm)

Fresh Weight
(g)

Dry Weight
(g)

0 0 48.333 ± 6.506 2.920 ± 0.482 0.288 ± 0.045
0 300 24.667 ± 1.155 *** 0.966 ± 0.040 **** 0.1490 ± 0.003 **
0.25 300 33.00 ± 1.00 1.734 ± 0.142 0.228 ± 0.038
0.5 300 30.667 ± 1.15 1.265 ± 0.232 0.218 ± 0.083

Significant differences shown as **** = p ≤ 0.0001, *** = p ≤ 0.001, and ** = p ≤ 0.01.

3.1.2. Growth

To further determine the effects of chitosan on the growth and response of sorghum
under salt stress, the anatomical structure (epidermis and vascular bundle) of sorghum
plants was examined using Scanning Electron Microscopy (Figure 2). The epidermal tissue
revealed the presence of stomata (circled in red; Figure 2A–D), while the vascular bundle
revealed clear xylem and phloem tissues (Figure 2E–H). Salt stress caused a severe change

https://www.graphpad.com
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in the shape and size of the stomata (Figure 2B) as indicated by distinct and large guard
cells (black arrows) in addition to increased stomatal aperture as compared to the control
(Figure 2A). Treatment with chitosan reduced the size and aperture of the stomata under
salt stress, with greater effects observed for high chitosan (0.5 mg/mL) concentration
(Figure 3C,D). The tissues of the control (0 mM NaCl) sorghum plants (Figure 2E), showed
smooth xylem and phloem layers, whereas that of salt-stressed (Figure 2B,F) plants showed
rough, deformed, and shrunken layers as compared to the control. However, exogenous
chitosan restored the vascular bundle (xylem and phloem) layers of sorghum under salt
stress (Figure 2C,D,G,H), as observed by smooth layers as compared to plants treated with
salt only. Additionally, a low concentration of chitosan (0.25 mg/mL) proved more effective
in improving sorghum epidermis and vascular bundle tissue (Figure 2C,G).
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Figure 2. The positive effects of chitosan on the stomata (red circles, (A–D)) and vascular bundle layers
(xylem = red arrows and phloem = blue arrows; (E–H)) of sorghum under salt stress. (A,E) (0 mM NaCl);
(B,F) (300 mM NaCl); (C,G) (salt + 0.25 mg/mL chitosan); (D,H) (salt + 0.5 mg/mL chitosan).

3.1.3. Element Content Distribution

The distributions of sodium (Na+), potassium (K+), and silicon (Si+) ions were analyzed
using Scanning Electron Microscopy–Energy dispersive X-ray spectroscopy (SEM-EDX) in
control samples and salt-treated samples in the absence and presence of chitosan (Table 2;
Figure 3A–D). There was a high increase in Na+ content (100%), whereas K+ (51%) and Si+

(47%) decreased under salt stress resulting in high Na+/K+ and Na+/Si+ ratios of 1.3 and 5.4,
respectively. Treatment with chitosan increased all ions, Na+ (2%), K+ (21%), and Si+ (499%),
for 0.25 mg/mL chitosan, and Na+ (31%), K+ (16%), and Si+ (747%) for 0.5 mg/mL chitosan,
as compared to samples treated with salt only. This resulted in a further increase in the
Na+/K+ ratio (1.5). Interestingly, chitosan caused a considerable reduction in the Na+/Si+

ratio from 5.4 (salt only) to 0.9 (0.25 mg/mL chitosan) and 0.8 (0.5 mg/mL chitosan), thus,
showing an 85% decrease in Na+/Si+ ratio (Table 2; Figure 3A–D). These effects are clearly
seen in the SEM-EDX spectra (Figure 3A–D).
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Figure 3. The effects of chitosan on the element distribution and formation of silica phytoliths on
sorghum shoots under control and salt conditions. (A–D) SEM-EDX spectra showing the content of
different ions, (E–H) SEM micrographs showing the sorghum surface for mapped ions, (the mapped
area is shown by a green box). Silica cells and phytoliths are shown using blue and red arrows,
respectively. (A,E) (0 mM NaCl); (B,F) (salt, 300 mM NaCl), (C,G) (salt + 0.25 mg/mL chitosan),
(D,H) (salt + 0.5 mg/mL chitosan).

