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Abstract: Rice (Oryza sativa L.) growth prediction is key for precise rice production. However,
the traditional linear rice growth forecasting model is ineffective under rapidly changing climate
conditions. Here we show that growth rate (Gr) can be well-predicted by artificial intelligence (AI)-
based artificial neural networks (ANN) and gene-expression programming (GEP), with accumulated
air temperatures based on growth degree day (GDD). In total, 10,246 Gr from 95 cultivations were
obtained with three cultivars, TK9, TNG71, and KH147, in Central and Southern Taiwan. The model
performance was evaluated by the Pearson correlation coefficient (r), root mean square error (RMSE),
and relative RMSE (r-RMSE) in the whole growth period (lifecycle), as well as the average and specific
key stages (transplanting, 50% initial tillering, panicle initiation, 50% heading, and physiological
maturity). The results in lifecycle Gr modeling showed that ANN and GEP models had comparable r
(0.9893), but the GEP model had the lowest RMSE (3.83 days) and r-RMSE (7.24%). In stage average
and specific key stages, each model has its own best-fit growth period. Overall, GEP model is
recommended for rice growth prediction considering the model performance, applicability, and
routine farming work. This study may lead to smart rice production due to the enhanced capacity to
predict rice growth in the field.

Keywords: agricultural innovation; agricultural management precision agriculture; thermal time;
rice growth prediction; artificial neural networks (ANN); gene-expression programming (GEP)

1. Introduction

Rice is the second-highest produced cereal in terms of yield and is a staple food for ap-
proximately four billion people globally [1]; therefore, knowing the critical requirements for
rice growth and the best timing for rice planting and harvest are crucial for understanding
the effects of policy, and optimizing agricultural practice to achieve higher food security [2].
A precise method is needed so that the rice growth stages may be accurately predicted
at varying environmental conditions [3], so as to effectively implement field cultivation
management [4], achieve rationalization of irrigation and fertilization [5] and increase yield
and profits for farmers [6]. Due to the development of digital agriculture modeling, the
automatic field operation may be achieved by accurate growth period prediction, leading
to precision agriculture [6]. Conversely, mismatched fertilization timing may cause lower
fertilizer utilization efficiency [7,8], especially in traditional rice production under the
critical threat of climate change. For example, the raised carbon dioxide concentration
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causes existing rice growth patterns to change in Taiwan [9]. The increased extreme rainfall
events cause variation in rice growth patterns [10] and yield loss [11].

Typical rice growth is modeled based on the accumulated thermal time, called growth
degree days (GDD), to reach a specific growth stage regardless of the year or location [12,13].
The first rice GDD model, initially referred to as the Degree Day 50, was established in
the 1970s and has been widely used in the Southern USA [14]. Many modern rice growth
prediction models have been developed based on the GDD or similar linear-based princi-
ples, such as ORYZA [15] and DSSAT [16]. The accuracy of GDD model has been found
to be much higher in fieldwork timing than the traditional calendar day method [17,18].
However, several difficulties hinder the application of the GDD model. Firstly, the basic
growth temperature (Tb) must be calibrated by a long-term experiment before applica-
tion [19–21]. Secondly, the GDD model is limited due to the nonlinear relationship between
the rice growth rate, rice’s cultivars and the growth conditions such as the temperature,
humidity, and soil composition. The traditional GDD correlates developmental rate linearly
to temperatures in some growth periods; however, linearization is often criticized for its
oversimplification despite being widely used [22].

Due to the limitations of the above-mentioned linear-based GDD model, artificial intel-
ligence (AI) based nonlinear algorithms have been developed and applied in rice research
in recent years. Examples include yield prediction by artificial neural networks (ANN) [23]
and gene-expression programming (GEP) [24], and short-term rice blast forecasting by
ANN [25]. These AI-based studies showcase the ability of AI algorithms for complex
problem-solving. However, although there are many separate studies on developing and
using traditional GDD and AI algorithms in rice studies, no research has aimed to integrate
GDD in AI-based modeling to predict rice growth. Due to the importance of accurate rice
growth prediction for smart agriculture and increasing demand on rice production [26,27],
this study aimed to apply AI algorithms to develop nonlinear rice growth models by GDD.
The model performances were assessed by Pearson correlation coefficient (r), root mean
squared error (RMSE), and relative RMSE (r-RMSE) in whole rice growth period (lifecycle),
stage average, and specific key stages, to evaluate the applicability of AI-enabled model by
comparing with traditional GDD model in different rice growth stages.

