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Abstract: In this study, a spatial analysis of agronomic and remote sensing data is carried out to
derive accurate rice crop yield estimation. The variability of a series of vegetation indices (VIs) was
calculated from remote sensing data obtained via a commercial UAS platform (e-Bee) at four dates
(per stage of development), and the development of estimation models was conducted. The study
area is located in the region of Chalastra (municipality of Thessaloniki, North Greece) and the primary
data were obtained during the 2016 growing season. These data include ultra-high resolution remote
sensing multispectral images of 18 plots totaling 58 hectares of Ronaldo and Gladio rice crop varieties,
97 sample point data related to yield, and many other pieces of information recorded in the producer’s
field log. Ten simple and compound VIs were calculated, and the evolution of their values during the
growing season as well as their comparative correlation were studied. A study of the usability of
each VI was conducted for the different phenological stages of the cultivation and the variance of VIs
and yield; the more correlated VIs were identified. Furthermore, three types of multitemporal VI
were calculated from combinations of VIs from different dates, and their contribution to improving
yield prediction was studied. As Ronaldo is a Japonica type of rice variety and Gladio is Indica type,
they behave differently in terms of maturation time (Gladio is approximately 20 days earlier) and
the value of every VI is affected by changes in plant physiology and phenology. These differences
between the two varieties are reflected in the multitemporal study of the single-date VIs but also in
the study of the values of the multitemporal VIs. In conclusion, Ronaldo’s yield is strongly dependent
on multitemporal NDVI (VI6th July + VI30 Aug, R2 = 0.76), while Gladio’s yield is strongly dependent
on single-date NDVI (6 July, R2 = 0.88). The compound VIs RERDVI and MCARI1 have the highest
yield prediction (R2 = 0.77) for Ronaldo (VI6th July + VI30 Aug) and Gladio (R2 = 0.95) when calculated
in the booting stage, respectively. For the Ronaldo variety, the examination of the multitemporal VIs
increases yield prediction accuracy, while in the case of the Gladio variety the opposite is observed.
The capabilities of multitemporal VIs in yield estimation by combining UAVs with more flights
during the different growth stages can improve management and the cultivation practices.

Keywords: prediction model; multiple linear regression; multitemporal; vegetation indices

1. Introduction

The rice crop exceeds 500 million tons per year and was the dominant food for
2.7 billion people in 2010 [1] and 3.5 billion people in 2017 [2]. In global rice yield, rice from
Indica-type varieties represented 85.4% of the yield in 2017, and Japonica rice accounted
for 14.6% of the world’s rice production [3]. In Greece, rice production reached 220,930 tons
in a cultivation area of 29,860 ha [4] and represents 1.4% of the total cultivation area of the
country [5]. The 25,000 ha are in the region of Central Macedonia, west of Thessaloniki
in the deltas of three rivers. Due to the extremely great importance of rice cultivation
both from a nutritional and economic point of view, from the 1990s onwards a significant
effort has been made by the scientific community to develop yield estimation models in
combination with remote sensing [6], or estimation of plant traits and phenology [7].
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Traditionally, the estimation of crop yield derived from crop data collected in situ
by agronomists. This technique is usually subjective, time-consuming, and often leads
to erroneous estimations [8]; additionally, the different methods for calculating yield and
extrapolating lead to different results. The term “estimation model” usually includes an
algorithm that quantifies and dynamically interprets the process of plant growth, yield,
and interaction with environmental factors [9].

Vegetation indices (VIs) are quantitative expressions that are calculated from the
reflectance values of remote sensing data and are mainly related to the vegetation status
or biomass [10]. The correlation between photosynthetic activity and VIs is important in
environmental monitoring with remote sensing and has been extensively studied [10].

