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Abstract: Reliable measures of biomass, species composition, nitrogen status, and nutritive value
provide important indicators of the status of pastures and rangelands, allowing managers to make
informed decisions. Traditional methods of sample collection necessitate significant investments in
time and labor. Proximal sensing technologies have the potential to collect more data with a smaller
investment in time and labor. However, methods and protocols for conducting pasture assessments
with proximal sensors are still in development, equipment and software vary considerably, and the
accuracy and utility of these assessments differ between methods and sites. This review summarizes
the methods currently being developed to assess pastures and rangelands worldwide and discusses
these emerging technologies in the context of diffusion of innovation theory.
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1. Introduction

Grasslands cover an estimated 40% of the Earth’s surface [1], performing vital ecosys-
tem services such as cycling nutrients, carbon, and water, and providing habitat for wildlife
and pasture for livestock [2]. However, grasslands are declining globally in extent, due to
land-use changes such as development, conversion to cropland, or abandonment [1,3] or
degrading due to climate change [4]. Assessing the health of a grassland necessitates the
collection of reliable data on its productivity, plant species composition, and potentially
its nutritive value [5]. Traditional techniques for collecting these data are time and labor-
intensive, requiring field visits, specialized equipment, and teams with expert knowledge
of local ecosystems. Advances in sensor technologies may reduce the time or labor required
to conduct such measurements. While recent applications of remote sensing technologies
in grasslands and pastures have been discussed in detail in prior research [6], proximal
sensing technologies such as handheld sensors or sensors mounted on unmanned aerial
vehicles (UAVs) flown at low altitude have received less attention.

Innovation diffusion is the study of how novel and potentially useful technologies
spread throughout a social system [7]. Innovation diffusion theories emerged out of studies
of the dissemination of novel agricultural practices and technologies [8]. As such, they
may be superior frameworks by which to evaluate the spread of innovative proximal
sensing technologies for measuring or predicting indicators of pasture or rangeland health
and function.

To diffuse successfully, an innovation must have five attributes demonstrating its
advantage over previous systems: relative advantage, definable as the perceived superiority
of the innovation over other methods; compatibility with the technological, cultural, social,
and economic systems into which it must be integrated; a complexity not exceeding that
of necessity; trialability, which is a term for the ease by which the innovation may be
tested without major commitment; and observability of the superior outcomes of the
innovation [7].

In this paper, we assess the current state of proximal sensing technologies as they
relate to measuring plant height and biomass, species composition, and nutritive value of
pastures and rangelands and assess the advantages and obstacles to their adoption within
the framework of theories on the diffusion of innovations.

Agriculture 2021, 11, 740. https://doi.org/10.3390/agriculture11080740 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture11080740
https://doi.org/10.3390/agriculture11080740
https://doi.org/10.3390/agriculture11080740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11080740
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11080740?type=check_update&version=1


Agriculture 2021, 11, 740 2 of 12

2. Measuring Plant Height and Predicting Aboveground Biomass

Measurements of sward height and biomass can provide data on the structure and
health of a grassland. Sward height measurements can indicate the vigor, habitat value,
or maturity of a grassland. Similarly, aboveground biomass is an indicator of grassland
or rangeland health and, when monitored long-term, can indicate whether a grassland is
gaining, losing, or maintaining its capacity to provide valuable ecosystem services such
as forage production or preservation of water quality [9]. Data on aboveground biomass
allow managers to determine appropriate levels of forage utilization to meet economic
goals while maintaining ecosystem services [10].

Traditional methods of measuring aboveground biomass rely on destructive harvest
of forage from small areas delineated by a quadrat or frame [11]. The harvested biomass
then must be dried in a dedicated oven before dry matter can be determined. This process
is labor-intensive, and the ovens needed for drying samples can be a significant investment.
On extensive rangelands, an additional limitation of this method is that samples are often
collected along a small transect that must represent areas of hundreds or thousands of
hectares in size due to limitations on time and labor available to technicians or scientists.
As such, improper site selection can mean that the calculated aboveground biomass is not
representative of the area, and management decisions based on the results may not have
the desired effect [12].

