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Abstract: To avoid the issues of undesired soil compaction and seeding depth variation caused by
the downforce fluctuation of the corn no-till planter, the influence of the structural parameters of
the air spring on the downforce was researched in this paper, by establishing the gas–solid coupling
simulation model of the air spring. The downforce test bench was built to verify the simulation model;
the test showed that the vertical output force error of the simulation model was 4.79%, the pitch
diameter error was 0.76%, and the pressure error was 5.07%. The cord angle, piston angle and piston
diameter were used as influencing factors to carry out single-factor experiments. The influences
of structural parameters on downforce were analyzed from four aspects: the vertical output force,
the vertical stiffness, the pressure difference and the deformation rate. The results showed that the
cord angle reduced the effective area and its change rate during deformation by limiting the radial
deformation of the bellow. When the cord angles were 30◦, 45◦ and 60◦, the deformation rates were
65.6%, 20.3% and 4.8%, respectively. The cord angle had a positive effect on the vertical output
force when the cord angle was in the range of 30~56◦, and it had a negative impact in the range of
56~60◦. As the cord angle increased, the vertical stiffness decreased. As the piston angle increased,
the effective area of the air spring decreased, and the change in internal pressure decreased, reducing
its vertical output force and stiffness. The piston diameter had little effect on the internal pressure and
deformation rate. It increased the vertical output force and stiffness by increasing the effective area.
The structural parameters of the air spring had a significant impact on the stability of the downforce;
the structure of the air spring should be optimized according to the downforce demand of the corn
no-till planter.

Keywords: air spring; no-till planter; downforce control; finite element analysis

1. Introduction

Downforce refers to the load the planter applies to the seeding unit, including the self-
weight of the unit and the additional load applied to the unit through the profiling unit [1,2].
Compared with traditional tillage, no-tillage seeding has no plowing and rotary tillage
in the seeding belt. The no-tillage surface evenness was poor, and the soil fluidity was
low, which made it easy to cause fluctuations in the downforce of the seeding unit [3]. The
existing research results show that when the downforce of the seeding unit is insufficient
during seeding, the positive pressure of the stubble-breaking disc is not enough to cut the
stubble on the no-till belt and open the furrow of a qualified depth, resulting in insufficient
seeding depth. At the same time, inadequate downforce results in loose soil in the seed
furrow, increasing the generation of air pockets, accelerating moisture loss in seed furrows
and affecting corn germination [4,5]. Therefore, extra downforce is usually applied to the
unit to ensure furrow depth stability in the corn no-till seeding process. However, the
excessive downforce carried by the gauge wheel of the unit can easily cause excessive
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compaction of the seed furrow, destroy the soil pore structure and increase the soil bulk
density of the seed furrow by about 1.6–6.1% [6,7]. Excessive downforce creates hard
walls on both sides of the double-disc open seed furrow, hindering corn roots’ normal
development [8]. The seeding depth increased with the increase in downforce, resulting
in difficulties in seed germination and soil breaking, delaying the emergence of corn.
Especially in the alpine-cold regions, excessive seeding depth directly leads to insufficient
temperature accumulation and reduced seed germination rate [9]. In addition, downforce
is one of the key indicators affecting seeding quality, which directly affects the qualified
rate of seeding depth and spacing. In the range of 600~900 N, the variation coefficient of
seeding depth decreases with the increase in downforce [10,11]. Stable downforce is an
essential guarantee for achieving stable seeding depth, preventing competition for sunlight,
water and nutrients, and obtaining a high emergence rate and final yield [12,13].