2. Materials and Methods

Three rice (O. Sativa subsp. Japonica) cultivars: Taiken 9 (TK9), Tainung 71 (TNG71) and
Kaohsiung147 (KH147) were used in this study and were grown in 2006–2008, 2006–2009,
and 2019 in two crop seasons, respectively. The growing days for TK9, TNK71, and KH147
in the first and second crop season were approximately 123 and 114 days (mid to late
maturing), 118 and 104 days (early to mid-maturing), and 128 and 115 days (mid to late
maturing), respectively. The cultivars TK9 and TNG71 had the same transplanting dates
from 2006–2008. In 2009, TNG71 was planted in two different lots in the same crop season
with a 14-day difference in the transplanting dates. Similar cultivation was performed for
KH147 in 2019, with the plant grown in four separate lots with the transplanting dates
separated by 14 days in the same crop season. In total, 95 cultivations were conducted by
completely randomized design.

In each cultivation, growth data were obtained by observing the key growth stages of
rice classified by Counce, et al. [28], including the transplanting stage (Stage 0, V3), 50%
initial tillering stage (Stage 1, V5, the date when the tillers number exceeds 50%), panicle
initiation stage (Stage 2, R0, the date when more than five random rice with panicle lengths
observed in 2 mm), 50% heading stage (Stage 3, R3, the date when 50 plants’ heading
number reach 50%), and physiological maturity stage (Stage 4, R7, the date when most of
the grains in the panicle are golden yellow, and 2 to 3 grains at the base of the panicle are
still yellow-green). Based on key stages, the rice growth rate (Gr) was calculated by day−1,
and continuously accumulated from Gr = 0 to Gr = 4 (i.e., V3 to R7). For example, in 10 days
in Stage 1, the Gr of the first day is 1/10 = 0.10, the second day is 2/10 = 0.20, etc., until the
end of this stage (day 10, Gr = 1.00). Then, Gr for the next stages was calculated similarly
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by dividing the specific date by the duration of the stage plus the Gr values at the end of
the previous stage (e.g., 1.00 for Stage 1 and 2.00 for Stage 2).

2.1. Experiment Sites

The phenological data of rice was collected by the Taiwan Agriculture Research
Institute (TARI) in Taichung (TK9 and TNG 71) and National Pingtung University of
Science and Technology (NPUST) in Pingtung (KH147), respectively. The experimental
sites of this study are marked in Figure 1. Two crop seasons were cultivated in both places
following the typical continuous flood irrigation (Figure 2). The soil texture in TARI is
alluvium of Holocene with fine-textured and well-drained red soil; and in NPUST, it is
terrace deposits of Quaternary Period with non-calcareous well-drained shallow alluvial
soil [29].
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2.2. Growth Degree Day

For temperature-based phenology models, the growth rate is generally modeled as
a function of the effective temperature accumulation [30]. The prediction results can
be used in field operations to guide agricultural managements, such as the timing for
fertilization and irrigation. Several studies have been performed to improve the procedures
for calculating the GDD [3]. In this study, a conventional GDD was calculated. It was
assumed that a certain amount of effective temperature (◦C d−1) is needed to complete a
given developmental stage [31]. GDD is generally computed based on a daily averaged
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temperature minus base temperature (Tb). Traditionally, 10 ◦C is used as the Tb of rice
cultivars. However, it had been found that the base temperatures of TK9, TNG71, and
KH147 were 6.4, 6.6, and 7.6 ◦C, respectively [32]. A negative GDD indicates that the
crop growth has stopped [33]. Finally, the daily GDD is calculated and summed, which
constitutes the cumulative heating time required for the rice to reach the corresponding
Gr [34]. The GDD in this study was calculated using Equation (1) below.

GDD =
Tmin + Tmax

2
− Tb (1)

where, Tmin is daily minimum temperature (◦C), Tmax is daily maximum temperature (◦C),
and Tb is base temperature (◦C).