2.1. Traditional Alternatives to Destructive Harvest

A number of alternatives to hand-harvesting forage samples have been developed to
shorten the time required to assess biomass in a pasture. Plate meters are used for quick,
non-destructive estimations of pasture biomass by measuring the height of a sward under
compression by a plate on a measuring stick or pole. Plate meters are calibrated by taking
measurements in a pasture typical of the area in which they are to be used, harvesting
biomass on the site of each measurement, and comparing plate height to biomass with
a regression model to develop a predictive equation [13]. Plate meters vary in accuracy
depending on site and season, as morphology and stage of growth influence a tiller’s
resistance to compression [14]. Plate meters cannot be used if pasture species have robust
reproductive tillers or stems that hold the plate above the sward canopy, as this will lead
to inaccurate biomass predictions when plates are calibrated on vegetative swards [13].
Additionally, while the shortened sampling time compared to hand harvesting may allow
for more sites to be sampled, the number of samples and area that can be sampled is still
smaller than what can be accomplished with UAVs [15].

Robel poles are another non-destructive method of estimating pasture or rangeland
biomass [16]. A Robel pole is a rod marked with contrasting colors at set intervals that
is placed vertically in a sward. Personnel then stand at a set distance from the pole and
record the height at which the sward obscures its markings. This is performed from four
directions (often the cardinal directions) per placement, and the process is repeated until
the necessary sample size has been collected. Robel poles avoid many of the issues intrinsic
to plate meters by providing an indication of vegetative height and density without the
need for compressing tillers. However, they face many of the same logistical limitations: a
significant commitment of personnel and time to measure relatively small areas of often
large ecosystems.

2.2. Use of Proximal Sensors to Measure Plant Height and Predict Biomass

Methods for assessing pasture height and biomass using proximal sensors vary. How-
ever, the principle for most methods is similar to that of plate meters in that pasture height
measurements are initially compared to hand-harvested biomass to calibrate a predictive
equation [15]. Photographs, LiDAR, and ultrasonic measurements are the most common
methods used in proximal sensing pasture assessments [17,18].

Photographic determinations of pasture height may be carried out with a simple
red-green-blue (RGB) camera mounted onto a UAV or other vehicle [19] or held on a
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pole [20]. Ground control points (GCPs) are high-visibility objects used to provide a frame
of reference for determining the position of the UAV in the pasture being photographed
and are georeferenced using GPS after they are placed in the pasture [21]. The UAV is
flown over the pasture, taking pictures rapidly at low altitude. The pictures are then loaded
into a Structure from Motion (SfM) photogrammetry program which uses the GCP to
reconstruct the path of the UAV and generate a point cloud, from which a digital surface
model (DSM) and digital elevation model (DEM) are derived (Figure 1). By subtracting the
height of the DEM from the DSM, canopy height may be calculated for a given point [21].
As with plate meters, these height data are then combined with hand-harvested biomass
to derive a regression model to predict pasture biomass as a function of UAV-measured
height [22]. Once the model has been developed and tested, the UAV’s height data may be
used for determining biomass without the need for further hand-harvesting of biomass
samples [21].
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Figure 1. The processes by which pasture height data are generated using Structure for Motion
photogrammetry and LiDAR in proximal sensing.

Light detection and ranging (LiDAR) generates point clouds much like SfM techniques
but relies on a different mechanism to do so. With LiDAR, a laser aimed at the ground
bounces back to a sensor, which records the time it took for the light to return, and from
this interval calculates the distance from the LiDAR equipment [20].

When combined with the position of the UAV, LiDAR data can provide thousands of
height measurements of a pasture or rangeland with a single flight [23]. Once the point
cloud has been generated, a DSM is developed. The calibration of biomass prediction
from height data is similar to the process used in SfM, with an initial comparison of
LiDAR-generated height data with hand-harvested biomass samples [20].

Ultrasonic sensors operate similarly to LiDAR in that they emit a signal and calculate
sward height based on the time it takes the signal to return to the sensor—the primary
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difference between the two being that one sensor uses ultrasound, and the other, light [24].
Ultrasonic sensors are mounted to vehicles both to facilitate more speedy measures and
because the height of the sensor relative to the ground needs to remain constant for the
sensor to correctly calculate sward height [17]. Recent improvements in ultrasonic sensor
technology allow the sensor to detect the distance of both the ground and the sward canopy,
resulting in more accurate measurements of height, as well as predictions of biomass [25].
However, the improved sensors are not yet commercially available.

