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Abstract: (1) Background: Elevated atmospheric CO2 concentration affects the growth and develop-
ment of the rice crop. In Southern Brazil, rice is traditionally produced with continuous irrigation,
implying a significant amount of water used. Besides, continuous flooding favors the uptake of
toxic elements such as arsenic (As) and cadmium (Cd). In this work, one Brazilian rice cultivar
(IRGA 424) was tested for the effects of elevated CO2 concentration and different water regimes
on rice yield, and As and Cd accumulation in grain. (2) Methods: Rice was grown in two CO2

concentrations (400 and 700 µmol mol−1) and two irrigation regimes (continuous and intermittent).
It was evaluated the number of tillers, plant height, aboveground dry weight (ADW), water use
efficiency (WUE), rice yield components, and As and Cd concentration in rice grain. (3) Results: Rice
plants were taller and had a higher WUE when cultivated at e[CO2]. The ADW and the rice yield
component were not affected by CO2 levels nor water regimes. Intermittent flood regimes had a
lower average As concentration. The Cd concentration in the samples in both growing seasons and
all treatments was below the limit of quantitation (8.76 µg kg−1). (4) Conclusions: Enhanced CO2

concentration did not affect rice yield, increased the WUE, and reduced As concentration in grains.
Regarding water management, the intermittent regime enhanced WUE and promoted a reduction in
As concentration in grains.

Keywords: ADW; climate change; free-air CO2 enrichment; Oryza sativa L.; water management

1. Introduction

Rice (Oryza sativa L.) is a vitally important crop whose role in global food security
is remarkable [1]. Along with wheat (Triticum aestivum L.) and maize (Zea mays L.), rice
provides more than 42% of total calories consumed daily by humans [2]. Brazil and the U.S.
are world rice exporters, with more than 60% of the total rice produced in the Americas [3].
This important crop is also threatened by climate change and by the declines in freshwater
available. Agriculture will experience some of the most significant impacts of climate
change due to its dependence on stable temperatures and reliable rainfall, being impacted
by the increasing atmospheric concentration of CO2 ([CO2]) [4,5]. Climatic projections
indicate increases in [CO2] and corresponding increases in global average temperatures
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throughout the 21st century [6]. As a result, extensive efforts are underway to measure and
determine ways to mitigate the impact of climate change on agricultural production [7,8].

Rice is grown using a continuous flood whereby a relatively constant flood depth is
maintained throughout the growing season [9,10]. A continuous flood is primarily used
because of its ability to suppress weeds [11], improve herbicide efficacy [12], stabilize labile
nitrogen [13], and may moderate extreme temperatures during the reproductive stage when
rice is susceptible [14]. However, this practice also leads to a higher amount of water used
for irrigation [15]. Intermittent rice flooding, also known as alternate wetting and drying
(AWD) irrigation, was developed by researchers at the International Rice Research Institute
in Los Baños, Philippines [16,17] to assist farmers living in water-scare regions of Asia.
Safe AWD [2] reduces irrigation applications by up to 50%, relative to continuous flooding,
with little to no reductions in yield [15,18,19]. As such, it offers significant reductions
in irrigation water use as water-intensive conventional flooding comes under increasing
scrutiny as competition for freshwater grows [20].

Elevated atmospheric CO2 concentration has a wide range of impacts on plant growth
and development. As a C3 species, rice has lower respiration rates and higher photosyn-
thetic and metabolic efficiencies at high [CO2] levels [21]. For example, a doubling of
[CO2] stimulated biomass accumulation of C3 plants by up to 40% [22]. Root growth and
development are also impacted [23], potentially resulting in higher uptake of nutrients and
other soil substances. Nevertheless, the reductions in stomatal conductance and stomatal
aperture associated with increased [CO2] reduce transpiration losses [24], meaning that
less water is transported through the xylem, and thus, less water and associated solutes
are absorbed by roots. Thus, elevated CO2 might increase root biomass and reduced the
transpiration stream, impacting the uptake of nutrients and other materials.