Table 2. Effects of chitosan on element distribution in sorghum shoots of control and salt stress
conditions. Data represented are mean ± SD.

Element Control (Wt%) Salt (Wt%) Salt + CS1 (Wt%) Salt + CS2 (Wt%)

Na+ 0.00 2.080 ± 0.221 * 2.123 ± 0.311 2.740 ± 1.222
K+ 3.15 ± 0.522 1.557 ± 0.276 * 1.890 ± 0.311 1.807 ± 0.743
Si 0.743 ± 0.713 0.393 ± 0.316 2.357 ± 1.384 3.330 ± 1.337 *

Element ratios

Na+/K+ 0.00 1.364 ± 0.155 *** 1.520 ± 0.341 *** 1.516 ± 0.107 ***
Na+/Si+ 0.00 5.402 ± 0.234 **** 0.976 ± 0.602 **** 0.823 ± 0.520 ****

Significant differences shown as **** = p ≤ 0.0001, *** = p ≤ 0.001, and * = p ≤ 0.05.

The epidermal layers of the SEM-EDX investigated surface areas that represented
smooth layers under control conditions (Figure 3E). Salt stress caused significant mor-
phological changes depicted by shrinkage and deformation of the epidermal cell layers
(Figure 3F). Treatment with chitosan improved the morphological structure of sorghum
epidermis under salt stress, where additional structures called silica phytoliths were also
observed in response to chitosan treatments (Figure 3G,H) under salt stress, which are
associated with the absorption of silicon from the soil.

3.2. Chitosan Reduces ROS Formation and Membrane Damage on Sorghum under Salt Stress
3.2.1. Hydrogen Peroxide and Lipid Peroxidation

To understand the level of salt-induced oxidative stress on sorghum plants and the
ability of chitosan to ameliorate the effects of salt stress, the levels of H2O2 were measured
(Figure 4A). The H2O2 content in sorghum plants treated with salt was 44% higher than the
control plants. The exogenous application of chitosan (0.25 and 0.5 mg/mL) to salt-stressed
plants significantly decreased H2O2 content by 52% in comparison to those treated with
salt only
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Figure 4. Chitosan (CS) reduces oxidative stress markers in sorghum under salt stress. (A) H2O2 and
(B) MDA content in control (0 mM NaCl) and salt (300 mM NaCl) treated sorghum supplemented
with chitosan (CS1 = 0.25 mg/mL and CS2 = 0.5 mg/mL). Error bars represent the SD calculated
from three biological replicates. The statistical significance between control and treated seedlings was
determined using a two-way ANOVA conducted on GraphPad Prism 9.2.0, shown as *** = p ≤ 0.001,
** = p ≤ 0.01, and * = p ≤ 0.05.

To assess the degree of membrane damage by salt stress and the antioxidant ability of
chitosan to prevent membrane damage, the study quantified MDA content, a byproduct
of membrane lipid peroxidation (Figure 4B). Salt-treated sorghum plants showed a 50%
increase in MDA content than the control. Interestingly, supplementing salt-stressed
sorghum plants with chitosan (0.25 and 0.5 mg/mL) reduced MDA content by 50% as
compared to plants treated with salt only.

3.2.2. Fourier Transform InfraRed Spectroscopic Analysis of Biomolecules

The nature and existence of biomolecules, such as phenolic compounds, proteins,
carbohydrates, and lipids, were determined using Fourier Transform InfraRed (FTIR)
Spectroscopy, as analyzed on a wider spectral region from 450 to 4000 cm−1 (Figure 5). The
infrared spectrum of the control sample (Figure 5A) showed a peak at 3525 cm−1, which
is found within the frequency range of 3600 to 3200 cm−1, represented by O-H stretching
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vibration, confirming the presence of phenolic compounds. Peaks at 29241 and 2835 cm−1