In addition to the common VIs that derive from one date, there are also the multitem-
poral VIs [11], which are calculated from the use of data obtained from more than one date.
It appears from the literature that these multitemporal vegetation indices are important in
the study of growth, for example, in phenological characteristics. Multitemporal VIs were
initially used to improve yield estimation [12], and for wheat yield estimation in Kansas
and Ukraine a multitemporal NDVI was successfully used [13]. Other researchers [14]
estimated wheat yield with multitemporal VIs such as ΣNDVI and ΣRVI acquired from
remote sensing data from the tillering phenological stage up to the grain-filling stage and
achieved greater estimation accuracy than single-date VIs. In addition, single-date VIs are
more sensitive to cultivation practices [15], while multitemporal VIs minimize the yield
estimation errors that derive from the date of data acquisition, the process method being
used and the established cultivation practices [16]. A multitemporal VI considered in this
study is the cumulative index SUM (VI) resulting from the sum of each vegetation index
between two dates.

The study focuses on two rice varieties, Ronaldo and Gladio; both varieties were
cultivated with the wet paddy rice cultivation technique. The Ronaldo [17] variety is a
short grain japonica type (O. sativa subsp. Japonica) with mean cultivar height of 90 cm at
full growth; a life cycle of 150 days (from seeding to maturity, under northern Greece’s
climatic conditions); high resistance to rice blast disease (caused by the fungus Pyricularia
oryzae), Brown Spot disease (caused by the fungus Helminthosporium oryzae) and stem
bending (despite the elongated stems); high resistance to cold conditions; high tillering
capacity; delayed growth; and very high yield capability. Its grains’ mean dimensions are
6.5 × 2.9 mm and they contain 18% amylose. The Ronaldo variety is considered to have
semi-dwarf grain, suitable for para-boiling, with a very low percentage of defective grains,
featuring a very high production capacity and semi-precocious cycle resistant to lodging
and diseases.

The Gladio [18] variety is a short grain japonica type (O. sativa subsp. Indica) with short
cultivar height at full growth, short stem length, a life cycle of 130 days (from seeding to
maturity), high resistance to rice blast disease, adequate resistance to Brown Spot disease,
high resistance to and stem bending, high resistance to cold conditions, high tillering
capacity, delayed growth and usually high yield capability. Its grains’ mean dimensions
are 7.5 × 2.3 mm and they contain 27% amylose. It adapts to a great variety of growing
environments and conditions, and its short stem and early maturing cycle enables the
reduction of risks at the time of harvesting and drying costs, respectively. It does not
usually require fungicide treatments because of its high resistance to most rice-seedling
pathogens and diseases.

This study’s main scope is to investigate, for rice cultivation, the variability of a
series of vegetation indices calculated from remote sensing data derived from a modern,
commercial UAV platform and their optimal correlation with the yield. The above scope
is divided into four objectives: (a) the correlation of yield with vegetation indices, (b) the
identification of the best vegetation indices for estimating yield and the monitoring of
vegetation indices over time with the best correlation with the yield during a growing
season and for the various phenological stages of cultivation, and (c) to find the optimal
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combination of vegetation indices and remote sensing data acquisition time with higher
accuracy in yield estimation.

2. Materials and Methods
2.1. Study Area

This study was conducted in the rice fields of Chalastra, in the prefecture of Thes-
saloniki, in northern Greece (Figure 1). Primary data were used that are part of a larger
experiment conducted in 2016 in the context of the research of the ECODEVELOPMENT
company in the field of precision agriculture.

Figure 1. Map of study area and rice fields.

Data from in situ rice weight measurements were obtained mainly from the central
area consisting of 18 plots (Figure 2) with a total area of 58 ha, of which in 11 plots the
Ronaldo variety is cultivated and in the remaining 7 the Gladio variety is cultivated. The
equable sowing seed density in combination with the germination capacity were verified
so that the same vegetation percentage (>95%) was achieved in all fields and for each of
the two varieties.

Figure 2. Study plots with the varieties investigated and yield sampling points.
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2.2. Remote Sensing and In-Situ Data

The remote sensing data were obtained with UAV (Figure 3) and specifically with
the eBee model of SenseFly [19]. The mounted camera is a modified multiSPEC 4C [20]
for the needs of research in precision agriculture with four spectral bands at the following
wavelengths: 550, 660, 710 and 790 nm (green, red, red edge and near infrared).