Arsenic (As) and cadmium (Cd) are more available for plant uptake in anaerobic
soils in continuously flooded rice fields [25,26]. Recent studies have raised concerns
regarding As and Cd concentrations in rice grain [27,28]. Under anaerobic soil conditions,
As is primarily present in its reduced form As (III), which is less bound to soil and, thus,
more bioavailable to plants [29]. Increase [CO2] and its effect on rice plants’ growth and
development could cause improvement in water use efficiency by regulating stomatal
closure while also leading to higher As and Cd uptake from soil in rice grains.

Both the irrigation regime and CO2 level impact the phenology [30,31] and physiol-
ogy [32,33] of rice. However, studies investigating interaction(s) between these factors
are limited. In particular, few reports regarding the combined impacts of an intermittent
irrigation regime and increased [CO2] on rice grain yield and other yield components or
how these factors might influence As and Cd’s accumulation in the grain. Thus, this study’s
objectives were to evaluate the effects of increased CO2 and two irrigation water regimes
on rice development, water use efficiency (WUE), and arsenic and cadmium accumulation
in rice grain.

2. Materials and Methods
2.1. Experimental Conditions

The experiments were conducted during the 2017/18 growing season and repeated
during the 2018/19 growing season. Both experiments were carried out in a wood-framed
open-top chamber (OTC), measuring 1.90 × 1.90 × 2.00 m (width/depth/height) using
a method previously described [34]. The sides of the OTC were covered by a 150 µm
transparent plastic film (low-density polyethylene—LDPE) attached to the wooden frames.
The CO2 concentration was maintained by an automated CO2 control system, which
measured and adjusted the CO2 concentration at 30 s intervals from rice planting to
harvest [35].

The rice plants were grown in separate plastic bins (0.36 × 0.63 × 0.33 m) filled with
rice paddy soil (Albaqualf) collected from the 0–20 cm soil profile from a nearby rice
field. Plastic bins were filled with 23 cm of soil, leaving a 10 cm space for flooding. Rice
seeds (variety IRGA 424 RI) were hand-planted in rows spaced 17 cm, with a seeding
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rate equivalent to 110 kg of rice seeds ha−1. At planting, it was applied the equivalent of
300 kg ha−1 of NPK (5-20-20) and during the irrigation cycle, urea (45% N) was applied at
a rate of 150 kg ha−1, in two different rice stages, the first immediately before rice flooding,
and the second was performed at panicle initiation [36].

The experiments were carried out in a completely randomized design with a factorial
arrangement with four replications per treatment. Factor A consisted of two levels of [CO2]:
ambient (a[CO2]) at 400 ± 50 µmol mol−1 and elevated (e[CO2]) at 700 ± 50 µmol mol−1,
with rice being maintained for its entire cycle under these conditions. Factor B consisted
of an irrigation management regime: continuous and intermittent flood. For each regime,
the flood was initiated at V4 [37]. A maximum flood depth of 10 cm was used for both
irrigation treatments, but the continuous flood was maintained at 10 cm, irrigated daily,
whereas the intermittent flood was allowed to subside until the soil surface was exposed to
air when the flood was reestablished to a 10 cm depth. Both treatments were irrigated until
grain maturity.

2.2. Variables Analyzed

For each bin, the following parameters were determined. To determine WUE, water
use was monitored daily through graduated rulers installed in each bin and irrigated
appropriately for each treatment. The total number of tillers at V7 and plant height at R3
were measured. When rice grains moisture content reached 21% (w/w), all plants were
harvested, and the total number of panicles and grain yield (g) per bin was determined.
A subset of 10 panicles from each bin was randomly selected, and the number of grains
per panicle, spikelet sterility, and weight per thousand grains was determined. Spikelet
sterility, expressed as a percentage of the total number of spikelets, was determined by
counting the number of sterile spikelets separated from the filled grain sample. The total
aboveground dry weight (ADW) was obtained after the straw samples were dried to a
constant weight at 60 ◦C.