Height measurements generated by proximal sensors can also be combined with spec-
tral reflectance measurements to more accurately estimate pasture biomass [26]. Spectral
reflectance indices are a measurement of the reflectance of objects at specific wavelengths.
In a pasture setting, spectral reflectance is influenced by a number of factors, including
chlorophyll concentration in leaves, plant species in the pasture, the presence and pro-
portion of senescent leaves, and the leaf area index (LAI) of the pasture, which is the
ratio of leaf area per given unit of ground area [27]. Spectral reflectance indices have
been used on their own to estimate biomass in pastures and rangelands, but the many
factors influencing reflectance at different wavelengths lead to difficulties in standardizing
approaches between sites. Additionally, as the LAI increases, the sensitivity of reflectance
indices decreases as less light is reflected back from denser swards [17]. In practical terms,
this means that the most productive pastures present the greatest difficulty in accurately
estimating biomass using spectral reflectance indices.

However, when spectral reflectance is combined with LiDAR or ultrasonic measure-
ments of pasture height in a linear model, predictions of pasture biomass can be more
accurate than by using either technique alone (Table 1). LiDAR combined with the NDVI
resulted in a 25% increase in prediction accuracy for green pasture biomass [27]. This
is a result of the capacity of spectral reflectance to differentiate between green biomass
and senescent material, while LiDAR measurements can detect only standing biomass
regardless of stage of growth [26]. Similarly, combining ultrasonic height measurements
with spectral measurements such as the normalized spectral vegetation index (NSVI) can
result in higher accuracy for predicting biomass than using either technology alone [26].

Table 1. Studies using proximal sensing technologies to estimate pasture height or dry matter (DM) yield.

Author(s) Year Technology Used 1 Variable R2 Pasture Type Location

Frick and Wachendorf [26] 2013 Combination of ultrasonic
and spectral sensors DM

0.83 in mixed swards
0.88–0.90 for species-specific

calibrations

Mixed grass and
legume swards Germany

Schaefer and Lamb [27] 2016 Combination of LiDAR
and spectral sensors Green DM 0.61

Tall fescue
(Schedonorous
arundinacea)

Australia

Cooper et al. [28] 2017 SfM, TLS DM SfM: 0.72
TLS: 0.57

Smooth brome
(Bromus inermis) South Dakota, USA

Wang et al. [23] 2017 LiDAR DM 0.34 Semi-arid steppe Inner Mongolia, China

Legg and Bradley [25] 2019 Ultrasonic sensor DM 0.7–0.8 Unspecified New Zealand

Grüner et al. [21] 2019 SfM DM
Height

0.64–0.75
0.59–0.81

Mixed grass and
legume swards Germany

Obanawa et al. [20] 2020
SfM from pole-mounted

and UAV-mounted
cameras; LiDAR

Height
0.94 for UAV SfM,

0.91 for handheld SfM,
0.93 for LiDAR

Annual ryegrass
(Lolium multiflorum) Japan

1 Abbreviations: LiDAR: light detection and ranging; SfM: structure from motion photogrammetry; TLS: terrestrial laser scanning; UAV:
unmanned aerial vehicle.

Structure from Motion, LiDAR, and ultrasonic sensor technologies generate useful pre-
dictions of forage height and biomass using current techniques. However, each has unique
advantages and disadvantages. The primary advantage of LiDAR is its accuracy. Obanawa
and colleagues reported a margin of error for measured pasture height of 12 ± 10 mm for
LiDAR compared to 24 ± 13 mm for SfM [20]. Additionally, ultrasonic sensors usually
assume a fixed distance to the ground due to being mounted on a vehicle, yet terrain and
bumpy driving may interfere with the validity of that assumption [17]. However, LiDAR
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equipment can be prohibitively expensive compared to the equipment needed for ultra-
sonic measurements or SfM. Another consideration is weather—SfM may be confounded
by days with highly variable light conditions, whereas LiDAR and ultrasonic technologies
are more robust to such situations. In summary, SfM and ultrasonic approaches may be
more accessible for many people due to the simplicity and cost of equipment, but for height
and yield estimations, LiDAR can be more accurate.