Figure 3. Top (a) and bottom (b) of eBee with details of components.

The four flights were designed with eMotion software and were taken as much as
possible at similar hours of the day (Figure 4), with 20 cm pixel resolution. In addition to
multispectral images, 97 samples of point yield data were used in the study from 13 out of
18 rice plots. To collect the rice yield point samples, a cubic metal mesh with a side length
of 50 cm was constructed (Figure 5). From the 97 samples, a few days before the start of the
harvest, a collection of taxa was carried out, while at the same time the position of each
point was recorded with hand GPS. For each plot but also for each of the 97 samples, the
yield was calculated by kilograms per hectare, while other information about the crop and
cultivation practices was recorded by the producer, such as dates and type of fertilization,
crop care, etc. From these primary data, after processing emerged the dataset used for
statistical analysis.

Figure 4. Stages of development of rice cultivation, cultivation practices of the Chalastra area, and the dates of the
UAV flights.
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Figure 5. Procedure for obtaining point yield data: field sampling frame (a) and rice grains’ detail (b).

2.3. Image Analysis and Vegetation Indices

The flowchart of the data processing methodology (Figure 6) demonstrates all stages,
from remote sensing data acquirement to the final mean value datasets of VIs, per field or
sample data area.

The flight plan was designed with eMotion software for each date of UAV flight in the
rice fields. With the Pix4D software, the production of the mosaics was automated, after
setting some basic parameters. Pix4D radiometric corrections were applied to transform
the pixel digital numbers (DNs) to reflectance values using information and data from the
calibration card of eBee.

The mosaics were georeferenced, but a further correction was needed to achieve the
accuracy of studying the Vis–yield correlation. The rectification step was carried out with
a 3rd-degree polynomial function (RMSE < 1.2) using a sufficient number (~30) of fixed
ground points (crossroads, building corners, electricity poles, trees, etc.) and with the red
band as a background, on which all the other bands “matched” for each shooting date.
The co-registration between the composite images of the four dates was carried out with
this reference image of 6 July. Beyond that, the bands were stacked on four multispectral
images to calculate the VIs.

Many VIs were investigated, incorporating the red edge spectrum. Comparison of
complex vegetation indices with spectral bands at 705, 750, 670 and 800 nm in terms of
their correlation with chlorophyll content in rice showed a strong correlation when the
VIs included red edge and near infrared or some combination of them (at 710 nm and
800 nm) [21]. Due to the low absorption of chlorophyll in the red edge spectrum, its use in
the calculation of vegetation indices reduces the saturation often observed at high values
of the leaf mass index (LAI), and the reflectivity remains sensitive to the absorption of
chlorophyll in medium and high values [22].

The vegetation indices (Table 1) with the multispectral images were stacked in four
images with 14 bands (4 spectral bands and 10 VIs). From these four images, firstly the
average value was calculated for each field with zonal statistics for the correlation with the
mean yield of each plot. In addition to correlating the point yield samples with the VIs,
zonal statistics from a buffer zone of 2 m around each point were made of Vis’ values of an
area of approximately 12.5 m2 consisting of 315 pixels (20 cm), to deal with the GPS error
due to the low accuracy (1.5 m–2.5 m) around the 97 points.

Preliminary analysis of the existing correlation between yield data and VIs was con-
ducted at 2 “spatial levels” or scales for which data were obtained:

• At plot scale.
• At sub-plot scale derived from point data related to yield.

Subsequently, the yield estimation in relation to VIs and multitemporal VIs was based
on multiple linear regressions on the different datasets.
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Figure 6. Flowchart of data processing.