Determination of Arsenic and Cadmium in Rice Grain

Milled rice grain samples were analyzed for total arsenic (As) and cadmium (Cd) at the
Biomaterials Contaminant Control Laboratory, Federal University of Pelotas, Pelotas, Brazil.
Rice grain (100 g) was milled using a laboratory mill (Perten 3100, Perten Instruments,
Sweden) equipped with a 35-mesh sieve. Next, the milled samples (0.50 g) were weighed
using an analytical balance (AY220, Shimadzu, Philippines) and separately added to 100 mL
chemically modified polytetrafluoroethylene (PTFE-TFM) vials to which 6 mL nitric acid
(65%, Merck, Germany) was added. Before use, the nitric acid had been purified via
distillation (Duopur, Milestione, Italy). Next, the samples were digested using a microwave
oven (Multiwave 3000, Anton Paar, Austria), holding eight vials simultaneously. The
digestion temperature and pressure were limited to 260 ◦C and 60 bar, respectively, as per
the manufacturer’s recommendations (Software Version v2.50, Anton Paar). The vials were
capped, fixed to the rotor, and subjected to the following digestion program: (i) ramp from
0 to 1000 W for 5 min; (ii) maintenance at 1000 W for 5 min; (iii) cooling to 0 W for 20 min.
The resulting solutions were transferred to volumetric flasks and volumes adjusted to 20 mL
using ultrapure water (18 MΩ cm−1) produced by a Simplicity™ UV (Millipore, Germany)
purification system. Analytical blank controls containing no rice grain were prepared as
previously described to quantify background As and Cd concentrations.

Total As and Cd concentrations in digestion solutions were measured by inductively
coupled plasma mass spectrometry (ICP-MS; NexION 300X, PerkinElmer, Waltham, MA, USA)
using a concentric nebulizer (Meinhard, Golden, CO, USA), cyclonic-type nebulizer cham-
ber (PerkinElmer), and quartz torch and quartz injection tube (2 mm internal diameter).
The limits of detection (LOD) and quantification (LOQ) were calculated as 3- and 10-times
background, respectively, as determined for As and Cd using non-fortified rice flour blanks.
The sample preparation method used was optimized from the conditions described by
Cerveira et al. [38].
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2.3. Statistical Analysis

Statistical analyses were performed using R software [39]. Before the analysis of
variance, the data were tested for normality. For the ANOVA, the growing-season effect
was considered a random variable. When there was no difference between growing seasons,
the data were combined. When ANOVA identified significant differences, Tukey’s test was
applied using 95% confidence intervals.

3. Results and Discussion

Rice tillering was affected by the growing season (Figure 1). The numbers of rice
tillers measured during the 2017/18 growing season were not affected by atmospheric
[CO2] or irrigation regimes (Figure 1A). In contrast, for the 2018/19 growing season, the
average tiller number for the intermittent flooding treatment was higher under e[CO2]
than a[CO2]. No such differences were observed between [CO2] when the rice was grown
using a continuous flood (Figure 1B). One explanation for the observed difference in tilling
between growing season is that light incidence and temperature differs between growing
season (Figure 2). Light and temperature were not controlled, as is typical for open-top
chamber experiments conducted outdoors [34]. The minimum critical temperature for rice
tilling is between 9 and 16 ◦C [36]. Figure 2 shows that minimum temperatures measured
during the vegetative phase were lower than this threshold during the 2018/19 growing
season; consequently, tiller production was reduced in 2018/19 compared to 2017/18.
Low temperatures also alter the basal metabolism of plants, affecting all stages of crop
development [40].

