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Abstract: Nondestructive detection of tea’s internal quality is of great significance for the processing
and storage of tea. In this study, hyperspectral imaging technology is adopted to quantitatively
detect the content of tea polyphenols in Tibetan teas by analyzing the features of the tea spectrum
in the wavelength ranging from 420 to 1010 nm. The samples are divided with joint x-y distances
(SPXY) and Kennard-Stone (KS) algorithms, while six algorithms are used to preprocess the spectral
data. Six other algorithms, Random Forest (RF), Gradient Boosting (GB), Adaptive boost (AdaBoost),
Categorical Boosting (CatBoost), LightGBM, and XGBoost, are used to carry out feature extractions.
Then based on a stacking combination strategy, a new two-layer combination prediction model
is constructed, which is used to compare with the four individual regressor prediction models:
RF Regressor (RFR), CatBoost Regressor (CatBoostR), LightGBM Regressor (LightGBMR) and XG-
Boost Regressor (XGBoostR). The experimental results show that the newly-built Stacking model
predicts more accurately than the individual regressor prediction models. The coefficients of determi-
nation R2

c andR2
p for the prediction of Tibetan tea polyphenols are 0.9709 and 0.9625, and the root

mean square error RMSEC and RMSEP are 0.2766 and 0.3852 for the new model, respectively, which
shows that the content of Tibetan tea polyphenols can be determined with precision.

Keywords: hyperspectral; tea polyphenols; sample division; feature selection; regression model;
nondestructive detection

1. Introduction

Tea is one of the three most popular non-alcoholic beverages in the world. Tea polyphe-
nols are an important part of tea and a vital source of bioactive chemicals, with the ability of
anti-oxidation, anti-cancer, anti-bacterial, anti-inflammation and anti-arteriosclerosis [1–3],
and they play an important role in the medical and food industries. In addition, there is
also a certain correlation between the content of tea polyphenols and the quality of tea [4].
Not only beneficial to human health, high-quality tea is also sold at a much higher price in
the market. The traditional detection methods of tea polyphenols are mainly either physical
or chemical [5–7], which are not only costly and complicated but also time-consuming and
vulnerable to subjective factors [8]. Therefore, it is of great significance to develop a fast
and nondestructive online detection technology to test tea polyphenols. Hyperspectral
imaging technology is based on a lot of narrow-band image data technology. It combines
imaging technology with spectral technology to detect the two-dimensional geometric
space and one-dimensional spectral information of the target and obtain continuous and
narrow-band data with high spectral resolution. Hyperspectral imaging is a new genera-
tion of photoelectric detection technology and can be adopted in this field for its low cost,
fast speed, reliability and its ability to leave the samples intact in the test.
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Near-infrared spectroscopy technology (NIR) is an optical detection method known for
its fast speed and no direct touch of the samples [9]. It has been used in quality inspections
of many agricultural products [10–12]. Wang et al. [13] established a pear juiciness detection
model at 650–1100 nm, with an external verification determination coefficient of 0.93 and
root mean square error of 0.97%. Pennisi et al. [14] established freshness models of different
species of fish based on near-infrared spectroscopy technology. Jens et al. [15] designed
a potato dry matter content detection model based on NIR technology. Previous studies
have shown that the use of spectroscopy technology to detect the quality of agricultural
products is feasible.

With the development of spectral technology, image analysis is added to
spectroscopy [16], and hyperspectral imaging technology emerges with time.
Compared with multispectral images, hyperspectral images have a richer image and
spectral information [17]. At present, the use of hyperspectral technology to detect agri-
cultural product quality is still in its infancy. However, as a fast and nondestructive
detection technology, hyperspectral imaging has great application prospects. There has
been only a small amount of research on agricultural-product quality detection based on
hyperspectral technology [18,19].

The modeling results established based on hyperspectral technology are affected by
many factors. The method of feature data preprocessing is a major factor affecting the
results. Common spectral data preprocessing methods include orthogonal signal correction
(OSC) [20], first derivative (FD) [21,22], second derivative (SD) [22], multivariate scatter-
ing correction (MSC) [21–23], standard normal variable transformation (SNVT) [21–23],
Savitzky–Golay filter (SG) [21,24]. It was shown that these methods could reduce the
influence of external factors and improve detection accuracy to some extent.