In this study, 10 VIs were selected for further analysis, with the first VI being NDVI [23].
It was used in this work as a benchmark, as it has been adequately studied by many
researchers and has been known for many years for its correlation with many parameters
of plant growth. The second VI (NNIR) is a complex index, as it includes 3 spectral bands.
Due to the use of reflectance in the green band, it was found to be strongly correlated with
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the absorption of nitrogen, which in turn affects the nutrition and ultimately the yield [24].
To reduce NDVI’s observed saturation at the growth stages of maturity and achieve a
linear correlation of the biophysical parameters of VI, the REDVI (Renormalized Difference
Vegetation Index) was proposed, which combines the advantages of DVI and NDVI [25] and
was further improved with the addition of red edge [26]. NDRE (Normalized Difference
Red Edge) [27] is essentially the index that occurs after replacing the red band with
that of the red edge on the NDVI index. NDRE is a better index of the plant tissue
health/vitality than NDVI for mid-to-late-stage crops, where they have accumulated high
levels of chlorophyll in their leaves, because the red edge band is penetrates more so the
leaves than red light and so is less absorbed. It is more suitable than NDVI for high-yield
crops throughout the growing season, because NDVI often loses sensitivity after the plants
have accumulated a critical level of leaf cover or chlorophyll content. The Chlorophyll
red edge Index (CIre) [28] is used to estimate the total chlorophyll content of leaves. The
green and red bands’ reflectance values are sensitive to small changes in chlorophyll. The
total chlorophyll content is linearly correlated with this index. Therefore, it is widely used,
especially in large crops. MCARI1 [29] is a vegetation index that belongs to the category
of solid line vegetation indices. It has a very high correlation with the leaf area index
(LAI) and removes interference from the reflectivity of the soil. It also includes the red
edge range, so it is considered useful for the study of crops with varying percentages of
vegetation and even in the middle-late stage [30]. The RESAVI [26] vegetation index is a
variation of the soil adjusted vegetation index (SAVI) and its improved version of OSAVI.
RESAVI is resistant to the variability of soil reflectivity and has increased sensitivity to high
LAI and vegetation cover greater than 50%. This index is best used in areas with relatively
sparse vegetation where the soil is visible through the crown of the plants [31]. The red
edge Re-normalized Different Vegetation Index (RERDVI) [26] is an improvement of the
Normalized difference Red Edge (NDRE). It is an index for the study of the vitality of
the vegetation with mid-late growth when the plant tissues have accumulated high levels
of chlorophyll content. The red edge wavelength it uses penetrates more so the leaves
than red and is thus less absorbed [32]. The TVI [33] index is calculated as the area of a
hypothetical triangle in the spectral space that connects the maximum reflection region
in green, the minimum chlorophyll absorption region, and the NIR. When chlorophyll
absorption causes a decrease in reflectance in the red spectrum and the abundance of leaves
causes an increase in reflectance in the NIR, the total area of the triangle and therefore the
value of the index increases. It is good for estimating LAI, but its sensitivity to chlorophyll
increases with increasing crown density [34]. The MTVI2 [29] VI is a variant of MTVI and
in essence an improvement of TVI. It is considered to be strongly correlated with LAI and
corrects soil reflectivity at very low LAI values. Its values are influenced by structural
elements of plant tissues and are also related to the quality characteristics of the plant. In
Figure 7, three Vis are demonstrated with RGB, where red is RERDVI, green is NDVI and
blue is MCARI1.

Further to the above VIs, 3 multitemporal VIs [11] were also calculated:

MRL(VI) = a xi + b xj + c
SUM(VI) = xi + xj
MAX(VI) = Max (xi, xj)

where xi and xj represent the values of vegetation indices at two different stages of devel-
opment. For the experiment of this work, the method of calculating the multitemporal
vegetation indices is described in Table 2.
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Table 1. Vegetation indices used in this study (G = green, R = red, RE = red edge, NIR = near infrared).