Rice plants in intermittent flooding produced more tillers at e[CO2] than at a[CO2].
The increase in tillers and aboveground biomass was observed in another study with rice
grown under e[CO2] [41]. A comparison between rice cultivars using FACE (free-air CO2
enrichment) showed a general trend towards higher tillers production with enhanced CO2
concentration [42]. The researchers noted differences in responses to elevated [CO2] among
rice cultivars and growing season but did not find differences in tiller production when
rice was grown using a continuous flood [42]. Increased tiller numbers with intermittent
flooding were attributed to the periodic wetting–drying cycles increasing the plants’ expo-
sure to more sunlight and CO2. A rice plant’s ability to produce tillers depends on several
factors, including genetic aspects, seedling density, temperature, sunlight, nitrogen avail-
ability, and floodwater depth [37]. Sunlight enhances the tilling in rice because it enhances
photosynthesis as the seeds’ energy reserves are quickly exhausted [43]. Regarding CO2
atmospheric concentration, in addition to the increase in aboveground biomass resulting
from increased photosynthesis [44], higher CO2 levels also increase root growth [22,23,45].
More roots lead to increased soil nutrients uptake [46], further enhancing tiller production.

Plant height was measured at flowering and harvest; in both stages, the plants were
taller in the 2018/19 growing season than in 2017/18 (Figure 3). The shorter plants in the
2017/18 growing season were likely due to increased energy expenditure associated with
tilling. In both growing seasons and independently of water management, plants growing
under e[CO2] were taller than those grown at a[CO2]. Similar results were obtained by
another study with rice grown at e[CO2] [47]. Studies indicate that increases in plant height
may involve the partition of nutrients when grown under e[CO2] conditions, directed to
aboveground plant growth [48]. The transition from the vegetative to reproductive phase
represents a critical period in crop development since, during this transition, numerous
factors affecting growth often have significant impacts on final grain yield.

Regarding ADW, there were differences between growing seasons, but there was
no consistent effect of CO2 level or irrigation regime on ADW (Figure 4). For example,
ADW was greatest under intermittent irrigation and e[CO2] in 2017/18, but the continuous
flooding had higher ADW in the 2018/19 growing season. These results are different from
other studies where rice grew taller at e[CO2] but had no corresponding ADW increases.
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Figure 1. Effects of CO2 concentration (a[CO2] = 400 µmol mol−1 and e[CO2] = 700 µmol mol−1)
and irrigation regime (continuous vs. intermittent flood) on rice tillers per bin in 2017/18 (A) and
2018/19 (B). Error bars correspond to 95% confidence intervals about means.
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Rio Grande do Sul State, Brazil.
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Figure 4. Effect of atmospheric CO2 concentrations (a[CO2] = 400 µmol mol−1 and
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seasons. Error bars correspond to 95% confidence intervals.
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Rice yield components varied between growing seasons (Table 1). In 2017/18, there
was no CO2 and irrigation regime effect on panicle number, the number of grains per
panicle, weight per thousand grains, grain yield, or spikelet sterility. In the 2018/19
growing season, CO2 concentration and water management also had no clear impacts
on most of these parameters, but panicle numbers and grains per panicle decreased,
and spikelet sterility increased compared to 2017/18. The reduction in these important
yield components in the 2018/19 growing season likely reflects less-than-optimal growing
conditions (i.e., sunlight, cooler temperatures at tilling). Grain yields were generally
higher for rice grown in e[CO2], but no statistical differences were owing to relatively high
variability between the samples (Figure 5).
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In 2018/19, higher spikelet sterility and lower numbers of grains were observed. In
the 2018/19 experiment, minimum air temperatures reached as low as 14 ◦C at the booting
stage (Figure 2). Temperatures of 15 to 19 ◦C during reproduction impair microspore
development, increasing spikelet sterility and, thus, reducing grain yield [49]. Other low-
temperature studies [14,50] reported increased spikelet sterility when rice plants were
exposed to low temperature at the early microspore stage, typically 10–12 days before
heading. Therefore, higher spikelet sterility and reduced grain yield observed in the
2018/19 experiment were likely due to low temperatures during this critical time.
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Table 1. Effects of CO2 concentrations (400 µmol mol−1 vs. 700 µmol mol−1) and water regimes (continuous vs. intermittent) on rice panicle number m2, number of grains per 10 panicles,
weight per thousand grains, and spikelet sterility for two growing seasons.