To improve the stability of the downforce, the existing no-till planters usually applied
additional downforce to the seeding unit through a coil-spring downforce regulating
device. The pre-tightening force and quantity of the coil spring were adjusted before the
start of seeding to realize the pre-adjustment of the downforce, according to the soil texture,
seeding depth, working speed, etc. [14]. But it could not be actively adjusted in real time
while working to further improve the matching accuracy of downforce and operating
conditions and realize the refined seeding management. The existing research mainly
adjusted downforce in real time through two active methods: hydraulic and pneumatic.
The hydraulic downforce regulating device used a hydraulic cylinder to replace the coil
spring, and the seeding unit was raised or lowered to adjust the downforce through the
hydraulic cylinder [15]. The pneumatic downforce regulating device (PDRD) used an air
spring instead of a coil spring, adjusting the downforce through inflating and deflating to
the air spring. The PDRD had a better downforce stability control effect under the condition
of no-till surface undulation and an excellent vibration reduction performance. Huang
et al. [16,17] developed a pneumatic downforce control system suitable for no-till planters
by monitoring the downforce of the gauge wheel and selected the air spring for automobiles
as the execution component, which effectively improved the stability of seeding depth
and downforce. Some companies such as John Deere, Precision Planting and Kinze had
also launched planters with air springs and downforce control systems to improve the
quality of seeding under no-till conditions, realizing the monitoring and adjustment of the
single-row downforce, which improved the stability of high-speed seeding and increased
corn yield [18–20]. The existing research on the PDRD mainly focused on the air spring
application and the control system’s development. The relationship between the air spring’s
structural parameters and the seeding unit’s downforce was unclear.

As the main working part of the PDRD, the rolling lobe air spring was a kind of non-
metallic spring that realized elasticity by filling the soft airtight bellows with compressed
air and utilizing the compressibility of the air. Its bearing characteristics were affected by
parameters such as internal gas, rubber bellows and piston shape, and determined the
effect of downforce regulation on the planter. In recent years, the research on the parameter
optimization of air springs in different application scenarios by the gas–solid coupling
simulation methods has gradually increased, and the consistency of the simulation and
physical test results have also been verified.

In this study, the Finite Element Method (FEM) was used to study the influence of the
structural parameters of the air spring in the PDRD on the downforce. We have provided
theoretical supports and references for optimizing the structural parameters of the air
spring and improving downforce stability during no-tillage seeding.

2. Materials and Methods
2.1. F E Model
2.1.1. Model Material

The seeding unit was connected to the frame through a four-bar linkage mechanism
for up and down profiling during the operation of the corn no-till planter. The upper part
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of the air spring was fixed to the planter frame through the upper fixing bracket, and the
lower part was hinged to the four-bar linkage mechanism through the lower fixing bracket
(Figure 1). The air spring was compressed or stretched under the drive of the four-bar
linkage mechanism during the profiling process. The vertical output force (VOF) of the air
spring determined the downforce of the frame to the unit. The air–solid coupling method
in the ABAQUS F E simulation could simulate the deformation of the air and the VOF
during the height change of the air spring [21–23].
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Figure 1. Schematic diagram of the PDRD on the corn no-till planter.

The rolling lobe air spring selected in the PDRD was mainly composed of an upper
plate, rubber bellows, piston and sealing rings (Figure 2). According to the force and
deformation of the air spring, the air spring was simplified into four parts: upper plate,
piston, bellows and the gas in the cavity for modeling. The upper plate and piston material
were usually aluminum alloy or nylon. Its deformation rate was low and not the focus
of this analysis, so it was regarded as a rigid body in the simulation, and we ignored its
deformation.
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Figure 2. Boundary conditions (a) and mesh generation (b) of finite element model.

The bellows was vulcanized from rubber and cord. The rubber material had strong
nonlinear elasticity, and its properties were simulated by hyperelastic materials. The
Mooney–Rivlin model was used to simulate rubber in ABAQUS; the material parameters
are shown in Table 1 [24]. The cord was made of nylon bonded with rubber. The cord
layer mainly included four parameters: the pitch of the cord layer, the pitch of the cord,
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the radius of the cord and the angle of the cord. In the simulation, the rebar unit was
used to simulate the cord layer in the bellows, and the cord was embedded in the rubber
body. The cord pitch was simulated by the spacing of the rebar element; the cord layer
pitch was simulated by the distance between the neutral plane and the rebar element; the
cord radius was simulated by the cross-sectional area of the rebar element; the cord angle
was simulated by the rebar element angle. When the air spring was working, with the
deformation of the bellows, the bellows compressed air, and the interaction between the
compressed air and the bellows was a typical fluid-structure coupling phenomenon [25].
The cavity model in ABAQUS provided the coupled analysis used to simulate the gas in
the cavity.