The selection of spectral characteristic bands is another important factor affecting the
model results. Effective selection of characteristic bands can save computing resources [25]
and improve model performance. In recent years, researchers have proposed many char-
acteristic band selection methods, such as interval partial least squares (iPLS) [26,27],
synergy interval partial least square (siPLS) [28,29], backward interval partial least square
(biPLS) [30–32]. These feature-selection algorithms divide all features into several intervals
and then select a small part of the interval with good effect as the characteristic band by
iteration. However, the spectral features selected by this “bundling” method are likely to
miss some important features.

To avoid the presence of bias introduced by manual data splitting, there are a number
of computational methods that can be used for sample selection, such as random selection
(RS), Kennard-Stone (KS) [33,34], or sample set partitioning based on joint x-y distances
(SPXY) [35–37] algorithm.

The purpose of this research is to explore the feasibility of fast and nondestructive on-
line detection of Tibetan tea polyphenol content based on hyperspectral image technology.
Different data preprocessing methods are used to process the acquired hyperspectral data
of Tibetan tea. This paper selects the best preprocessing method by establishing the model
and analyzing the modeling results.

2. Materials and Methods
2.1. Samples

A total of three grades of Ya’an Tibetan tea were selected for the test, including
32 samples for the first grade, 33 for the second grade and 37 for the third grade. Each
group of samples was individually packaged in a sealed plastic bag and stored in a
5 ◦C thermostat for the subsequent determination of spectral data and tea polyphenol
physicochemical data. The measurement process of tea polyphenol content is as follows.

1. Reagent preparation.

(a) Mother liquor: The milled tea (0.6 g) and 5 mL 70% methanol solution were
placed in a 10 mL centrifuge tube and shaken. After bathing at 70 ◦C for
10 min, the tube was removed, allowed to cool, and then centrifuged for
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10 min at 3500 r/min, and the supernatant was collected. The precipitation
was extracted according to the above extraction procedure. The collected
supernatants from the above extraction were mixed, then diluted to 10 mL
with 70% aqueous methanol, and filtered through a 0.45 µm filter.

(b) Test solution: 1 mL mother solution (a) was added into a 100 mL volumetric
flask, and distilled water was added to dilute to 100 mL and shaken well.

(c) Gallic acid working solution: 1.0, 2.0, 3.0, 4.0 and 5.0 mL of gallic acid standard
solution (1000 µg /mL) was added into five 100 mL volumetric flasks, diluted
with distilled water to 100 mL, and shaken well. Finally, five groups of working
fluid were obtained. The concentrations were 10, 20, 30, 40 and 50 µg/mL.

2. Determination of the content of tea polyphenols.

A total of 1.0 mL each of gallic acid working solution (c), distilled water and test solu-
tion (b) were added into the scale tube. A total of 5.0 mL of Folinol reagent (concentration
10%) was added to each test tube. After 4 min, 4.0 mL 7.5 % sodium carbonate (Na2CO3)
solution was added, then we added water to a constant volume scale. The mixture was then
stored at room temperature for 60 min. The absorbance (A, A0) was measured by a spec-
trophotometer at the wavelength of 765 nm with a 10 mm colorimetric vessel. The standard
curve was prepared according to the absorbance of the gallic acid working solution and the
concentration of gallic acid in each working solution. By comparing the absorbance of the
sample and the standard working solution, the content of tea polyphenols was calculated
as follows:

c =
(A− A0)×V × d× 100

Sstd ×ω× 106 ×m
(1)

c (%) is the content of tea polyphenol (percentage of tea polyphenols in dry matter of tea),
A represents the absorbance of the sample test solution, A0 is the absorbance of the blank
reagent solution, V (mL) is the volume of sample extract, d is the dilution factor (take 100
here), Sstd represents the slope of the gallic acid standard curve, ω is the dry matter content
of the sample (percentage of tea sample quality before and after drying) and m (g) is the
mass of the sample.

The measurement results and the sample results based on the SPXY algorithm (see
Section 3.1) are shown in Table 1. The Tibetan tea polyphenol data from the test is used as
standard data for future use.

Table 1. Tea polyphenol content statistics and sample partition results based on the SPXY algorithm.