Panicles (m2) Grains per 10 Panicles 1000-Grain Weight (g) Spikelet Sterility (%)

2017/18 Season

[CO2]
Irrigation water regime

CON a INT b CON INT CON INT CON INT
a[CO2] c 523 ± 50 e ns 520 ± 80 636 ± 66 ns 732 ± 29 18 ± 1 ns 18 ± 1 11 ± 1 ns 11 ± 1
e[CO2] d 520 ± 82 522 ± 68 711 ± 36 731 ± 53 18 ± 1 18 ± 1 10 ± 3 10 ± 3
CV(%) f 21.34 39.86 13.54 19.71

2018/19 Season
a[CO2] 580 ± 31 ns 552 ± 26 581 ± 65 ns 480 ± 143 17 ± 1 ns 17 ± 1 32 ± 4 ns 28 ± 2
e[CO2] 602 ± 37 574 ± 43 550 ± 136 649 ± 152 17 ± 1 18 ± 1 34 ± 9 31 ± 4
CV(%) 23.18 56.13 15.89 17.72

a Continuous flood (CON); b intermittent flood (INT); c a[CO2] = 400 µmol mol−1; d e[CO2] = 700 µmol mol−1; e mean ± standard deviation (n = 4); f coefficient of variation (CV);. ns indicates no significant
difference by Tukey’s test.
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As previously discussed, increased plant heights observed in 2018/19 may indicate
that the rice plants invested in the growth of vegetative organs, such as stems and leaves,
in higher quantities than in reproductive organs. Increased tilling and higher above-
ground growth without a corresponding increase in grain yield were observed in another
study [51]. When considering the allocation of photosynthetic carbohydrates in grain
(sink) and leaf area (source), it is possible that spikelet sterility, caused by the low temper-
atures, may have reduced carbohydrate demand by the reproductive organs increasing
translocation/retention of photosynthates to vegetative tissues [52].

The amount of water used to irrigate the plants was greater in 2017/18 than in
the 2018/19 growing season, owing to warmer air temperatures (Figure 5). Comparing
treatments, in both growing seasons, there was a greater amount of water used in the
continuous compared to the intermittent flooding, results similar to those reported by
others [15,18,19]. Regarding CO2 treatments, less water was used under e[CO2] compared
to the a[CO2] in both growing seasons. Many studies have shown that CO2 enrichment
limits stomatal opening, thus reducing transpiration losses [53,54].

The WUE was affected by irrigation management and atmospheric CO2 concentration
(Figure 6). Greater WUE was observed under intermittent irrigation compared to the
continuous irrigation in both growing seasons, in a similar way that has been observed
by other researchers [15,18,19]; regarding CO2 effect, there was a greater WUE at e[CO2]
compared to the a[CO2] in both growing seasons.
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Figure 6. Effect of CO2 concentrations {a[CO2] = 400 µmol mol−1 and e[CO2] = 700 µmol mol−1} and
water regimes (continuous vs. intermittent flood) on the water use efficiency of rice plants in 2017/18
(A) and 2018/19 (B) growing season. Error bars correspond to 95% confidence intervals.

Total arsenic (As) concentration in milled rice grain was affected by the growing
season and, thus, were analyzed separately (Figure 7). For As, the LOD was 1.37 µg kg−1,
and LOQ was 2.84 µg kg−1. For Cd, the LOD was 4.64 µg kg−1 and LOQ 8.76 µg kg−1 for
Cd. The trueness of the method was evaluated by analysis of a certified reference material
of rice flour (CRM NBS 1568A—As: 290 ± 30 µg kg−1 and Cd: 22 ± 2 µg kg−1), agreement
values of 107 and 109% were obtained for As and Cd, respectively.