are found under the frequency range of 3000 to 2850 cm−1, represented by C-H stretching
vibration of alkanes confirming the presence of aliphatic compounds (amino acids). Peaks
1589 and 1380 cm−1 are within the 1400 to 1000 cm−1 range and are represented by the C-F
stretching vibration for the alkyl halide group, confirming the presence of carbohydrates.
The spectra also showed the presence of alcohol, carboxylic acids, and fats (esters and
ethers). These can be seen by a spectral peak at 1058 cm−1, which is found within the
1320–1000 cm−1 frequency range and shows a C-O stretching vibration. Peaks from 904
to 558 cm−1 further confirm the presence of amino acids, representing the C-N and N-H
stretching (Figure 5A) [41]. The FTIR spectrum of salt-stressed sorghum plants showed a
huge shift in several peaks including a peak between 3525 and 2835 cm−1, peaks at 1589
and 1380 cm−1, and peaks from 904 to 558 cm−1. However, exogenous chitosan, especially
0.25 mg/mL, partially restored the FTIR spectra of the salt-treated plants (Figure 5B, blue
and green lines), bringing them closer to those of the control (Figure 5B, black line).
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Figure 5. FTIR spectra analysis of the effect of chitosan on biomolecules in sorghum plants under
salt stress. (A) Control (0 mM NaCl) represented as the black line and salt (300 mM NaCl) treated
plants, represented as the red line, (B) salt-treated plants supplemented with 0.25 mg/mL (blue) and
0.5 mg/mL (green) chitosan.

3.3. The Antioxidant Defense Effect of Chitosan on Sorghum under Salt Stress
3.3.1. Proline and Total Soluble Sugars Content

The antioxidant effect of chitosan to regulate ROS detoxification was determined
by firstly analyzing the accumulation of osmolytes including proline and total soluble
sugars, and then determining the level of osmotic balance in salt-stressed sorghum plants
(Figure 6A,B). Salt stress induced proline accumulation by 319% as compared to the control
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(0 mM NaCl) (Figure 6A). Chitosan effectively induced stress tolerance by mediating a
considerable decrease in proline content by more than 50% for both chitosan (0.25 and
0.5 mg/mL) concentrations under salt stress.
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Figure 6. Exogenous chitosan (CS) reduced osmolyte accumulation and enzyme activities under salt
stress in sorghum. (A) Proline content, (B) total soluble sugars content, (C) superoxide dismutase
(SOD), and (D) ascorbate peroxidase (APX) in control (0 mM NaCl) and salt-treated (300 mM NaCl)
plants supplemented with chitosan (CS1 = 0.25 mg/mL and CS2 = 0.5 mg/mL). Error bars represent
the SD calculated from three biological replicates. Statistical significance between the control and
treated seedlings was determined using a two-way ANOVA conducted on GraphPad Prism 9.2.0,
shown as *** = p ≤ 0.001, ** = p ≤ 0.01, and * = p ≤ 0.05.

Salt stress increased total soluble sugars by 68.33% more in sorghum plants as com-
pared to the control (0 mM NaCl). Interestingly, the application of chitosan on salt-stressed
sorghum plants reduced total soluble sugars by 28.76% (0.25 mg/mL chitosan) and 33.28%
(0.5 mg/mL chitosan) as compared to plants treated with salt only.

3.3.2. SOD and APX Activities

Superoxide dismutase (SOD) is known as the first line of defense by directly dismutat-
ing O2

•− to H2O2 and H2O, whereas catalase (CAT) and ascorbate peroxidase (APX) are
the main H2O2 scavengers [42]. To determine the antioxidant defense capacity of chitosan
on sorghum in response to salt stress, the enzymatic activities of SOD and APX were
analyzed (Figure 6C,D). Salt stress increased SOD activity by 36% as compared to control
plants (Figure 6C). However, supplementing salt-stressed plants with 0.25 mg/mL chi-
tosan showed significant decrease in SOD activity by 41.88%, but the effects of 0.5 mg/mL
chitosan were not significant.

Salt stress increased APX activity by 132% as compared to control plants (Figure 6D).
Enzyme activity was increased in salt-treated sorghum plants, but this activity was sig-
nificantly decreased by exogenous chitosan to 35.97% (0.25 mg/mL chitosan) and 56.96%
(0.5 mg/mL chitosan) under salt stress.
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3.4. Correlation in Parameters