Sample Number of
Samples

Tea Polyphenol Content (%)

Minimum Maximum Mean Standard
Deviation

Total 102 4.0590 9.4098 7.1225 1.6827
Calibration

set 76 4.0590 9.4098 7.2576 1.6010

Prediction set 26 4.5110 9.4079 6.7276 1.8792
Note: “%” is the percentage of tea polyphenols in the dry matter of tea, the same as line 120.

2.2. Hyperspectral Image Acquisition

The hyperspectral data of the Tibetan tea test is acquired using a GaiaSorter hyper-
spectral sorter made by Beijing Zolix Company, which provides an effective spectral band
of 387–1035 nm, a spectral resolution of 2.8 nm and 256 spectral channels. We spread the
tea leaves evenly into a square in a container (about 65 cm × 65 cm). The hyperspectral
acquisition system is shown in Figure 1. Due to the influence of dark currents at the
beginning and end of the spectral band, only the 420–1010 nm band is retained as raw
spectral data. The sample platform is set to move at a speed of 4.0 mm · s−1, the distance of
the imaging object is 170 mm, and the camera exposure time was set to 16 ms. We placed
the tea to be tested on the stage. Under the illumination of a uniform light source, the
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platform is moved horizontally at a set speed, and the hyperspectral camera can obtain
continuous hyperspectral images of the samples on the platform. The acquired images are
then calibrated using Equation (2):

I =
Iraw − Ib
Iw − Ib

(2)

where I is the corrected image, Iraw represents the raw image, Ib is the standard black
image and Iw represents the standard white image.

Figure 1. Schematic diagram of the hyperspectral imaging system.

ENVI5.1 software is used to calculate the average spectral value of the region of
interest (151 × 151 pixels) in the hyperspectral image.

2.3. Hyperspectral Data Preprocessing

Random noise is often generated during the acquisition of spectra by the external
environment, instrument response and other factors unrelated to the nature of the sample
to be measured, and disorderly fluctuations in the spectral data appear. Therefore, this
article uses six preprocessing algorithms, including SG, MSC, SNVT, FD, SD and Z-score
standardization (ZSS), to eliminate the noise in the raw spectrum (RAW) data. Python 3.8
(Python Software Foundation) is adopted in all data processing and modeling.

2.4. Sample Partitioning
2.4.1. Kennard-Stone (KS)

The KS algorithm [33] regards all samples as candidate samples of a training set and
selects the two samples with the farthest Euclidean distance into the training set. Then, by
calculating the Euclidean distance between the remaining samples and the known samples
in the training set, the two samples nearest to the selected samples are selected and put
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into the training set, and the above steps are repeated until the number of samples reaches
the set value. The formula for calculating Euclidean distance is:

dx(p, q) =

√
n

∑
i=1

[
xp(i)− xq(i)

]2; p, q ∈ [1, n] (3)

where xp and xq represent two different samples and represent the number of spectral
bands.

2.4.2. Sample Set Partitioning Based on Joint X-Y Distances (SPXY)

The SPXY algorithm is developed on the basis of the KS algorithm. When SPXY
calculates the sample distance, the sample label (Y) and the sample feature (X) are taken
into account at the same time. The specific calculation is as follows [36]:

dy(p, q) =
√(

yp − yq
)2

=
∣∣yp − yq

∣∣; p, q ∈ [1, n] (4)

dx,y(p, q) =
dx(p, q)

maxp,qdx(p, q)
+

dy(p, q)
maxp,qdy(p, q)

; p, q ∈ [1, n] (5)

where dx(p, q) represents the spectral distance and dy(p, q) represents the chemical mea-
surement value distance.

2.5. Feature Selection and Modeling

The acquired hyperspectral data often contains a lot of redundant information, which
will have a certain impact on the accuracy and efficiency of the final modeling. Six
methods [38–41], Gradient Boosting (GB), Adaptive Boosting (AdaBoost), Random Forest
(RF), Categorical Boosting (CatBoost), LightGBM and XGBoost, are used to select hyper-
spectral feature bands. Random forest regression (RFR), categorical boosting regression
(CatBoostR), LightGBM regression (LightGBMR), XGBoost regression (XGBoostR) and
model integration strategy stacking are used in the model. Stacking is a combined model
that trains the base learner from the initial data set and then uses the predicted value of the
base-learner as a new feature to train the meta-learner.