2.3. Model Development
2.3.1. Artificial Neural Network (ANN)

An ANN is a network of processing elements (PEs) assembled in layers and connected
through several links or weights. ANN calculates its output from the dynamic input at
epochs and compares it with the expected output from each input vector to compute the
error [35]. The classic backpropagation neural network (BPNN) was used for Gr modeling
in this study. NeuroSolution 7.1 from NeuroDimension, Inc. (Gainesville, FL, USA) was
used for model establishment in this study. The model framework is shown in Figure 3. The
total data, including input and output, was pre-processed by data min-max normalization
from 0 to 1, and the data queue were re-sorted by random order to avoid errors caused
by outliners and systemic cumulative errors. After the data pre-processing, the dataset
was divided into three datasets: training, cross-validation (CV), and testing at a ratio of
70%, 20% and 10% following the typical practice of AI-based modeling. In general, the
training dataset was used for initial modeling. However, the initially developed model
may be overfitted by model optimization, i.e., model’s hyper-parameters adjustment. The
potential hyper-parameters, such as the number of iterations during the training, learning
rate, layer parameters, or the number of layers, were adjusted by the CV dataset to increase
the modeling accuracy. Finally, the testing dataset was applied to the adjusted model the
for model performance evaluation. The initial setting of the model development included a
1000 maximum epoch with a 0.01 learning rate. These parameters were selected based on a
previous study [25] because the goal of this study was to establish rice growth prediction
models instead of comparing the model’s performance by varying the model’s parameters.
The Levenberg–Marquardt gradient search method was applied with an early stopping
callback to prevent overfitting. A single hidden layer was conducted with 10 PEs.
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2.3.2. Gene-Expression Programming (GEP)

A classic GEP begins with a major contest and undergoes a continuous evolution-
ary process, such as selection, replication, mating, mutation, adaptation, reversal, and
transformation to evolve toward a predetermined objective [36]. It overcomes genetic
algorithm’s (GA) chief shortcomings, such as the premature convergence and combined
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explosion, and its evolution is significantly faster than GA and genetic programming
(GP) [37]. The modeling flowchart and the structure are shown in Figure 4. The GEP
model was trained, cross-validated and tested by the same dataset as the ANN model by
GeneXproTools 5.0 program (Gepsoft Ltd., Bristol, UK), following the same ratio of data
splitting (70%/20%/10%). The model adopted the same model’s calculation elements,
fitness function and parameter setting [38], namely five genes with fifty chromosomes
and evolved to ten thousand generations. The genetic operators or set of functions were
determined. Calculation elements of +, −, *, /, ln, ceiling, floor, absolute, tangent, exponen-
tial, 10x, x2, x1/3, min, and avg. Afterward, a tree structure was established and linked by
each between sub-expression trees (ETsub). More details on the GEP theory can be found
in [36,37].
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2.3.3. Simple Regression Model (REG)

The simple regression model is a conventional GDD modeling algorithm based on a
linear relationship. The dataset used for REG model was the same as that for ANN and
GEP models. However, the REG algorithm did not allow the hyper-parameter adjustment
by CV process; therefore, the 20% CV data were added to the training dataset, which means
90% data were used for training and 10% were used for testing in REG. The model can be
described as Equation (2).

Gr = αxi + β + ε (2)

where, xi is the ith GDD; α is the linear equation slope; β is an intercept of the regression,
and ε is the error term.

2.4. Model Assessment

The performances of ANN, GEP, and REG models were assessed by r, RMSE and
relative root mean squared error (r-RMSE, Equation (3)). The significance of the Pearson
correlation between observed Gr and predicted Gr of each model was calculated. The
whole growth period data, including model training, CV, and testing datasets, were used
to retrieve the entire rice lifecycle prediction results by ANN, GEP, and REG models, and
the errors were calculated in days (1/Gr) by 0.1 intervals to compute RMSE based on the
average Gr increment of each stage, i.e., Stage 1 is 0.0632, Stage 2 is 0.0334, Stage 3 is 0.0409,
Stage 4 is 0.0269. A comparison by lifecycle, stage average, i.e., Stage 1~4, and specific key
stage, i.e., Gr = 1 (V3), Gr = 2 (V5), Gr = 3 (R0), and Gr = 4 (R3), was conducted to evaluate
the model performance.



Agriculture 2022, 12, 59 6 of 11

r-RMSE(%) =

√
∑n

i=1(yi−ŷi)2

n−1

y
× 100 (3)

where ŷi is the predicted value, yi is the observed value, y is the average of the observations,
and n is the number of actual observations.