Table 1. Physical parameters of bellows materials.

Composition Materials Model Parameters

Rubber layer Rubber Mooney–Rivlin C10 (MPa) C01 (MPa)
0.5178 0.1426

Cord layer Cord /
Young modulus (MPa) Poisson’s ratio

7200 0.3

2.1.2. Contact and Boundary

In the PDRD, the upper plate of the air spring was fixed to the planter frame through
the upper fixing bracket, and the piston was hinged with four-bar linkage through the
lower fixing bracket piston rotated around the seeding unit connection plate (Figure 1). In
the F E simulation, the undulations during the seeding were simulated by the translation
of the piston; the upper plate was fixed by the degree of freedom (DOF) constraints of the
reference point. The nodes of the fluid element of the bellows were fixed with the repeated
nodes of the upper cover plate and the piston based on the TIE tool. The contact between
the bellows, the upper plate and the piston’s side was defined as non-slip contact. An
airtight cavity was formed through the two sides of the bellows, the upper and lower faces
of the plate and piston, and the cavity was filled with air.

2.1.3. Meshing and Step Definition

When establishing the F E model of the downforce regulating air spring, the bellows
was simplified as a shell element, and the S4R element simulated the shell element. The shell
thickness was the same as that of the bellows, and the mesh was generated by sweeping.
By referring to the existing research and previous pre-experiments, on the basis of ensuring
the speed and accuracy of the simulation test, the mesh size is selected as 3 mm. The upper
plate and piston of the air spring were shelled, and the discrete rigid shell elements of the
upper plate and the piston were simulated by the S4R element. The mesh is generated by
sweeping; the mesh size is the same as that of the bellows, which is 3 mm.

The existing research shows that when the no-till seeding speed is 4–10 km/h, the
vibration of the gauge wheel and the seeding unit of the seeder is mainly low-frequency
(≤1 Hz) vibration [26]. The dynamic and static stiffness of the air spring under low-
frequency vibration were the same [27], so the static output force and stiffness were used
in this paper to replace the dynamic characteristics under field conditions. The analysis
process of the PDRD were mainly divided into four steps. The first step was the inflation
process, constraining the upper plate and piston’s DOF so that the air spring was in a state
of maximum elongation (Figure 3a), and the fluid cavity in the bellows was inflated to
0.3 MPa (Figure 3b). The second step was the compression process, keeping the pressure of
the fluid cavity at 0.3 MPa, constraining the DOF of the piston. The upper plate moved
down 145 mm (Figure 3c), compressing the height of the air spring to 200 mm (Figure 3d),
when the four-bar linkage mechanism was in a horizontal position. The third step was
to constrain the DOF of the upper plate, disconnecting the air source of the fluid cavity,
and the internal pressure of the fluid cavity changed with the volume of the fluid cavity.
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The piston moved down 40 mm and sideways 8 mm to the lowest position of the piston
(Figure 3e), when the air spring was in the maximum stretch state. In the fourth step, the
constraints were kept the same as in the third step. The piston-derived bellows moved up
80 mm to the highest position (Figure 3f). At this time, the air spring was compressed to
the lowest height, the internal volume of the bellows was the smallest and the internal air
pressure was at its maximum.
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2.2. Test Design and Index Measurement

The PDRD used an air spring instead of coil spring, and its design goal was to improve
the downforce stability of the seeding unit. During the working process of the PDRD, the
additional downforce exerted on the seeding unit was determined by the VOF of the air
spring. The influence of the structural parameters of the air spring on the downforce was
studied by the single-factor F E simulation test.