Vegetation Index Formula Reference Scale of
Application Estimated Parameter

Normalized difference
vegetation index (NDVI)

NIR−R
NIR+R [23] Crown Biomass, vegetation

density
Normalized NIR index

(NNIR)
NIR

NIR+RE+G [24] Crown Vegetation density

Red edge difference
vegetation index (REDVI) NIR− RE [26] Vegetation coverage

Normalized difference
red edge (NDRE)

NIR−RE
NIR+RE [27] Leaves Biomass

Red edge chlorophyll
index (CIre)

NIR
RE − 1 [28] Chlorophyll

Modified chlorophyll
absorption in reflectance

index 1 (MCARI1)
[NIR− RE− 0.2× (NIR− G)]× NIR

RE [26] Leaves Chlorophyll, LAI

Red edge soil adjusted
vegetation index

(RESAVI)
1.5× (NIR−RE)

(NIR+RE+0.5)
[26] Crown Biophysical parameters

Red edge re-normalized
different vegetation

index (RERDVI)

NIR−RE√
NIR+RE

[26] Chlorophyll

Transformed vegetation
index (TVI)

√
NIR−R
NIR+R + 0.5 [33] Crown Chlorophyll

Modified transformed
vegetation index 2

(MTVI2)

1.5×[1.2×(NIR−G)−2.5×(R−G)]√
(2NIR+1)2−(6NIR−5

√
R)−0.5

[29] Crown Chlorophyll

Figure 7. UAV vegetation indices imagery of rice plots (red band = RERDVI, green band = NDVI,
blue band = MCARI), with color rendering representing the highest VI in each area.
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Table 2. Multitemporal vegetation indices and calculation methodology.

Vegetation Indices Calculation Methodology

VIA 6 July, booting
VIB 21 July, panicle heading
VIC 30 August, ripening

MRL(VI) Is calculated on a case-by-case based on linear
regression of one VI in 2 or 3 dates.

SUM (VI AB) VIA + VIB
SUM (VI AC) VIA + VIC
SUM (VI BC) VIB + VIC

MAX (VI) Max (VIA, VIB, VIC)

3. Results

In the present experiment, one factor that exists is the different rice variety. The
following graphs were designed to visually investigate how rice production is affected by
varieties (Figure 8).

Figure 8. Boxplot (a) of yield (in kg/ha) per variety as derived from yield data of 18 the parcels, (b) of yield (in kg/ha) per
variety as derived from the mean yield data of the 97 sample points, (c) of yield (in kg/ha) per variety and plot as derived
from the mean yield data of the 97 sample points.

In addition, the range of yield for each variety, as shown by the yield point data,
appears to be significantly larger than that obtained from the average yields for each
variety. This indicates the existence of variability within the parcels that affect yield.

Figure 8a shows the difference in yield between the two rice varieties, which is also
proved statistically (F = 19.323, Sig = 0.000) while the descriptive statistics are shown in the
Table 3.

Table 3. Yield descriptive statistics for rice varieties.

N Range Minimum Maximum
Mean

Std. Deviation Variance CV%
Statistic Std. Error

General 18 3150 6560 9710 8418.3 224.53 952.60 9074.500 11.32
Gladio 7 208 6560 8640 7560 304.70 806.16 6499.000 10.66

Ronaldo 11 169 8020 9710 8964.5 167.56 555.72 3088.273 6.20

Moreover, it can be seen in Figure 8b that the point yield data, when viewed by variety,
are slightly biased upwards. In other words, it seems that the average value of the yield (in
kg/ha) is higher in both varieties than that which results from the total yield of the parcels.
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This is because the sampler chose for the yield samples areas where the cultivation did
not present any problems. However, the averages of the plots also take into account areas
with stressed vegetation, such as those near the boundaries of the plots or areas where the
vegetation has been degraded by other factors (diseases, reduced plant density, etc.).