3. Results
3.1. Rice Growth Predicted by Growth Degree Day

The GDD-Gr relation was established for the whole dataset (Figure 5). The RMSE
of Gr ranged from 0.1234 to 0.3199, as shown in Table 1. In Stage 1, the GDD model has
an unignorable prediction bias result from the offset of Gr = 0, which means the initial
modeling rice growth stage may start from Gr≈ 0.45, possibly leading to a wrong fieldwork
decision. Higher prediction errors also can be found in Stage 3 and Stage 4.

Agriculture 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 

stage, i.e., Gr = 1 (V3), Gr = 2 (V5), Gr = 3 (R0), and Gr = 4 (R3), was conducted to evaluate 
the model performance.  

  r-RMSE(%)=

∑ yi-yi
2n

i=1
n-1
y

×100   (3)

where 𝑦  is the predicted value, 𝑦  is the observed value, 𝑦 is the average of the observa-
tions, and n is the number of actual observations.  

3. Results 
3.1. Rice Growth Predicted by Growth Degree Day 

The GDD-Gr relation was established for the whole dataset (Figure 5). The RMSE of 
Gr ranged from 0.1234 to 0.3199, as shown in Table 1. In Stage 1, the GDD model has an 
unignorable prediction bias result from the offset of Gr = 0, which means the initial mod-
eling rice growth stage may start from Gr ≈ 0.45, possibly leading to a wrong fieldwork 
decision. Higher prediction errors also can be found in Stage 3 and Stage 4. 

Table 1. GDD in each specific key stage. 

Stages 
GDD RMSE 

°C Gr 1/Gr (days) 
Stage 1 308.4 0.1234 1.9531 
Stage 2 915.7 0.1469 4.3970 
Stage 3 1442.3 0.2791 6.8260 
Stage 4 2192.5 0.3199 11.8907 

 
Figure 5. The relationship between accumulated GDD and Gr. Each data point represents the ob-
served rice growth rate (Gr) data and its related cumulated GDD. The red dash-line is the least-
squares regression line. 

3.2. Model Results 
The r, RMSE, and r-RMSE of ANN, GEP, and REG model accuracy assessment results 

in model testing are shown in Table 2. ANN has the highest r, lowest RMSE and r-RMSE 
in the model testing stage. The established REG and GEP models presented in equations 
are shown in Equation (4) to Equation (10). 

Table 2. Model performances on model testing phase show the similarity between two AI-based 
ANN and GEP models. 

Indices ANN GEP REG 
r 0.9901 *** 0.9896 *** 0.9829 *** 

RMSE 0.1573 0.1591 0.2043 
r-RMSE 7.21% 7.30% 9.37% 

Figure 5. The relationship between accumulated GDD and Gr. Each data point represents the
observed rice growth rate (Gr) data and its related cumulated GDD. The red dash-line is the least-
squares regression line.

Table 1. GDD in each specific key stage.

Stages
GDD RMSE
◦C Gr 1/Gr (Days)

Stage 1 308.4 0.1234 1.9531
Stage 2 915.7 0.1469 4.3970
Stage 3 1442.3 0.2791 6.8260
Stage 4 2192.5 0.3199 11.8907

3.2. Model Results

The r, RMSE, and r-RMSE of ANN, GEP, and REG model accuracy assessment results
in model testing are shown in Table 2. ANN has the highest r, lowest RMSE and r-RMSE in
the model testing stage. The established REG and GEP models presented in equations are
shown in Equations (4)–(10).

GrREG =
(

1.6807× 10−3
)
× GDD + 4.3594× 10−1 (4)

GrGEP = min[ETsub1, ETsub2, ETsub3, ETsub4, ETsub5] (5)

ETsub1 =

(
0.5×

[
3
√

GDD,−0.9385
])2

Ce(min[GDD, 7.373]) + 10
−17.271

GDD
(6)

ETsub2 =
Ce(GDD)× (Fl(GDD))2

3.932× GDD3 (7)
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ETsub3 = (0.5〈0.5
{

0.5
[

1.186,
143.1823

GDD

]
,−8.1702

}
, ln(GDD)〉)

2
(8)

ETsub4 = abs(0.5[−8.949 3
√

0.5[GDD,−10.3011] , tanavg [−2.923,
GDD
6.2407

]]) (9)

ETsub5 = 0.5[4.0326(Ce(10.3537) + Fl(GDD)),
0.3054
GDD

] (10)

where, GrREG is the Gr predicted by REG model, GrGEP is the Gr predicted by GEP model,
GDD is the accumulated growth degree day (◦C), ETsub1~5 is the sub-expression tree from 1
to 5, min is the minimum function, Ce is ceiling function, Fl is floor function, tan is the tangent
function, and abs is the absolute function.