2.2.1. Test Factors

During the expansion and deformation of the air spring, the bellows was elastically
deformed along the outer surface of the piston under the action of the internal air, as
shown in Figure 4. Its bearing capacity was mainly affected by the internal air pressure and
effective area of the air spring, and the calculation equation was as follows:

Fk = pAe Ae = π(R − R2)
2 (1)

where Fk is the vertical load of the air spring, N; p is the internal air pressure of the air
spring, MPa; Ae is the effective area of the air spring, m2; R is the inner radius of bellows,
m; R2 is the radius of roll ear, m.
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The maximum downforce required by the corn no-till planter is about 2500 N [17,28];
excluding the self-weight of the seeding unit of 1500 N, the maximum additional downforce
provided by the PDRD is 1000 N. The action point of the air spring at the four-link is one-
third of the length of the link, and the maximum vertical output force of the air spring is
determined to be 3000 N. The maximum profiling height of the corn no-till planter unit is
240 mm, and the maximum profiling height of the air spring is determined to be 80 mm
according to the installation size. To prevent the bellows from being involved in the piston
and the cover plate, the minimum air pressure shall be higher than 0.05 MPa [29]. The
greater the internal air pressure of the air spring, the greater its vertical stiffness (VS) [28].
To reduce the vs. of the air spring and the downforce fluctuation, the air pressure range
inside the air spring was determined to be 0.05~0.6 MPa.

The cord angle is the angle between the inner cord and the meridian of the bellows
(Figure 4b); it affects the deformation rate of the rubber in different directions, and the
cords are arranged vertically between adjacent layers. To ensure the lateral and vertical
stability of the air springs, the angle of the cord was usually between 30◦~60◦ [30], and the
cord angles selected in the test were 30◦, 45◦ and 60◦, respectively. Compared to conical,
cylindrical and curved pistons, the turbination piston helped reduce the air spring’s vs. and
improve the downforce stability [31]. The turbination piston was selected, and to ensure
the strength of the piston, the piston angle was selected as 5◦, 10◦ and 15◦. It could be
seen from Equation (1) that the piston diameter affected the effective area of the air spring,
which in turn determined the VOF of the air spring under the same air pressure. Combined



Agriculture 2022, 12, 1513 7 of 15

with the downforce requirement of the seeding unit and the working pressure of the air
spring, the piston diameters were selected as 65 mm, 75 mm and 85 mm through calculation.
In summary, through consulting the manufacturers and processors, the other structural
parameters of the air spring were determined: the thickness of the bellows δ is 2.5 mm,
the cord spacing D0 is 1 mm, the number of cord layers is 2, the cord layer spacing D1 is
1 mm, the cord radius R3 is 0.25 mm and the working height is 200 mm. The single-factor
method was used to test the influence of the experimental factors; nine simulation tests
were performed in this study; the setting of the parameters is listed in Table 2.

Table 2. Single-factor simulation scheme.

Number Factor Variable’s Value Conditions

1–3 Cord angle α/◦ 30,45,60 β = 10◦

d1 = 75 mm

4–6 Piston angle β/◦ 5,10,15 α = 45◦

d1 = 75 mm

7–9 Piston diameter d1/mm 65,75,85 α = 45◦

β = 10◦

2.2.2. Data Collection and Processing

1. The Average VOF

The VOF of the air spring during the deformation process determined the downforce
of the unit. The appropriate VOF was selected according to the requirements of the seeding
unit. In the simulation test, the piston’s vertical displacement and the upper plate’s vertical
force during the deformation process were recorded through the “File output manager”
function of the step module in ABAQUS. The average VOF of the air spring in the simulation
test was calculated by Equation (2):

FMv =

t=2.5
∑

t=1.5
Fv

n
(2)

where FMv is the average VOF of the air spring, N; Fv is the VOF of the air spring at different
times, N; n is the number of sampling points.