Additionally, the spatial variability is recognized in many cases from other similar
experiments in Greece, even in small plots of land of 1 hectare. It is therefore common
practice to test NDVI at the beginning of the growing season to assess this variability [35].
The assumption of existing soil variability was taken into account and effort was made in
order to observe it. To investigate this hypothesis from the two data sets, Pearson’s linear
correlation values were initially calculated for the general population and each variety
separately (Table 4). Of the ten VIs that were calculated during the phenological stages of
booting, panicle heading and ripening, three VIs were selected for further analysis: NDVI
(as a benchmark), RERDVI (due to the best correlation with yield for the Ronaldo variety)
and MCARI1 (due to the best correlation with yield for the Gladio variety) (Table 4).

Table 4. Pearson’s correlation coefficient between the 10 examined vegetation indices and the yield (mean value for each
plot), for each variety separately (the average best correlation for Ronaldo and G, respectively, are presented in bold).

General (N = 18) Ronaldo (N = 11) Gladio (N = 7)

Vegetation
Indices

Booting Panicle Ripening Booting Panicle
Heading

Ripening Booting Panicle
Heading

Ripening
Heading

NDVI 0.268 0.054 0.510 * 0.781 ** −0.064 0.620 * 0.939 ** 0.835 * −0.370
NNIR 0.224 0.017 0.333 0.781 ** −0.098 0.668 * 0.942 ** 0.874 * −0.101
REDVI 0.451 −0.230 0.604 ** 0.698 * −0.009 0.612 * 0.921 ** 0.836 * 0.178
NDRE 0.287 −0.242 0.609 ** 0.731 ** −0.034 0.783 ** 0.946 ** 0.846 * −0.215
CIre 0.382 −0.227 0.685 ** 0.752 ** −0.059 0.735 * 0.946 ** 0.855 * −0.190

MCARI1 0.464 −0.229 0.740 ** 0.722 * −0.058 0.697 ** 0.975 ** 0.830 * 0.009
RESAVI 0.386 −0.237 0.611 ** 0.754 ** −0.024 0.784 ** 0.940 ** 0.843 * −0.046
RERDVI 0.390 −0.236 0.614 ** 0.744 ** −0.021 0.771 ** 0.941 ** 0.842 * 0.003

TVI 0.188 0.120 0.614 ** 0.783 ** −0.061 0.771 ** 0.936 ** 0.816 * 0.003
MTVI2 −0.557 * −0.048 −0.433 ** −0.691 * −0.177 −0.453 −0.924 ** −0.854 * −0.519

** Correlation is significant at the 0.01 level (two-tailed), * Correlation is significant at the 0.05 level (two-tailed).

The difference between the two varieties is demonstrated. For Ronaldo, the vegetation
indices at the stage of panicle heading are not correlated at all with the yield, while both at
the stage of booting and ripening are very strongly correlated. Conversely, for Gladio, a
strong correlation emerges for the first two stages (booting and panicle heading), while on
the ripening it seems that the vegetation indices cannot estimate the yield with accuracy.

In Figure 9 the NDVI between the three dates appears different. On the 6 July, on the
phenological stage of booting the average values are in the range 0.74–0.89, but without
signs of saturation (which is presented a little earlier at the stage of maximum tillering).
On 21 July, the heading stage had a lower average value, while on 30 August the NDVI
maintained its low values. These values are expected, as at the stage of booting has already
formed and the crop is close to flowering, where the germination as reflected by other
parameters (LAI, fpar, etc.) goes down, to have its lowest average value (of the three
examined dates) on 30 August when rice cultivation is at the beginning of ripening.

We also notice that both MCARI1 and especially RERDVI increase their value on all
plots, especially at the ripening stage. This is explained by the fact that these indices utilize
the red edge spectrum and are therefore more sensitive to the ripening stage of the crop, at
which time the chlorination of the plants has declined significantly.