Table 2. Model performances on model testing phase show the similarity between two AI-based
ANN and GEP models.

Indices ANN GEP REG

r 0.9901 *** 0.9896 *** 0.9829 ***
RMSE 0.1573 0.1591 0.2043

r-RMSE 7.21% 7.30% 9.37%
***: The symbol denotes significant correlation at p < 0.0001.

3.3. Model Performance Evaluation

The model testing was conducted in the entire growth period for each model. The
correlation between observed and predicted Gr is shown in Figure 6. The retrieved pre-
diction results can be divided into three periods: the whole lifecycle, stage average, and
the key stage, which is shown in Table 3. The ANN and GEP has an equivalent r value
(0.9893) in the whole lifecycle prediction, but the GEP model has a relative lower RMSE
and r-RMSE, followed by ANN and REG models. Based on the performance of r, the best
performing model at stage 1 to 4 is GEP, REG, ANN, and REG, respectively. Furthermore,
the performance of the AI-based ANN and GEP models can be determined by the RMSE
(days) ratio between AI and REG models (Table 4). The result shows that the performance
of ANN in the lifecycle, stage average from 1 to 4, and key stage Gr = 2, 3, 4, is better than
the REG model. Only on key stage Gr = 1, the ANN performed slightly worse than the
REG model. For the GEP model, its performance in the whole lifecycle, stage average 1, 3,
4, and key stage Gr = 3, 4, was better than the REG model, but the prediction accuracy at
stage average 2, and key stages Gr = 1, 2, was lower than the REG model.
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Table 3. Modeling results for the whole growth period by three models in the lifecycle, stage average,
and specific key stages.

Period

Gr 1/Gr

r RMSE r-RMSE RMSE (Days)

ANN GEP REG ANN GEP REG ANN GEP REG ANN GEP REG

Lifecycle 0.9893 ‡ 0.9893 0.9812 0.1614 0.1597 0.2117 7.32% 7.24% 9.60% 3.8709 3.8300 5.0776

Stage 1 average 0.9119 0.9131 0.8969 0.1274 0.1271 0.2464 24.06% 24.00% 46.52% 2.0144 2.0091 3.8951
Stage 2 average 0.9430 0.9380 0.9441 0.1116 0.1165 0.1154 7.36% 7.69% 7.61% 3.3434 3.4914 3.4572
Stage 3 average 0.8683 0.8678 0.8624 0.1747 0.1777 0.1784 6.93% 7.05% 7.08% 4.2685 4.3426 4.3604
Stage 4 average 0.8045 0.8064 0.8163 0.2025 0.1929 0.2803 5.76% 5.49% 7.98% 7.5393 7.1816 10.4375

Gr = 1 - - - 0.1546 0.1685 0.1237 15.47% 16.85% 12.37% 2.4451 2.6644 1.9561
Gr = 2 - - - 0.1478 0.1618 0.1475 7.39% 8.09% 7.38% 4.4288 4.8465 4.4199
Gr = 3 - - - 0.2377 0.2293 0.2807 7.92% 7.64% 9.36% 5.8098 5.6030 6.8610
Gr = 4 - - - 0.2462 0.2266 0.3212 6.16% 5.66% 8.03% 9.1691 8.3846 11.9623

‡: All of the correlation coefficients (r) were significant at p < 0.0001. The boldface numbers represent the best
performance of the model in each period comparison.

Table 4. RMSE comparison between AI-based ANN, GEP models to the REG model.

Model Lifecycle
Stage Average Specific Key Stage

1 2 3 4 Gr = 1 Gr = 2 Gr = 3 Gr = 4

ANN 23.77% 48.28% 3.29% 2.11% 27.77% −25.00% 1.20% 15.32% 23.35%
GEP 24.57% 48.42% −0.99% 0.41% 31.19% −36.22% −9.65% 18.34% 29.91%

The boldface numbers represent the best performance of the model in each period comparison.