3. Grassland Species Composition

Determining the composition of plant communities in pastures and rangelands is
critical to assessing the ecological health of a landscape and making informed manage-
ment decisions. A census of plant species composition can identify species of economic
value, conservation concern, or undesirable species which may need suppression. Regular
monitoring of plant species composition can provide data on shifts in plant communities
resulting from past management, biotic and abiotic stressors, or disturbances such as fire
or drought [5]. Most surveys of plant species composition in pastures or rangeland require
the same dedication of time and labor as the assessments of biomass discussed above and
also face the same limitations in sampling area and representativeness of sites selected
for survey. However, measuring plant species composition also requires personnel with
proficiency in plant identification and familiarity with species local to sampling sites. The
seasonality of plant growth may also limit preferable survey seasons to certain times of
the year. Consequently, time and personnel availability remain substantial constraints
to the number and scope of surveys that can be conducted on any particular landscape.
Developing more efficient survey methods could increase the scope and frequency of
monitoring programs.

Surveys of species composition using UAVs rely on the collection of high-resolution
imagery for plant identification, followed by data processing and analysis. High-resolution
imagery can be collected with a variety of cameras mounted to UAVs, including unmodified
commercially available RGB cameras, or cameras specifically designed or modified to
capture light outside the visible range, such as NIR [29]. After images have been collected,
they may be evaluated to determine if blurring, overexposure, or other issues that preclude
reliable analysis are present. Remaining images are then processed with software, which
uses the timestamp and GPS data associated with each photo to create an orthomosaic—a
single image stitched together from the many collected by the drone [30]. The orthomosaic
may require additional processing prior to final analyses depending on the site, equipment,
software, and species being surveyed. Methods of analysis can then include visual tagging
of species by human operators or using mapping or image processing software to identify
objects or areas based on patterns of pixels in the orthomosaic [31].

Past research using UAVs to identify plants at the species level have largely focused on
a single highly visible species, such as tree species [32,33], weeds in monocropped farming
systems [34], woody invasive species [35], species with conspicuous blooms [36], or species
in arid landscapes with unique morphology [37]. These studies consistently found that
analyses of UAV-derived high-resolution imagery compared favorably with traditional
sampling methods when assessing the abundance and distribution of a target species.

We found only one study using UAV-derived high-resolution imagery to classify
multiple species simultaneously in a grassland setting. Lu and He used blue, green, and
NIR spectrum imagery processed with machine learning software to assess the abundance
and distribution of six species in a temperate grassland, including forbs and grasses [29].
The simultaneous assessment necessitated training the image analysis program to recognize
the species. This was achieved by identifying species in the field and photographing them
with the equipment to be used in the UAV surveys in order to generate differentiable
reflectance values for spectral analysis. This approach averaged 85% accuracy when
compared with on-ground assessments; however, the authors noted that the method failed
to detect plants below the sward canopy, whether from lodging or early growth stage.
Additionally, due to differences in spectral reflectance species had at different stages of
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their life cycles, it was necessary for the authors to sample some species multiple times
during the growing season to retrain the software.

Though comprehensive species inventories remain beyond the capabilities of proximal
sensing technology at present, UAV-derived high-resolution imagery has been used to map
cover classes in a variety of environments: desert ecosystems in West Asia [38], Western
rangelands of North America [30,39–41], and grasslands in the Tibetan plateau [42]. The
processes are similar to those outlined above for species identification but with lower-
resolution imagery and training personnel or programs to recognize vegetation types
rather than species based on pixel patterns [30].

Thus far, plant identification and mapping using proximal sensing technology is inca-
pable of replacing field work for comprehensive inventories of species on most landscapes.
Even when multiple species may be identified using sensor imagery, species lower in the
sward canopy may go undetected, and a field crew proficient in plant identification is
necessary for helping train image processing software to recognize species of interest. Nev-
ertheless, proximal sensing technologies have demonstrated their utility in expanding the
scope and frequency of monitoring programs in many contexts, as well as their usefulness
in collecting data about large shifts across landscapes. As such, they can readily augment,
rather than replace, traditional methods of conducting plant surveys for scientists and land
managers.

4. Nutritional Status and Nutritive Value

The process for estimating the nutritional status of plants—e.g., what concentrations
of nitrogen or phosphorus they may have—is functionally identical to the process for
estimating nutritive value of the sward for grazing animals. For both, a proximal sensor
collects images of the site across a range of spectra, while a field crew collects samples
of pasture from geotagged sites in the field. The samples are chemically analyzed for the
variables of interest, and then these values are compared to spectral data by means of linear
regression and/or machine learning to find the spectrum and equation that best explain
variance in the variable of interest [43].