The above observation can be explained by the physiology of the plants of each
variety in combination with the theory behind the vegetation indices and the correlation
of VIs with rice growth cycle [36]. The Ronaldo is a late-maturing variety, of low vivacity,
especially after the stage of panicle heading, which grows very tall, has long internodes in
the flowering stem and gives a very large yield [37]. The stage of heading begins around
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the time of taking the multispectral image (21 July) and for lasts many days after. During
this stage, the plant is stressed, as it was preceded by fertilization to help the booting (on
11 July) with fast absorption fertilizer, while the next fertilization (at the peak of this stage)
took place on 10 August. On the other hand, the Gladio variety is premature, about 20 days
earlier and livelier, with short internodes, and on 21 July it has completed the vegetative
stage of growth and booting has already formed. The yield seems to be more strongly
correlated with the vegetation indices as it does not face the delay in Ronaldo’s growth.
In Gladio, however, due to prematurity, the multispectral image of 30 August cannot be
correlated with yield, as the plants are already at the stage of fruit filling and have been
fertilized a few days before (10 August).

Figure 9. The average values of NDVI and the two VIs with the highest correlation with yield
(MCARI1 for Gladio and RERDVI for Ronaldo) per plot and for the three dates (a = 6 July, b = 21 July,
c = 30 August).

The results of the linear regression analysis using the multitemporal vegetation in-
dices [11] as independent variables and the yield as dependent are summarized in Table 5
and the regression models on Supplementary Material. As shown, yield from both varieties
is strongly correlated with the VIs already from the first acquiring date of remote sensing
data, something that is not captured for the next data acquisition dates.
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Table 5. R2 of linear regression models for Ronaldo and Gladio variety using multitemporal VIs as independent variables
and the yield as dependent.

Ronaldo Gladio

NDVI RERDVI NDVI MCARI1

C B A C B A C B A C B A
A 0.76 0.61 0.60 A 0.77 0.34 0.55 A 0.01 0.01 0.88 A 0.36 0.27 0.95
B 0.67 0.00 0.61 B 0.17 0.00 0.61 B 0.01 0.70 0.14 B 0.10 0.69 0.54
C 0.38 0.67 0.66 C 0.59 0.50 0.80 C 0.13 0.53 0.70 C 0.00 0.54 0.59

Max (NDVI) = 0.60 Max (RERDVI) = 0.59 Max (NDVI) = 0.88 Max (MCARI1) = 0.94
MRLABC = 0.75 * MRLABC = 0.81 * MRLABC = 0.78 * MRLABC = 0.61 *
* Reference on Supplementary Material

Legend

C B A MAX(VI) = MAX(VIA, VIB, VIC) R2

A VIA+VIC * VIA+ VIB * VIA MRLABC = aVIA+bVIB+cVIC+d 1 A: 06 July 2016
B VIB+ VIC* VIB VIBA** * Reference on Supplementary Material 0.5 B: 21 July 2016
C VIC VI CB ** VI CA ** ** Reference on Table 2 0 C: 30 August 2016

For the Ronaldo variety the yield has a strong dependence on multitemporal NDVI
from the first and third flight (on 6 July and 30 August) (R2 = 0.76), while there is a
weak dependence on NDVI from the other 2 days. However, there is also a significant
dependence on the use of the multitemporal index SUM (VI) concerning the third date of
any combination of dates, while the Ronaldo’s yield dependence on the multitemporal
index MRL is high (R2 = 0.75). In addition, the dependence of yield from the RERDVI
index (R2 = 0.77) is achieved by utilizing data from the first and last flight (on 6 July and
30 August). RERDVI utilizes data from the red edge band, which is sensitive to parameters
such as N uptake and yield [38]. However, there is a significant improvement in the
dependence of yield with the multitemporal index SUM (VI) concerning data of the first
and third flights, while the maximum yield dependence is achieved with the multitemporal
index MRL (R2 = 0.81).

The yield of the Gladio variety has a strong dependence on NDVI and MCARI1 (NDVI
R2 = 0.88, MCARI1 R2 = 0.95) by using data from the first flight (on 6 July), while there
is weak dependence for the last date. Contrary to what happens in the Ronaldo variety,
there is no improvement with the use of the SUM (VI) index over a single date, whatever
combination of dates is chosen.