2.6. Model Reliability

Model evaluation takes the coefficient of determination (R2) [42] and root mean
square error (RMSE) [43] as evaluation criteria, and the calculation method is shown in
Equations (6) and (7).

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

where yi and ŷi are the measured value and predicted value of the sample, respectively,
y represents the average value of the sample and n is the number of samples. When the
predicted value (ŷi) of the model is closer to the true value (yi), the better the effect, in other
words, a good model should have small RMSE values (the closer the value of RMSE is to 0,
the better the effect of the model). Furthermore, the models with high R2 values are better
than the models with low R2 values (the closer the value of R2 is to 1, the better the effect
of the model). At the same time, the smaller the difference in the determination coefficient
between the calibration set and the independent test set of the model, the better. If the gap
is too large, it indicates that the model is under-fitting or over-fitting.
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3. Results
3.1. Spectral Preprocessing and Sample Division

In the process of collecting hyperspectral data, due to the influence of environmental
factors, the acquired spectral data has certain noises, which will adversely affect the
performance of the model. Therefore, the spectral data is preprocessed before modeling.
Six methods, including SG, MSC, SNVT, ZSS, FD and SD, are used to preprocess the spectral
data of the tea samples. In order to make the established model representative, the division
of the data set is also very important. This paper uses the KS and SPXY sample division
algorithm to divide the 102 groups of samples into the calibration set and the prediction
set at a ratio of 3:1.

Gradient Boosting regression (GBR) is used to model and predict the raw data and pre-
processed spectral data. The modeling results based on different preprocessing algorithms
and different sample partitioning algorithms are shown in Figure 2.

Figure 2. Prediction results of GBR model with different inputs. (a) Modeling results based on KS partition data set;
(b) Modeling results based on SPXY partition data set.

Figure 2a demonstrates the modeling results of the data set divided by the KS algo-
rithm. The coefficients of determination of the calibration set (R2

c ) are all above 0.96. The
RAW-KS-GBR model has the best effect, with coefficients of determination of the calibration
set at 0.9682, the calibration set root mean square error (RMSEC) at 0.3025, the prediction
set determination coefficient (R2

p) at 0.9243 and the prediction set root mean square error
(RMSEP) at 0.4396. In the FD-KS-GBR model R2

c is the largest, being 0.9857, but R2
p is

the smallest, only 0.6490, indicating that the FD-KS-GBR model has a serious overfitting
problem. Figure 2b is the modeling result of the data set divided by the SPXY algorithm.
The determination coefficient R2

c of the model calibration set established by FD and SD
preprocessing spectral data is above 0.98, but the values ofR2

p do not exceed 0.88. The value
of SNVT-SPXY-GBR model R2

c is 0.9704, RMSEC is 0.2769, R2
p is 0.9316 and RMSEP is 0.4640.

The value of SG-SPXY-GBR model R2
c is 0.9563, RMSEC is 0.3323, R2

p is 0.9365 and RMSEP
is 0.4641.

The data set divided by the KS algorithm is more prone to overfitting than the model
established by the SPXY algorithm, so the SPXY-GBR model is generally better than the KS-
GBR model. Based on Figure 2, comparing two different data set partitioning methods, and
six different preprocessing algorithm modeling results, the models with the better effects
are RAW-KS-GBR, SG-SPXY-GBR and SNVT-SPXY-GBR. The SG-SPXY-GBR model has the
highest R2

p value of 0.9365, and its R2
c value also reaches 0.9563, with a small discrepancy
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between them. This manifests that the model established with SG as the preprocessing
algorithm and SPXY as the sample division method not only provides high accuracy but
also has better robustness. In summary, the SG algorithm is finally selected to preprocess
the original hyperspectral data of Tibetan tea. The original spectral characteristic curve
RAW and the spectral characteristic curve after SG preprocessing are shown in Figure 3.

Figure 3. Tibetan tea spectrum curve. (a) Raw data; (b) Data preprocessed by SG algorithm; (c) Enlarged view of the red
frame in Figure (a); (d) Enlarged view of the red frame in Figure (b).