The relationship between the different studied traits was revealed using Pearson’s
correlation (Figure 7). The results indicated that most of the traits such as proline, Na+/Si+,
APX, MDA, and total soluble sugars were strongly positively correlated to each other with
a coefficient correlation value (r) close to 1. Na+ and Na+/K+ were strongly associated
with proline and Si+ whereas Na+/Si+, APX, MDA (r = 0.07), and soluble sugars were
positively correlated to Na+ and Na+/K+. A strong positive correlation was observed
between SOD and APX with r = 0.05. Highly strong negative (r = −1; deep brown color) to
strong negative (r = 0.7; light brown color) Pearson’s correlations were estimated between
K+ and all traits and the same trend was observed with Si+.
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stress. ROS: reactive oxygen species (H2O2); MDA: malondialdehyde; Soluble: total soluble sugars;
APX: ascorbate peroxidase; SOD: superoxide dismutase; Na: sodium ion; K: potassium ion, Si: silicon
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refer to the strength and significance of the correlation: 0.75–1 = strongly correlated; 0.5–0.75 = highly
correlated; 0.25–0.50 = moderately correlated; and 0–0.25 = weekly correlated. Under 0 = negatively
correlated.

4. Discussion

Salinity has been considered the most problematic factor in the agricultural sector since
it reduces plant growth, development, and hence productivity [9]. Plants respond to such
stress by slowing or hindering growth, among other traits [72]. In this study, 300 mM NaCl
was chosen as a concentration to cause high salt stress on sorghum. Salt stress negatively
affected sorghum growth and this was evident by reduced plant growth (Figure 1), shoot
length, FW, and DW (Table 1). A reduction in biomass is indicative of growth limitation,
thus, in this study growth reductions are attributed to the effects of osmotic stress, which
interferes with metabolic processes, reducing the energy required for growth [73]. Similarly,
growth reductions were observed in sorghum plants treated with 400 mM NaCl [23] and
on other important plants such as Schezonepeta tenuifolia Briq [74], Mentha pulegium [75],
Cuminum cyminum L. [76], and Zea mays [77]. Furthermore, the decline in biomass and
growth might be due to the inhibition of cell expansion caused by low turgor pressure
in salt-stressed plants resulting in a reduction in the shoot growth [78]. Due to its vast
properties, including the mediation of growth and development and the responses to stress,



Agriculture 2022, 12, 1544 13 of 20

chitosan was chosen to study its antioxidant ability to eliminate the effects of stress on
sorghum [79]. Exogenous chitosan reversed the effects of salt stress on sorghum growth
resulting in improved phenotype, increased shoot length and biomass. This might be due
to chitosan’s role in improving physiological processes, such as cell division, stimulation of
growth hormones, nutrient absorption and protein synthesis [80–83]. Exogenous chitosan
was previously shown to overcome the negative effects of stress on growth as reported
in Zea mays [84], Triticum aestivum [85], Oryza sativa [86], Lactuca sativa L. [13], Silybum
marianum (L.) Gaertn. [81], and Corchorus olitorius L. [87].

The effect of chitosan on growth was also evaluated by analyzing the anatomic struc-
ture (stomata, xylem, and phloem) of sorghum plants under salt stress (Figure 2). Con-
siderable reductions in plant growth were observed in salt-stressed sorghum plants, and
this correlated with severe changes in the stomatal shape and size, as well as the xylem
and the phloem layers suggesting that water loss was permitted through the salt-induced
opened stomata (Figure 2B) whereas transport of water and nutrients through the xylem
and phloem was affected (Figure 2F), hence, leading to decreased growth [88,89]. This
is true since a high Na+ concentration was measured under salt stress while there was
a decrease in K+ and Si+ (Table 2; Figure 3B) as evident by the high Na+/K+ (1.3) and
Na+/Si+ (5.4) ratios. Salinity also reduces the structure and density of the stomata, thus,
altering its role for gaseous exchange and photosynthesis [90]. However, in this study, salt
stress led to an increase in the density and aperture of the stomata, which is common in
salt-tolerant plants [91]. The opening of the stomata in sorghum under salt stress could
suggest Na+ exclusion via the stomatal pores, thus, inducing tolerance but limiting growth.
It was observed in this study that chitosan led to a decrease in stomatal size and hence
closed the pores, and this correlated with improved xylem and phloem tissues and plant
growth. It has been noted that chitosan is able to close the stomata [56,90], thus, inducing
tolerance. Chitosan negatively affected the Na+/K+ ratio (1.5), which contradicted the
improved growth under salt. Taken together, these results suggest that salt stress negatively
affected the uptake and transport of nutrients (water and essential elements) by altering
the structure of the epidermis, stomata, xylem, and phloem tissues.