4. Discussion

This study used rice growth data from three rice cultivars grown in tropical and sub-
tropical climates and calculated the most common rice growth prediction parameter, GDD,
by an adjunction weather station for each cultivation. The developed models were applied
to retrieve the whole growth period dataset for model performance and applicability
evaluation in the lifecycle, stage average, and specific key stages.

We compared the modeled results with a previous study [39] that predicted rice
growth date by five conventional models. The models’ input factors included critical
day length, the minimum number of days required for heading, photoperiod sensitivity
parameter, etc., and in-situ experimental parameters. The RMSEs of those models ranged
from 6.09 to 8.60 days in heading and 4.23 to 9.12 days in maturity [39]. Those results
are similar to the REG model in this study, i.e., 6.86 days in heading and 11.96 days. In
comparison, the AI-based ANN and GEP models, showed slightly better predicting abilities
at heading stage (Gr = 3). However, in the maturity stage (Gr = 4), ANN and GEP models
do not present a significant improvement in modeling ability. It should be noticed that
the modeling result of rice growth is influenced by many factors, such as the environment,
cultivar, tillage method, etc. In general, the comparison results indicated that the AI-based
ANN and GEP rice growth models have higher accuracy than the REG model.

4.1. Lifecycle vs. Stage Average vs. Specific Key Stage

These three different scenarios can be used for different purposes. For example,
the lifecycle scenario was developed by a continuous dataset, which has integral prior
probability and does not affect the model transition situation. Therefore, the lifecycle
scenario is more suitable for smart agriculture, which operates routine fieldwork entirely
based on modeling results by considering the prior probability, and guides farmers lacking
in rice farming experience. The stage average scenario is more suitable for semi-automatic
rice production, i.e., modern paddy rice farming. In the stage average scenario, farmers
will need to modify the model based on their experience and have some background
knowledge to select a suitable algorithm. Farmers can also decide the timing to start
Stage 2 and use ANN model according to the rice seedling development. In specific key
stage prediction, the physiological transformation and growth need to be adjusted at the
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stage. Specific key stage scenario may be more beneficial for researchers. For farmers,
the management measures may not be implemented in those specific key stages because
agricultural management may require “early” or “late” applications to supply the necessary
nutrition and water for the rice. Therefore, the specific key stage scenario results are more
relevant to research. For farmers, the lifecycle or stage average scenario are more useful to
conduct in their fieldwork.

4.2. Model Applicability

Irrigation is one of the most critical factors in rice production, even more so than
fertilization. Therefore, the essential stages of rice production are the ones with a variant
water control strategy, i.e., panicle initiation (Gr ≈ 1.9 to 2.1), booting to late heading
(Gr ≈ 2.7 to 3.3), and around 10 days before harvest (Gr ≈ 3.8). Moreover, the dry land
method can reduce non-effective tillering in the late-Vegetative phase since Gr starts
around 1.5. In fertilization, the critical timing is panicle initiation, tillering initiation to
10~15 days after tillering initiation (Gr ≈ 1.0 to 1.3), leading to significant yield promo-
tion when an appropriate application is made. Based on the comparison of important
fieldwork conditions, the model performance indicated by RMSE (days) of Gr in 1.9 to
2.1 is REG > ANN > GEP. REG seems to have a better modeling ability. RMSE (days) of
predicted Gr = 2 is 4.4199, followed by ANN (4.4288 days) and GEP (4.8465 days). The
RMSE for all three models is comparable. Therefore, these three models have similar
modeling accuracy on Gr prediction.

The second critical stage is booting to late-heading (Gr≈ 2.7 to 3.3), and 10 days before
harvest (Gr≈ 3.8), in which appropriate water control is required to increase the rice quality
and yield [40,41]. The model performance assessed by RMSE (days) in Gr = 2.7 to 3.3 and
Gr ≈ 3.8 is GEP > ANN > REG. The error was higher when Gr was greater than 3, and
it became even large in Gr near to 4. This is likely because that rice grain is not sensitive
to temperature in the last growth stage [8,42]. Therefore, a traditional linear algorithm to
model this stage with GDD cannot generate good predictions.

The third critical stage is the tillering initiation, which increases panicles per plant by
appropriate fertilization [43]. The fertilization timing is relatively flexible depending on
rice cultivars and crop season—only one application is needed before effective tillering
(Gr ≈ 1.0 to 1.3). However, it should be applied for some cultivars twice, for which the Gr is
around 1.0 and 1.3. In this case, the REG model has the lowest RMSE in Gr = 1 (1.9651 days)
followed by ANN and GEP (2.4451 and 2.6644 days). The differences error between REG
and AI-based ANN and GEP are 0.48 days (≈11.5 h) and 0.6993 days (≈16.8 h), respectively.
Considering the relatively flexible schedule for rice fertilization, all three models can be
used for Gr modeling at this stage.