Results using this technique vary, with high reported coefficients of determination
for some monospecific stands of forage [40] and more variable predictive capability in
heterogeneous swards [44] (Table 2). Approaches combining spectral data with other
environmental variables reported higher prediction accuracy than those relying on spectral
data alone, both in homogenous and heterogenous swards. A study of nutritive value of
alfalfa (Medicago sativa) in the United States reported 9–17% higher prediction accuracy
when combining spectral data and growing degree units than when models were based
on spectral data alone [45]. Another study on mixed temperate grasslands in Germany
reported a 21% increase in prediction accuracy for crude protein (CP) and 91% increase for
prediction accuracy of acid detergent fiber (ADF) when ultrasonic sward height measure-
ments were included in calibration models than with spectral data alone [46]. Similarly, a
study on perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) swards in
New Zealand reported 21% greater prediction accuracy for CP and 28% greater prediction
accuracy for metabolizable energy (ME) when spectral data were combined with selected
topographic and edaphic variables in models [47].
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Table 2. Studies using proximal sensing technologies to assess forage nutrient concentrations in pastures or rangelands.

Author(s) Year Technology Used Variables 1 R2 Pasture Type Location

Safari et al. [46] 2016 Handheld spectroradiometer and ultrasonic sensor
CP 0.64–0.85

Mixed temperate grasslands Germany
ADF 0.63–0.75

Noland et al. [45] 2018 Near-infrared sensor
CP 0.87

Alfalfa (Medicago sativa) pasture Minnesota, USA
NDF 0.76

Serrano et al. [48] 2018 Near-infrared sensor and optical sensor
CP 0.69

Dryland Meditteranean pastures Portugal
NDF 0.78

Pullanagari et al. [47] 2018 Hyperspectral sensors and topographic data
CP 0.83 Perennial ryegrass (Lolium perenne) and

white clover (Trifolium repens) sward New Zealand
NDF 0.76

Wijesingha et al. [44] 2020 Hyperspectral sensors
CP 0.42

Mixed temperate grasslands Germany
ADF 0.34

Michez et al. [43] 2020 Optical and multispectral sensors

CP 0.54

Timothy (Phleum pratense) pasture BelgiumADF 0.82

NDF 0.84

Duranovich et al. [49] 2020 Hyperspectral sensors

CP 0.78

Perennial ryegrass and white clover sward New Zealand
ADF 0.55

NDF 0.54

ME 0.67
1 Abbreviations: CP: crude protein. ADF: acid detergent fiber. NDF: neutral detergent fiber. ME: metabolizable energy.
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5. Innovation Diffusion and Proximal Sensing Technologies

Returning to innovation diffusion theory, an innovation must have five characteristics
if it is to be widely adopted throughout a system: relative advantage over past methods;
compatibility with needs and values of potential adopters, as well as extant social, techno-
logical, and economic systems; complexity not exceeding that of necessity; trialability, or
capacity to be tested before committing to the innovation; and observability of the superior
outcomes of the innovation [7].

5.1. Relative Advantage

Proximal sensing technologies have the capacity to generate vastly more data than
traditional methods of pasture and rangeland assessment. Additionally, proximal sensors
mounted on UAVs can travel farther, faster than most fieldwork teams. For certain aspects
of assessing pasture or rangeland health, such as measuring height and productivity,
proximal sensing technology has a high degree of accuracy and clear relative advantage
over repeatedly hand-harvesting pasture. In other areas, however, such as comprehensive
assessments of pasture species, or measuring the nutritive value or nutrient status of a
sward, proximal sensing technology can augment but not replace traditional methods of
data collection at present.

5.2. Compatibility

Compatibility refers to the extent to which an innovation aligns with the needs, values,
and past experiences of potential adopters, as well as the extent to which it can be integrated
into extant social, economic, and technological systems [7]. Scientists and natural resources
professionals both need and value enhanced capacity for data collection [50]. Similarly,
farmers and ranchers face a trend of increasing intensification in agricultural production,
with an increased focus on data collection and precision agriculture [51]; however, in some
countries, the median age of agricultural producers is over 60 years [52], and age has been
shown to have an inverse relationship with willingness to adopt technological innovations
in some agricultural communities [53,54].