Cd concentration in rice grain samples in both growing seasons and all treatments
was below the limit of quantitation (8.76 µg kg−1). Thus, this shows that either the soil had
a lower concentration of available Cd or it was not absorbed. For As, the 2017/18 rice grain
samples had higher concentration than those collected in 2018/19. The lower concentration
of As in the 2017/18 growing season may be due to dilution, as there was a higher grain
yield in 2017/18 compared to 2018/19. In the 2017/18 growing season, in the continuous
flooding regime, there were no As differences between the two CO2 treatments (Figure 7).
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However, the intermittent flood regime had a lower average As concentration. A similar
difference was observed in 2018/19, but higher overall As concentrations were obtained.
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water regime (continuous vs. intermittent flood) on total arsenic (µg kg−1) in husked rice grain plants
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Researchers have investigated As uptake and concentration in rice grain along two
central lines: toxicity in the plant [55,56] and accumulation in grain [26,57]. Studies have
demonstrated that high [CO2] reduces the concentration of several micronutrients, includ-
ing iron, zinc, copper, calcium, and manganese, in rice grains and other species [58,59]. As
previously mentioned, uptake reduction can be related to reductions in plant transpira-
tion under e[CO2] conditions that change the nutrients uptake from the soil, translocated
via water [48]. The present study corroborates findings where As concentrations in rice
grain did not increase under e[CO2]. Additional research may show that differences in As
accumulation exists between rice varieties [60].

In a study comparing intermittent and continuous flooding, up to 24% reductions in As
concentration were obtained in rice grains using an intermittent flood regime [61]. A study
developed with different soil-water content to assess rice grains’ toxic elements availability
indicated lower concentrations of As in less saturated conditions [62]. An intermittent
regime helps decrease As uptake, since oxygen can interfere with the bioavailability of As
through the active root-associated microbiota involved in arsenic cycles [63]; this factor
may be associated with our results. Our results also showed higher As concentration in
rice grain, above the value 300 µg kg−1, which is the maximum allowed concentration
in brown rice in Brazil [64]. It is essential to state that the absolute As concentration may
not be taken into account, as our experiment was conducted in boxes in OTC with limited
soil profile, and we can speculate that in field conditions, the magnitude of toxic elements
uptake can be very different from what was observed in these conditions. For this reason,
we use this information only for comparison between treatments.

However, in a monitoring study of total As concentration in rice grains from different
Brazilian regions, concentrations ranged between <2.6 µg kg−1 and 630 µg kg−1, indicating
that rice grains were contaminated with values above the limit in the Rio Grande do Sul
state [62]. The speciation study in the monitoring mentioned earlier indicated averages
between 68 to 174 µg kg−1 of inorganic As in rice from the flooded system. Therefore,
the total concentration study is not the best parameter to assess the risk of consuming
this rice, and the grains may contain a high concentration of total As and, in this total,
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low concentrations of most toxic species (inorganic As) [55]. Besides that, in the condition
of e[CO2], several factors can be altered, influencing the As uptakes, such as higher root
growth and changes in the composition of the rhizosphere. It is also essential to carry
out FACE studies with different rice cultivars, as they may have different As uptake,
translocation, and accumulation capacities in vegetable tissue and grains in field conditions.

4. Conclusions

This study showed that the rice cultivar IRGA 424 RI had higher growth under e[CO2],
but there was no increase in grain yield. Moreover, rice grown at e[CO2] exhibited an
increase in water use efficiency. While additional data are needed, the current study
suggests that As concentration decreases in plants grown at e[CO2].

The intermittent water regime is more efficient using less water than the continuous
regime. The total As concentration in rice grains decreased for plants grown in the in-
termittent regime. Although Cd was not detected in the samples, future studies need to
determine the influence of e[CO2] and the water regime on the uptake and accumulation of
Cd in rice grains.
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