The VOF of the air spring in the simulation test is shown in Figure 5. The air spring
started to inflate at 0 s, the air inside the bellows expanded, the piston was pulled upward by
the bellows and the VOF < 0 at this time. During 0.5~1 s, the upper plate moved down, the
air inside the bellows was compressed and the piston changed from tension to compression,
when t = 1 s, VOF > 0. During 1~1.5 s, the upper plate of the air spring was fixed, the piston
drove the bellows to twist downward, the internal volume of the air spring increased and
the air pressure decreased, resulting in the decrease in the VOF. During 1.5~2.5 s, the piston
twisted upward from the lowest to the highest position. During the upward movement,
the internal volume of the air spring decreased, and the air pressure gradually increased,
increasing the VOF. During 1.5~2.5 s, the VOF determined the magnitude of the downforce
applied to the seeding unit during the ups and downs of the four-link. Therefore, the
average VOF FMv at this stage was analyzed.
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2. The VS

The vs. of the air spring under different structural parameters determined the down-
force fluctuation of the seeding unit under the same surface undulation, and then deter-
mined the downforce stability. The vs. was calculated according to Equation (3):

ks =
Ft=2.5 − Ft=1.5

∆y
(3)

where ks is the VS, N/mm; Ft = 1.5, Ft = 2.5 are the VOF at different times, N; ∆y is the vertical
height change, mm.

3. Deformation Rate of Bellows

The deformation rate of the bellows reflected the diameter change of the air spring
before inflation and after reaching the maximum pressure. It was obtained by the difference
in the maximum pitch diameter before and after deformation and calculated according to
Equation (4):

kD =
Dd − Du

Du
(4)

where kD is the deformation rate of bellows, %; Dd is the pitch diameter of bellows when
the internal pressure is at its maximum (t = 2.5 s), mm; Du is the pitch diameter of bellows
before inflating (t = 0 s), mm.

4. The Internal Pressure Difference

The pressure difference inside the bellows reflected the air compression state inside
the air spring during the deformation process. It was obtained by the difference between
the air pressure in the maximum tension (t = 1.5 s) and compression (t = 2.5 s) state, and
the pressure difference was calculated according to Equation (5):

∆p = pc − pt (5)

where ∆p is the internal pressure difference, MPa; pc is the air pressure in the maximum
compression state (t = 2.5 s), MPa; pt is the air pressure in the maximum tension state
(t = 1.5 s), MPa.

The internal air pressure inside the bellows in the simulation test is shown in Figure 6.
During 0~1 s, the internal pressure was manually set and did not change with the volume
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of the bellows; 1.0~1.5 s, the air spring stretched, and the internal volume of the bellows
increased, resulting in the decrease in air pressure; 1.5~2.5 s, the air spring was compressed,
the volume decreased, resulting in the increase in air pressure. In 1.5~2.5 s, the air spring
was compressed from the maximum extension state to the maximum compression state, so
the maximum pressure difference during the deformation process of the air spring at this
stage was counted.
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3. Results and Discussion
3.1. Experimental Verification of F E Model

To verify the accuracy of the F E simulation of the air spring, a downforce test bench
for the no-till planter seeding unit was built, as shown in Figure 7. The test bench was built
based on the unit of Jilin Kangda 2BMZF no-till planter. The planter adopted four-linkage
for unit profiling and used four coil springs to exert additional downforce. The PDRD was
installed on the four-bar linkage mechanism of the planter and used an air spring instead
of coil springs to provide additional downforce. The air spring cord angle used in the test is
45◦, the piston angle is 10◦ and the piston diameter is 75 mm. The downforce of the seeding
unit was recorded by the cantilever beam pressure sensor (Dayang, Bengbu, China) on the
test bench. The height change of the seeding unit was recorded by a displacement sensor
(Milai, Taizhou, China), and then the vertical displacement of the piston was calculated.
The air pressure changes inside the air spring were recorded by an air pressure sensor
(Siemens, Munich, Germany). All the data were collected and recorded by NI-6002 data
acquisition card (National Instruments, Austin, TX, USA), and the sampling frequency was
50 Hz.
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The pressure inside the air spring was adjusted to 0.3 MPa by an electric proportional
valve (SMC, Beijing, China) before the test, then used the lifting platform to adjust the
height of the air spring at the initial position to be the same as that in the simulation and
disconnected the external air supply of the air spring. The lifting platform was used to
adjust the heights of the air springs to 160 mm, 180 mm, 200 mm, 220 mm and 240 mm,
respectively, and recorded the VOF, pith diameter and pressure of the air spring on the
PDRD at different heights. The difference between the measured and the simulated value
are shown in Table 3. The results show that the maximum error of the VOF between the
simulation test and the bench test is 8.18%, and the average error is 4.79%; the maximum
error of the pitch diameter is 1.34%, and the average error is 0.76%; the maximum error
of pressure is 7.47%, and the average error is 5.07%. The differences are relatively low;
therefore, the FEA model is considered acceptable.