Surprisingly, it was observed that instead chitosan increased the Si+ distribution under
salt stress, which correlated with improved growth and prevented damage of the anatomic
structures, as seen by the closed stomata, improved surface layers, and wider openings of
the xylem and phloem tubes, compensated by lowered Na+/Si+ (~0.9) ratios. Furthermore,
chitosan treatment resulted in high levels of silica deposits as compared to the control (0 mM
NaCl) and salt (300 mM NaCl) only (Figure 3E–H). These results suggest that chitosan-
improved growth in sorghum was mediated by high silicon absorption, which resulted
in the formation of silica phytoliths. This result further confirms that chitosan-improved
growth under salt stress is strongly related to nutrient uptake [80,83]. The formation of
silica phytoliths seems to have provided strength and support against epidermal and
vascular bundle layer shrinkage and deformation, which prevented inhibition of the plant’s
metabolic processes [37,92]. To our knowledge. this is the first study to show that chitosan
improved the anatomic structure (stomata, xylem, and phloem) and silica deposits of plants
under salt stress (Figures 2 and 3).

This study chose to quantify H2O2 and MDA contents in order to understand the
antioxidant ability of chitosan to reduce oxidative stress in sorghum (Figure 4). The
results showed that H2O2 content (oxidative stress marker) was very high as compared
to control plants, and hence this led to oxidative damage as measured by high MDA
content, an indicator of membrane lipid peroxidation [93]. However, exogenous chitosan
prevented ROS-induced oxidative stress in salt-treated sorghum plants by reducing H2O2
and MDA contents to the same magnitude as that of their controls. These results suggest
the antioxidative power of chitosan to reduce oxidative damage and might suggest a role in
directly scavenging ROS [45] or that the oxidative stress was reduced by the high content of
accumulated silicon in response to chitosan treatment [38]. The positive effects of chitosan
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reducing ROS-induced oxidative stress have been reported previously in lettuce [81],
peppers [91], and durum wheat [94].

Salt stress also has the tendency to cause degradation and changes in biomolecules
such as lipids, DNA, protein, and carbohydrates [95,96]. To further evaluate the antioxi-
dant capacity of chitosan to prevent oxidative damage, the study used Fourier Transform
Infrared Spectroscopy (Figure 5), a very important technique to reveal the different types
of organic and inorganic compounds present in an organism [97]. Salt stress induced
changes in the molecular component of sorghum plants by causing a major shift in several
peaks that corresponds to the bonds forming phenols (3525 cm−1), carbohydrates (1589 and
1380 cm−1), lipids (1058 cm−1), and amino acids (904–558 cm−1) (Figure 5A), suggesting the
induction of the non-enzymatic antioxidant defense system. However, exogenous chitosan
at a low concentration of 0.25 mg/mL partially reversed the effects of salt stress (Figure 5B),
further suggesting the antioxidant capacity of chitosan in scavenging ROS, hence, reducing
oxidative damage.

In this study, sorghum plants accumulated high levels of toxic species (Figure 4),
but plants have developed ROS scavenging systems including the non-enzymatic ones
such as proline, flavonoids, and phenolic compounds, and the enzymatic systems such
as SOD, APX, and CAT [98]. Proline is one of the well-researched osmolytes that plays
a role in maintaining the osmotic balance by improving the osmotic potential during
osmotic stress [99]. Proline accumulation is a common observation in response to abiotic
stress in plants [100], suggesting a positive correlation between its accumulation and plant
stress tolerance [101]. Consistent with the above, sorghum plants accumulated a high
proline content under salt stress (Figure 6A), and this correlated with high ROS formation
and MDA content. Based on these results, the study suggests that proline accumulation
was triggered to scavenge ROS, maintain membrane stability, protect biomolecules from
oxidative damage, and to control the osmotic balance and homeostasis [100,102]. Similarly,
proline accumulation was observed previously in sorghum during germination [43] and
vegetative [23,64,103] growth stages.