While proximal sensing technologies are in the process of emerging from and be-
ing further integrated into extant economic and technological systems, prior research on
analogous precision agriculture innovations demonstrates that a threshold of adoption
may need to be reached before industry-scale informational and technological support
for potential adopters is available [55]. At present, there are few studies on the rates of
adoption of proximal sensing technologies or related technologies such as UAVs by agri-
cultural producers, and extant studies focus primarily on row crop production rather than
pasture [56]. As such, it seems unlikely that the threshold of adoption of proximal sensing
technologies is high enough for farmers and ranchers to expect consistent commercial
support for proximal sensing technologies they may wish to integrate into their farms.

5.3. Complexity

The complexity of various proximal sensing technologies is likely to be a barrier to
adoption for many land managers such as farmers or conservation professionals. Tradi-
tional methods of assessing sward height and biomass, species composition, or nutritive
value are labor-intensive, yet straightforward. Individuals can be trained in height and
biomass data collection and nutritive sample harvesting in short order, and many man-
uals, tutorials, and courses on taking these measurements are available [57]. However,
assessing plant species composition requires knowledge of plant identification or the use
of botanical keys despite the simplicity of the processes often used. In contrast, proximal
sensing technologies are novel as well as diverse in their equipment, methods, and results.
Consequently, potential adopters must first familiarize themselves with the array of options
available, learn to use the sensor technology they deem most suitable for their purposes,
and then process the data generated by sensors. Alternately, potential adopters may be
able to outsource the data processing stage if the service is offered by organizations or
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companies to which they have access; just such an approach is being tested for remote
pasture sensing technology in an American dairy cooperative [58].

5.4. Trialability

In general, the barriers to adoption resulting from the complexity of proximal sensing
technologies present similar issues in terms of trialability. For example, if opting to use
UAV-mounted proximal sensors, operators must learn to pilot a drone and, depending
on local laws, may need certification or licensing to do so [59]. Data processing requires
computers with robust processors, as well as software capable of processing raw sensor
data [11]. However, some proximal sensing technologies are becoming more accessible
and require less expertise to use. Some smartphone apps have emerged for the use of
SfM for making 3D maps of objects and scenes. Similarly, a smartphone and tablet were
recently released with built-in LiDAR capable of generating point clouds from handheld
scanning [60].

Cost is another potential obstacle to the trialability of proximal sensing technologies.
Many proximal sensors represent a significant financial investment for land managers such
as farmers or conservation professionals, beyond what may constitute an acceptable loss
if the technology fails to meet their needs. Again, the emerging LiDAR-equipped tablets
and cell phones mentioned above may mitigate cost as an obstacle to adoption, to some
extent; the smartphone and tablet are a fraction of the cost of most other proximal sensors
and may be used simply by walking through a field or pasture. However, the point clouds
generated still require postprocessing for accurate determinations of pasture height. While
this may be done with open-source software, it still requires an investment of time to learn
the program and process the point cloud.

5.5. Observability

Observability, in Rogers’ theory, relates both to the visibility of positive outcomes of an
innovation as well as to the visibility of the innovation itself when used by adopters [3]. In
terms of observable outcomes, for scientists or natural resources professionals, the volume
of data generated by proximal sensing technologies is an observable advantage [46]. For
land managers such as farmers, observable advantages of proximal sensing technologies
may be more in the spheres of economic or ecological outcomes resulting from the data
generated. Prior research demonstrates that innovations that augment the capacity of
agricultural producers to make decisions benefiting their economic and ecological goals
are more likely to be adopted [56].

6. Conclusions

Proximal sensing technologies are becoming more accessible and useful over time,
and their increasing adoption for augmenting data collection programs for pasture and
rangeland research appears assured. However, many barriers to the widespread adoption
of these technologies by farmers remain: they are often complex to deploy in the field and
require postprocessing of data; many proximal sensing systems are expensive, reducing
their trialability by producers; and the technologies may require more widespread adoption
before sufficient informational and technological support is available. At present, proximal
sensors cannot replace traditional fieldwork and on-site monitoring programs, but they
can greatly enhance the amount of data collected as well as the scope of data collection
possible [11]. We conclude that their adoption will increase as the technology matures and
barriers to adoption such as cost and complexity decrease. Additional research quantifying
the use of these technologies by agricultural producers is needed, as is qualitative research
on perceptions of proximal sensing technologies and barriers to their adoption.

Author Contributions: Conceptualization, B.T.; literature review and writing—original draft prepa-
ration, S.G. Both authors have read and agreed to the published version of the manuscript.
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