Table 3. The differences between the measured and simulated results.

Height
/mm

Vertical Force Pitch Diameter Pressure

Meas/N Simu/N Diff/% Meas/mm Simu/mm Diff/% Meas/MPa Simu/MPa Diff/%

240 1824.9 1892.0 3.55 93.5 94.5 1.08 0.205 0.213 3.98
220 1621.5 1683.9 3.71 94.3 95.6 1.34 0.235 0.250 6.18
200 1467.4 1561.7 6.04 95.1 95.7 0.66 0.276 0.298 7.47
180 1265.3 1297.1 2.46 95.8 96.4 0.66 0.340 0.354 4.01
160 1020.8 1111.8 8.18 96.8 96.9 0.09 0.413 0.429 3.74

Note: Meas, Simu and Diff are the abbreviations for measured, simulated and difference.

3.2. Impact Analysis of Experimental Factors

Table 4 shows the simulation test results of the VOF, VS, deformation rate and pressure
difference of the air spring under different structural parameters. The influence of the
cord angle, piston angle and piston diameter on the VOF and vs. were determined by
significance analysis and the quadratic polynomial fitting method.



Agriculture 2022, 12, 1513 11 of 15

Table 4. Single-factor simulation scheme.

Object
Cord Angle Piston Angle Pitch Diameter

30 45 60 5 10 15 65 75 85

Average VOF FMv/N 2224.3 1504.2 1377.6 1670.5 1504.2 1389.6 1131.6 1504.2 2025.9
VS ks/N/mm 15.6 10.8 9.1 14.8 10.8 7.3 7.4 10.8 15.4

Deformation rate kD/% 62.3 19.2 3.3 20.6 19.2 19.7 18.4 19.2 22.4
Pressure difference ∆p/MPa 0.185 0.216 0.231 0.240 0.216 0.194 0.207 0.216 0.213

3.2.1. Impact Analysis of the VOF

The comparison of the air spring VOF in the torsional deformation within 1.0–2.5 s is
shown in Figure 8. The VOF in 1.5~2.5 s determined the downforce of PDRD applied to the
seeding unit.
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Figure 8. The VOF under different structural parameters.

Figure 8a shows the VOF under different cord angles; it could be seen that the VOF
decreased with the increase in the cord angle within the selected test range. The quadratic
polynomial fitting results of the VOF under different cord angles are shown as black curves
in Figure 9a. When the cord angle increased from 30◦ to 56◦, the VOF decreased with the
increase in the cord angle, and when the cord angle increased from 56◦ to 60◦, it increased
with the increase in the cord angle. The rise in the cord angle reduced the deformation rate
of the bellows, the deformation rates are 62.3%, 19.2% and 3.3% at cord angles of 30◦, 45◦