5. Conclusions

GDD is the most convenient index used to construct the rice growth prediction model
for agronomists. However, the model displayed limited modeling accuracy for rice growth
in the late-Reproductive phase and Ripening phase resulted from notable organ develop-
ments in these stages. Because of the importance of rice production and smart agriculture,
GDD was conducted in AI algorithms-ANN and GEP, to predict rice growth variations.
The results indicate that each algorithm can be adapted for specific purposes using the
whole dataset combined with different rice cultivars and crop seasons. Based on RMSE,
both AI-based ANN and GEP models are suitable for lifecycle, stage average prediction,
and specific key stage prediction at the Gr of 3 and 4. Traditional REG methods have a
good modeling ability when the specific key stage Gr is 1 and 2. Overall, the GEP model
is recommended to farmers for conducting routine fieldwork, considering that the GEP
model can be encrypted to Python-based code for further field environment monitoring
system development, which may have lower hardware (e.g., CPU, RAM, etc.) requirements
compared to ANN model. The accurate rice growth model indicates that it is possible to
provide guidance for machines to operate fieldwork automatically based on the prediction
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result, achieving the goal of smart and precise rice production. Onto further enhance the
modeling ability on rice growth prediction, we suggest that future research focus on opti-
mizing the model’s parameters (e.g., the number of neurons, the number of hidden layers,
etc.), transfer functions and fitness functions selection, and developing more sophisticated
AI algorithms (e.g., generative adversarial network, etc.).

Author Contributions: Conceptualization, L.-W.L. and W.-S.L.; methodology, L.-W.L.; software,
L.-W.L.; validation, X.M. and W.-S.L.; formal analysis, L.-W.L. and K.-H.L.; investigation, K.-H.L. and
C.-T.L.; resources, X.M., C.-T.L., Y.-M.W. and W.-S.L.; writing—original draft preparation, L.-W.L.;
writing—review and editing, X.M., Y.-M.W. and W.-S.L.; visualization, L.-W.L.; supervision, X.M.,
Y.-M.W. and W.-S.L.; project administration, Y.-M.W. and W.-S.L.; funding acquisition, L.-W.L. and
W.-S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Ministry of Science and Technology (MOST),
Taiwan (grant number: 109-2917-I-020-001 and 110-2637-B-020-005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the team of Hydraulic Laboratory and
International Irrigation Research and Development Service Centre of NPUST for data collection and
analysis, and the Department of Civil and Environmental Engineering, Texas A&M University for
providing computing equipment. The authors also appreciate Ho-Hsien Chen from the College of
Agriculture, NPUST for his comprehensive assistance and encouragement, and Joshua DiCaglio from
the Department of English, Texas A&M University, and his working group, including Jacie Salas,
Reagan McDonald, and Laura Gunn, for the English editing assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing

and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13.
2. Orlando, F.; Alali, S.; Vaglia, V.; Pagliarino, E.; Bacenetti, J.; Bocchi, S. Participatory approach for developing knowledge on

organic rice farming: Management strategies and productive performance. Agric. Syst. 2020, 178, 102739. [CrossRef]
3. Zhou, T.; Wang, Y.; Huang, S.; Zhao, Y. Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for

environment-friendly controlled-release urea fertilizers. Sci. Total Environ. 2018, 615, 422–430. [CrossRef] [PubMed]
4. Assefa, Y.; Yadav, S.; Mondal, M.K.; Bhattacharya, J.; Parvin, R.; Sarker, S.R.; Rahman, M.; Sutradhar, A.; Prasad, P.V.; Bhandari, H.