4. Discussion

It is generally accepted that no yield estimation model is accurate locally unless
developed and tested locally [39]. Some of these models are integrated into broader
decision support systems that are currently in the form of software and being developed
directly for farmers so that they can implement optimal management, save money and
apply them to crop management information systems [40].

The results of this study showed that the yield prediction varies according to the rice
variety; therefore, the R2 values are improved with multitemporal VIs and they can give
better results, as mentioned in the literature [41]. This study captured that a single-date VI
can be used for yield estimation but varies considerably depending on the variety and the
VI, while the estimation is focused on one field. In future research, VIs that have the green
band in the calculation may be further exploited to identify management zones [42] or to
assess crop characteristics of differing physiology and phenology [43].

The main problems regarding yield prediction with VIs are that the VIs lose sensitivity
in the last growth stages and they saturate at dense vegetation [44]. In this study we were
not faced with the saturation error mainly because of the red-edge usage on VIs which
have great potential for yield estimation [45] and rice growth monitoring [46], while the
used VIs remained sensitive in all acquisition dates. The strongest correlation of VIs with
yield was on the booting stage of Ronaldo and booting and heading for Gladio variety,
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something that is also confirmed in the literature [11,47,48]. In addition, it is common
to use different wavelengths’ VIs for each growth stage [49], since the sensitivity of VIs
changes at different stages of rice plant growth.

As already seen from the preliminary statistical and qualitative analysis of the data,
all vegetation indices depend on physiology and phenology of rice plants. This is to be
expected, as the reflectance values of the radiation at the wavelengths are included and
determine the values of VIs. In essence, they are affected by the type of plant tissue (crop
or weeds), the structure of the plant tissues and their proportion (chlorophyll content, N,
etc.), the soil parameters and the vegetation density.

In conclusion, the UAV with the ability to acquire multispectral imagery according to
the phonological stage of the rice plants can be used for precision agriculture applications
with single-date VIs or multitemporal VIs [11]. Additionally, UAV imagery is more applica-
ble for field-scale rice yield estimation with pixel size of 10–30 cm, bypassing cloud cover
problems, in contrast to remote sensing platforms with lower resolution [50]. The yield
estimation models at any growth stage are useful for farm risk management, and it can be
a decision support system for rice plant cultivation practices [51]. Finally, the purpose of
UAVs is to replace field measurements for rice growth monitoring, yield estimation and
crop needs, which has not yet reached the level set by the research community [44].

5. Conclusions

The optimal correlation of VIs studied with the yield is achieved using linear regres-
sion, although in the literature some non-normalized VIs would be expected to behave
differently. The variability within the parcels attributed to the soil composition and the nu-
trition of the plants predictably affects the most sensitive vegetation indices of the present
study. This variability is highlighted even by the qualitative examination of the Vis’ maps
of the parcels, the soil maps and the yield maps.

NDVI is strongly correlated with the yield level for each plot regardless of variety,
even when it is calculated at an early stage (6 July). Of the remaining VIs, RERDVI for
Ronaldo and MCARI1 for Gladio have the highest correlation coefficients with yield, even
when calculated at the booting stage.

The multitemporal VIs calculated by combinations of VIs from different stages have
an increased correlation with the yield, although again the variety has a very large effect
here as well. In particular, for the Ronaldo variety, the examination of the multitemporal
VIs increases the estimation accuracy of the crop at all stages (R2 increases up to 0.63),
while in the Gladio variety there is an improvement only at the stage of crop maturation.

Utilization of the largest number of measurements of yield point data did not con-
tribute positively to the improvement of the correlation of the Vis with yield. This is
attributed to the accumulation of systematic errors in the calculation of VIs and the spectral
outliers. These systematic errors are attributed to position errors in the field. It seems that
more precision is required when receiving field data, possibly using RTK GPS.

In conclusion, the calculation of multitemporal VIs from several dates, e.g., per week, is
feasible using the UAVs and may further improve yield estimation accuracy and accurately
identify the crop development stages that are most important for its estimation to improve
management and cultivation practices.
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