and 60◦, respectively, as shown in Figure 10. The reason was that the cord angle limited
the deformation rate of the bellows after inflation, which affected the effective area and
area change rate of the air spring after inflation. As the cord angle increased, the radial
elongation of the bellows was limited, the effective radius of the air spring decreased, and
the effective area decreased accordingly. Although the increase in the cord angle increased
the internal pressure to a certain extent (Figure 11a), it was not enough to offset the decrease
in the effective area, which eventually led to a significant reduction in the VOF. When the
cord angle was 60◦, the deformation rate of the bellows after inflation was too low, causing
the piston to contact the inner wall of the bellows during the torsion process (Figure 10c),
resulting in the fluctuations in the VOF (Figure 8a).
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The test results under different piston angles can be seen in Figure 8b. With the
increase in the piston cone angle, the VOF of the air spring decreased. The quadratic
polynomial fitting results of the VOF under different cord angles are shown as black curves
in Figure 9b. As the cord angle of the piston increased, the effective radius of the air spring
decreased, the smaller the change in the internal volume of the bellows, and the smaller the
increase in air pressure due to compression (Figure 10b). The reduction of the air pressure
and effective radius led to the decrease in the VOF of the air spring.

The test results under different piston diameters can be seen in Figure 8c. With the
increase in the piston diameter, the VOF of the air spring increased, and the VOF was
approximately proportional to the square of the increasing proportion of piston diameter.
The quadratic polynomial fitting results of the VOF under different piston diameters are
shown as black curves in Figure 9c. The piston diameter mainly increased the VOF by
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increasing the effective area, and the air pressure difference varies a little under different
piston diameters (Figure 10c).

3.2.2. Impact Analysis of the VS

Table 4 and Figure 8a show the vs. under different cord angles. The vs. decreased
with the increase in the cord angle in the selected test range. The quadratic polynomial
fitting results of the vs. under different cord angles are shown as red curves in Figure 9a.
The influence of the cord angle from 45 to 60◦ on the vs. was 64.6% lower than that of 30 to
45◦. The reason was that the cord angle limited the radial elongation of the bellows after
inflation, which affected the effective area change rate during the compression process of
the air spring, which affected the vs. in turn.

Table 4 and Figure 8b show the vs. under different piston angles; the vs. decreased
with the increase in the piston angle in the selected test range. The quadratic polynomial
fitting results of the vs. under different piston angles are shown as red curves in Figure 9b.
The piston angle reduced the vs. by reducing the effective area and reducing the internal
air pressure difference of the air spring. The results show that the deformation rate of the
bellows under different piston angles and the VOF in the initial compression state (t = 1.5)
were similar, and the vs. was mainly affected by the effective area change rate and the
internal air pressure (Figure 11b).

Table 4 and Figure 8c show the vs. under different piston diameters; the vs. increased
with the increase in the piston diameter in the selected range. The quadratic polynomial
fitting results of the vs. under different piston diameters are shown as red curves in
Figure 9c. The reason was that the pressure difference changed little under different piston
diameters (Figure 10c), and the increase in the vs. was mainly caused by the rise in the
effective area.

4. Conclusions

In this study, an F E simulation model of the air spring on the PDRD was established,
and the torsional deformation of the air spring during the operation of the corn no-till
planter was simulated and verified by a test bench. The influences of cord angle, piston
angle and piston diameter on vertical output force, vertical stiffness, pressure difference
and deformation rate of downforce regulated air spring were studied. The verification test
shows that the differences in the F E model were acceptable; the vertical output force error
of the simulation model was 4.79%, the pitch diameter error was 0.76%, and the pressure
error was 5.07%.

The experimental results show that the structural parameters of the air spring had a
significant influence on the downforce stability of the seeding unit, and the conclusions
were as follows: the cord angle, piston angle and piston diameter had significant effects on
the vertical output force and vertical stiffness of the air spring. The cord angle reduced the
effective area and its change rate in the deformation process of the air spring by limiting the
radial elongation of the bellows after inflation. The cord angle had a positive effect on the
vertical output force when the cord angle was in the range of 30~56◦, and it had a negative
impact in the range of 56~60◦. As the cord angle increased, the vertical stiffness decreased.
As the piston angle increased, the effective area of the air spring decreased, and the change
in internal pressure decreased, reducing its vertical output force and stiffness. The piston
diameter had little effect on the internal pressure and deformation rate; it increased the
vertical output force and stiffness by increasing the effective area. Therefore, the structure
of the air spring should be optimized according to the downforce demand of corn no-till
seeding.
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