The spectral curve Figure 3b, after SG preprocessing, is smoother than the raw spectral
data in Figure 3a. Figure 3c,d show partial enlarged views corresponding to the red boxes
in Figure 3a,b. The blue shaded part clearly shows this point of view, indicating that
the algorithm can effectively filter out noise. The SPXY algorithm is selected to divide
the calibration set and the test set. After the division, the statistical results of Tibetan
tea polyphenol content are shown in Table 1. Figure 4 shows the prediction results of
Tibetan tea polyphenols content by GBR model after SG algorithm preprocessing and SPXY
algorithm partitioning of the data set. The horizontal axis represents the actual measured
value, and the vertical axis represents the predicted value of the established model.
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Figure 4. Prediction results of tea polyphenols after pretreatment of raw spectra by SG algorithm,
and “%” indicates the percentage of tea polyphenols in the dry matter of the tea sample.

3.2. Selection of Characteristic Bands of Tibetan Tea Hyperspectral Data

The data noise after SG algorithm preprocessing has been improved to a certain extent,
but there is still a lot of information unrelated to the prediction of tea polyphenol content in
the data. If the spectrum number is not further extracted, the high-dimensional spectrum
data will undoubtedly affect the accuracy and robustness of the model. In this study, six
algorithms, including GB, AdaBoost, RF, CatBoost, LightGBM and XGBoost, have been
used to select the top 30 Tibetan tea spectral characteristic bands. The final characteristic
bands obtained are shown in Figure 5.

The feature selection algorithms RF and CatBoost take the wavelength of 522.66 nm
as the second most important feature, while XGBoost takes the band of 564.55 nm as the
first feature, which only ranks fifth in GB algorithm, fourth in AdaBoost algorithm and
seventh in RF algorithm. The characteristic wavelengths extracted by different algorithms
are mostly distributed between 420 and 700 nm. The experimental results show that the
characteristic wavelengths extracted by different algorithms are different but also share
some qualities. The features extracted by the above six feature extraction algorithms will
be used as the input of the subsequent regression prediction algorithm.
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Figure 5. Feature bands selected by different algorithms. (a) GB; (b) AdaBoost; (c) RF; (d) CatBoost; (e) LightGBM and (f)
XGBoost.

3.3. Results of Models
3.3.1. Full-Band Modeling Results

The SG algorithm is used to preprocess the original spectral data, and the processed
data is used for modeling and prediction. Table 2 shows the prediction results of different
individual models. Among them, the CatBoostR model is the most accurate, with its R2

c
and R2

p at 0.9578 and 0.9493, respectively. The model of RFR prediction effect is poor, and
the coefficient of determination of the calibration set is only 0.9040.
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Table 2. Detection results based on different models of full spectrum.

Model R2
c RMSEC R2

p RMSEP

RFR 0.9040 0.4929 0.9470 0.4244
CatBoostR 0.9578 0.3266 0.9493 0.4149

LightGBMR 0.9419 0.3833 0.9259 0.5015
XGBoostR 0.9574 0.3283 0.9463 0.4271

3.3.2. Modeling Results of Characteristic Bands

Six groups of Tibetan tea spectral features are selected using different feature extrac-
tion algorithms and used as inputs to the RFR, CatBoostR, LightGBMR and XGBoostR
models. At the same time, based on the stacking combination strategy, RFR, LightGBM and
XGBoostR are used as three base-learners, and CatBoostR is used as a meta-learner to build
a new predictive model (Stacking model). The built Stacking model is shown in Figure 6.

Figure 6. Flow chart depicting the stacking regressor model used for tea polyphenols prediction.