Crop diversification in rice-based systems in the polders of Bangladesh: Yield stability, profitability, and associated risk. Agric.
Syst. 2021, 187, 102986. [CrossRef]

5. Perea, R.G.; Daccache, A.; Díaz, J.R.; Poyato, E.C.; Knox, J.W. Modelling impacts of precision irrigation on crop yield and in-field
water management. Precis. Agric. 2018, 19, 497–512. [CrossRef]

6. Virnodkar, S.S.; Pachghare, V.K.; Patil, V.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in
various crops: A critical review. Precis. Agric. 2020, 21, 1–35. [CrossRef]

7. Fageria, N.; Baligar, V. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 2008,
99, 345–399.

8. Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Manila, Philippines, 1981.
9. Wang, W.G.; Peng, S.Z.; Sun, F.C.; Xing, W.Q.; Luo, Y.F.; Xu, J.Z. Spatiotemporal variations of rice irrigation water requirements in

the mid-lower reaches of Yangtze River under changing climate. Adv. Water Sci. 2012, 23, 656–664.
10. Yao, M.-H.; Chen, S.-H. The impact evaluation of climate change on the growth and yield of rice. Crop Environ. Bioinform. 2009, 6,

141–156.
11. Hsu, H.-H.; Chen, C.-T. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 2002, 79, 87–104. [CrossRef]
12. Sharifi, P.; Aminpanah, H.; Erfani, R.; Mohaddesi, A.; Abbasian, A. Evaluation of genotype× environment interaction in rice

based on AMMI model in Iran. Rice Sci. 2017, 24, 173–180. [CrossRef]
13. Frizzell, D.; Branson, J.; Wilson, C., Jr.; Norman, R.; Moldenhauer, K.; Gibbons, J. Development of Degree-Day 50 thermal unit

thresholds for new rice cultivars. BR Wells Rice Res. Ser.-Ark. Agric. Exp. Stn. Univ. Ark. 2011, 591, 187–193.
14. Counce, P.; Siebenmorgen, T.; Ambardekar, A. Rice reproductive development stage thermal time and calendar day intervals for

six US rice cultivars in the Grand Prairie, Arkansas, over 4 years. Ann. Appl. Biol. 2015, 167, 262–276. [CrossRef]

http://doi.org/10.1016/j.agsy.2019.102739
http://doi.org/10.1016/j.scitotenv.2017.09.084
http://www.ncbi.nlm.nih.gov/pubmed/28988078
http://doi.org/10.1016/j.agsy.2020.102986
http://doi.org/10.1007/s11119-017-9535-4
http://doi.org/10.1007/s11119-020-09711-9
http://doi.org/10.1007/s703-002-8230-x
http://doi.org/10.1016/j.rsci.2017.02.001
http://doi.org/10.1111/aab.12226


Agriculture 2022, 12, 59 11 of 11

15. Bouman, B.A.M.; Kropff, M.J.; Tuong, T.P.; Wopereis, M.; ten Berge, H.F.M.; van Laar, H.H. ORYZA2000: Modeling Lowland Rice;
International Rice Research Institute and Wageningen University and Research Centre: Manila, Philippines, 2001.

16. Hoogenboom, G.; Porter, C.; Shelia, V.; Boote, K.; Singh, U.; White, J.; Hunt, L.; Ogoshi, R.; Lizaso, J.; Koo, J. Decision Support
System for Agrotechnology Transfer (DSSAT); Version 4.7; DSSAT Foundation: Gainesville, FL, USA, 2017. Available online:
https://DSSAT.net (accessed on 14 May 2021).

17. Bonhomme, R. Bases and limits to using ‘degree. day’units. Eur. J. Agron. 2000, 13, 1–10. [CrossRef]
18. Shaykewich, C. An appraisal of cereal crop phenology modelling. Can. J. Plant Sci. 1995, 75, 329–341. [CrossRef]
19. Stuerz, S.; Shrestha, S.P.; Schmierer, M.; Vu, D.H.; Hartmann, J.; Sow, A.; Razafindrazaka, A.; Abera, B.B.; Chuma, B.A.; Asch, F.

Climatic determinants of lowland rice development. J. Agron. Crop Sci. 2020, 206, 466–477. [CrossRef]
20. Van Oort, P.; Saito, K.; Tanaka, A.; Amovin-Assagba, E.; Van Bussel, L.; Van Wart, J.; De Groot, H.; Van Ittersum, M.; Cassman, K.;

Wopereis, M. Assessment of rice self-sufficiency in 2025 in eight African countries. Glob. Food Secur. 2015, 5, 39–49. [CrossRef]
21. Zhang, S.; Tao, F. Improving rice development and phenology prediction across contrasting climate zones of China. Agric. For.

Meteorol. 2019, 268, 224–233. [CrossRef]
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