Plants also induced the synthesis of soluble sugars under salt stress as a tolerance
mechanism [104]. There was a high content of total soluble sugars in salt-stressed sorghum
plants (Figure 6B). Similar responses were observed in sorghum plants [23], and in Lygeum
spartum [105], under salt stress. These findings further indicated that sorghum plants
exhibited higher adaptive osmotic potential under salinity stress as evident by the high
accumulation of proline and soluble sugars [106]. However, the application of chitosan
on salt-stressed sorghum plants showed a positive effect by significantly decreasing both
proline and the total soluble sugars to the same level as that of their control. These results
are consistent with previous findings where chitosan application reduced osmolyte accu-
mulation under salt stress such as in Silybum marianum L. [81] and Glycine max L. [107]. The
ability of chitosan to mediate the reduction in osmolytes under salt stress is associated with
the induction of tolerance through osmoregulation and osmoprotection [108], suggesting
that chitosan also plays a structural role in plants. This is true since chitosan is isolated
from the cell wall of fungi and the exoskeleton [40], thus, its role in providing strength and
stability is relevant.

Antioxidant enzymes play a significant role in salt-stress tolerance through the detox-
ification of ROS and hence prevention of oxidation damage [109]. As the first line of
enzymatic defense, SOD scavenges O2

•− and dismutate it to H2O2 and O2, followed by the
detoxification of H2O2 by APX, CAT, and POD [110]. The results of this study showed that
both SOD and APX activities (Figure 6C,D) were induced under salt stress, as compared to
their controls, however, APX was induced to a greater extent than SOD. Furthermore, salt
stress significantly increased antioxidant enzyme activity in other cereals such as Triticum
aestivum [111], Zea mays [112], and Oryza sativa [108]. The increased activity of the antioxi-
dant enzymes under salt stress indicates the level of ROS scavenging capacity mediated
by sorghum. Their activities were reduced by exogenous chitosan, except for the high
concentration (0.5 mg/mL chitosan), which showed no differences for SOD activity, but
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both chitosan (0.25 and 0.5 mg/mL) concentrations reduced APX activity under salt stress.
Although other reports have shown that chitosan increases osmolyte accumulation and
antioxidant enzyme activities under salt stress [13,86], based on the results of this study, we
suggest that the effects of chitosan under salt stress are differentially influenced by species
type and whether the plant is tolerant or sensitive to salt. Furthermore, since sorghum
is moderately salt-tolerant, the reduced osmolytes and enzymatic antioxidant activities
under salt stress caused by exogenous chitosan might suggest that chitosan enhanced
sorghum’s tolerance and provided the antioxidant effect and osmotic regulation trait with-
out sacrificing the energy meant for growth [71]. This study proved the positive effects of
chitosan since its application in salt-stressed sorghum plants mediated tolerance by mainly
lowering the Na+/Si+ ratio, the oxidative stress markers (H2O2 and MDA contents), and
minimized activation of the defense systems, but improved uptake of essential elements
(Si), suggesting chitosan’s antioxidative ROS scavenging power. A strong positive correla-
tion was observed (Figure 7) among all studied traits except for Na+, K+, S+, and Na+/K+

in response to chitosan application under salt stress. The positive correlation maybe due to
reduced oxidative damage due to chitosan’s role in eliminating the accumulation of ROS,
MDA, and other toxic ions [13,45], which correlated highly with reduced Na+/Si+ ratio,
osmolyte accumulation [81,107,108,113], and antioxidant contents under salt stress. The
more positive the correlation among traits is, the easier the transfer of traits together. The
results from this study indicated that chitosan strongly influenced Si+ accumulation and
distribution under salt stress, where Si+ strongly regulated the reduction of oxidative stress.

5. Conclusions

Although several studies suggested that the chitosan-mediated salt stress allevia-
tion is related to the effective induction of the antioxidant system, this study added new
knowledge, and suggested that a silicon-mediated ion homeostasis pathway exists that is
activated by chitosan, however, these assumptions require further experimental confirma-
tion. Furthermore, the results showed that both 0.25 and 05 mg/mL chitosan concentrations
are effective and consistent for mediating the antioxidant capacity of chitosan on sorghum
under 300 mM NaCl at the vegetative growth stage, without causing damage to plant cells.
Therefore, future work to further affirm these findings is necessary, and this could include
the measurement of the antioxidant scavenging radical activity of chitosan using 2,2′-azino-
bis (3-ethylbenzothiazoline-6-sulfonate (ABTS) and 2,2-diphenyl-1-picrlylhyrazyl (DPPH)
assays and to analyze the gene expression of the antioxidant enzymes and the Na+-, K+-,
and Si+-related transporters [10,11,105].
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