Table 3 shows the prediction results of different models. Compared with the full-band
modeling results, even if the feature dimension is reduced, the model performance is
not reduced accordingly. The modeling accuracy has been improved to a certain extent,
and the robust performance has also been further improved. The prediction accuracy of
the CatBoostR model is generally acceptable, with RMSEC lower than 0.35 and RMSEP
lower than 0.45. The R2

c and R2
p of the XGBoost + CatBoostR model are 0.9744 and 0.9509,

respectively, and the RMSEC and RMSEP are 0.2546 and 0.4084, respectively. The R2
c and

R2
p of the LightGBM + CatBoostR model are 0.9753 and 0.9520, respectively, and the RMSEC

and RMSEP are 0.2499 and 0.4035, respectively. The R2
c and R2

p of the CatBoost + CatBoostR
model are 0.9697 and 0.9563, respectively, and the RMSEC and RMSEP are 0.2766 and
0.3852, respectively. The RMSEC and RMSEP values of the CatBoost + CatBoostR model
are closer. Therefore, this model is considered the best among the four individual models.
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Table 3. Predictive performance of models using the characteristic wavelengths extracted by different
algorithms.

Model Method R2
c RMSEC R2

p RMSEP

RFR

GB 0.9413 0.3852 0.9411 0.4471
AdaBoost 0.9416 0.3844 0.9398 0.4521

RF 0.9496 0.3570 0.9457 0.4295
CatBoost 0.9540 0.3411 0.9523 0.4023

LightGBM 0.9530 0.3449 0.9516 0.4052
XGBoost 0.9586 0.3236 0.9478 0.4211

CatBoostR

GB 0.9539 0.3413 0.9467 0.4255
AdaBoost 0.9556 0.3350 0.9406 0.4487

RF 0.9597 0.3193 0.9494 0.4146
CatBoost 0.9697 0.2766 0.9563 0.3852

LightGBM 0.9753 0.2499 0.9520 0.4035
XGBoost 0.9744 0.2546 0.9509 0.4084

LightGBMR

GB 0.9492 0.3588 0.9203 0.5201
AdaBoost 0.9492 0.3585 0.9406 0.4491

RF 0.9505 0.3539 0.9468 0.4249
CatBoost 0.9617 0.3114 0.9418 0.4446

LightGBM 0.9575 0.3278 0.9365 0.4643
XGBoost 0.9510 0.3521 0.9352 0.4692

XGBTR

GB 0.9524 0.3468 0.9315 0.4822
AdaBoost 0.9669 0.2893 0.9237 0.5088

RF 0.9591 0.3218 0.9322 0.4798
CatBoost 0.9686 0.2819 0.9457 0.4296

LightGBM 0.9557 0.3346 0.9457 0.4295
XGBoost 0.9578 0.3266 0.9524 0.4020

Stacking

GB 0.9600 0.3181 0.9357 0.4674
AdaBoost 0.9608 0.3148 0.9538 0.3962

RF 0.9579 0.3262 0.9452 0.4313
CatBoost 0.9709 0.2711 0.9625 0.3569

LightGBM 0.9653 0.2964 0.9536 0.3968
XGBoost 0.9702 0.2746 0.9526 0.4013

In the Stacking model built in this article, the model with the characteristic band
extracted by the CatBoost algorithm as the input is the most effective. The value of R2

c
is 0.9709, RMSEC is 0.2711, R2

p is 0.9625 and RMSEP is 0.3568. The prediction accuracy
is higher than that of other individual regressors, and as a result, it is the most accurate.
Figure 7a is the prediction result of the CatBoost + Stacking model on the content of tea
polyphenols in Tibetan tea. The horizontal axis represents the actual measured value, and
the vertical axis represents the predicted value of the established model. Due to the small
number of samples with a tea polyphenol content of about 7%, the data partition algorithm
SPXY did not allocate the test set near this value. Therefore, in the data set divided by SPXY,
the sample corresponding to the tea polyphenol content of the calibration set of 7.2671% is
selected as one of the test set samples, and the sample corresponding to the tea polyphenol
content of the test set of 8.7892% is selected as one of the calibration set samples. If the
replaced data is input into the CatBoost + Stacking model, Figure 7b shows the prediction
results. The value of R2

c is 0.9686, RMSEC is 0.2833, R2
p is 0.9577 and RMSEP is 0.3703.
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Figure 7. Prediction results of tea polyphenols based on CatBoost + Stacking model, “%” indicates the percentage of tea
polyphenols in the dry matter of tea sample. (a) The modeling results before replacing the samples. (b) The modeling
results after replacing the samples.

4. Discussions

A detection model of Tibetan tea polyphenols is established based on hyperspectral
technology. The test results show that the spectral data preprocessing algorithm SG
can effectively eliminate noise. Band selection can improve the prediction accuracy and
robustness of the model.

The final modeling results show that the characteristic band selection method used
in this study is effective. The 233 feature variables are reduced to 30, but the accuracy
of the model does not decrease as a result. Generally speaking, the effect of the Cat-
BoostR individual model is better than other individual models. The calibration set of
LightGBM + CatBoostR and XGBoost + CatBoostR models has performed well. However,
the prediction set does not perform well, and the difference between the RMSEC and RM-
SEP of the model is large, and the robustness of the model is low. Among all the models, the
CatBoost + Stacking model built in this paper is the most effective. The determination coeffi-
cients R2

c and R2
p are 0.9709 and 0.9625, respectively, and the RMSEC and RMSEP are 0.2711

and 0.3569, respectively. The data divided by the SPXY algorithm has no test sample with
a tea polyphenol content of about 7%. In order to improve the credibility of the model, one
sample is selected for replacement in the calibration set and the test set (see Section 3.3.2).
The final result is slightly lower than the result before replacing the sample. The reason for
this phenomenon may be due to the fact that there are fewer samples with a tea polyphenol
content of about 7%, and the model has not been trained perfectly. Trained models and ex-
amples can be found here: https://github.com/luo-rochon/example_for_stacking_model
(accessed on 25 June 2021).

Traditional detection methods for total tea polyphenols include ferrous tartrate col-
orimetry [44–46], potassium permanganate titration [45,47,48], folin phenol colorime-
try [45,49], electrochemical method [50], among which folin phenol colorimetry is the
most widely used. The principle of ferrous tartrate colorimetry [44] is to use polyphenols
to react with ferrous tartrate under a certain pH value to form a blue-violet complex, which
is quantified by spectrophotometry. This method has good reproducibility but requires
a large sample size and a long measurement cycle. In addition, the detection result is
slightly higher than the true value.

The potassium permanganate oxidation titration method [48,51] uses potassium per-
manganate to oxidize tea polyphenols to fade the potassium permanganate solution. The
decrease in absorbance is measured at the maximum absorption wavelength, which can
indirectly determine the content of tea polyphenols. The method is convenient and does
not require the use of expensive equipment. However, in addition to being able to oxidize
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some non-polyphenolic substances, the titration endpoint is difficult to grasp, resulting in
large measurement errors.

Folin phenol colorimetry [49,51] is a common method for the determination of plant
phenols in the world. Polyphenol compounds have the -OH group in tea polyphenols
that are easily oxidized and appear blue. The absorbance is measured at a wavelength of
765 nm. This method has the most accurate measurement results, but the measurement
process is more complicated, and the detection cost is relatively high.

According to the electrochemical properties of substances in the solution and its change
rule, an electrochemical analysis method [50] was established based on the existence of
certain electrical parameters such as potential, conductivity, current and electricity and
the concentration of the measured substance. This method has the advantages of intuitive
sensitivity, simple and rapid, wide determination range and is not susceptible to color,
precipitation and other non-polyphenol organic compounds. However, the preparation
process of the electrode and the surface treatment of the electrode needs to be further
studied, and a chemical buffer is also needed to increase the cost of a single measurement.

In summary, most of the traditional tea polyphenol detection methods are more or
less the use of certain chemical reagents, resulting in increased measurement costs and
environmental pollution, in addition to the sample damage. As a new detection technology,
the biggest advantage of hyperspectral technology is that it can quickly, nondestructively
and in real-time detect agricultural products. The deficiency is that the test sensitivity is
low, and the quantitative analysis of unknown samples must be realized by establishing a
correction model. The establishment process of the correction model is relatively complex
and requires a large number of training samples. Finally, it has to be mentioned that
hyperspectral equipment is more expensive, but its reusability can make up for this defect.

At present, there is still a lack of tools and methods for the rapid and nondestructive
determination of tea polyphenol content in the tea production process. In this study, only
the total polyphenol content was predicted. In future research, we will explore the feasibil-
ity of tea polyphenol monomer detection based on this technology. The combination of
hyperspectral technology and an integrated algorithm can be used for the online determi-
nation of Tibetan tea polyphenol content. At the same time, it provides a reference for the
internal quality testing of other agricultural products.
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