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Abstract: The main meteorological indicators affecting the eating quality of rice (Oryza sativa L.) in
the lower reaches of Huai river were studied and the optimal sowing time range for obtaining good
eating quality was put forward. Compared with solar radiation, rainfall, and humidity, temperature
is the primary meteorological factor affecting the eating quality of rice in the lower reaches of the
Huai river. Sowing the rice on different dates altered the heading and maturity dates of rice, and
the difference between the mean daily temperature (Tmean) from the heading to maturity stage
reached 4.6–5.0 ◦C. The Tmean from heading to maturity for all treatments was less than 23.5 ◦C.
When the temperature was lower than 20.2 ◦C during the grain filling period, the value of the
comprehensive evaluation of eating quality (CEQ) of the three types of rice decreased significantly.
The medium-maturing japonica soft rice varieties (SMR), late-maturing japonica soft rice varieties
(SLR), and late-maturing japonica non-soft rice varieties (LR) varieties that were subjected to low
temperatures had a higher amylose content and protein content. Overall, the eating quality of rice in
the lower reaches of the Huai river was affected by the low Tmean after the heading stage. The mean
daily temperature (Tmean) range from the heading to maturity stages of SMR, SLR, and LR varieties
that produced relatively high CEQ were 20.2–23.3 ◦C, 20.2–22.1 ◦C, and 20.3–22.1 ◦C, respectively.
The optimal sowing date ranges of SMR, SLR, and LR were 16 May to 1 June, 16 to 18 May, and 16 to
20 May, respectively.

Keywords: rice eating quality; meteorological indicators; sowing date

1. Introduction

The rice planting area along the lower reaches of Huai River accounts for about 45%
of the rice planting area in Jiangsu Province [1]. Since 1960, the yield per unit area of rice in
this region has significantly increased [2], primarily due to improvements in rice varieties
and innovative cultivation techniques [3–6]. As people’s living standards have improved,
the demand for good-quality rice has increased more than the demand for high-yield rice,
and the demand for high-quality japonica rice is growing rapidly in the Yangtze River Basin,
especially in coastal cities [7]. Therefore, it is extremely important to improve rice quality
and increase the supply of high-quality, high-yield rice [8]. Grain quality includes several
parameters such as grain shape, amylose content, aroma, and other attributes [9]. The
eating quality of rice is controlled by its genes and is also affected by environmental factors
during the grain-filling period [10,11]. Much research has been performed on the effects
of temperature and solar radiation (T and R) on rice production. Previous studies can
typically be divided into two categories: the first is to use an artificial climate chamber
or incubator with different temperatures and light environments during a key growth
stage of rice to study how temperature and light influence the formation of rice yield or
quality [12]; the second is to study the influence of single factor of temperature or light on
rice yield and quality through open active warming or shading, which has little influence
on other environmental factors on farmland [13,14]. However, it is difficult to study the
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effects of temperature and light on rice yield and quality for several reasons. First, the
environmental factors are complex and diverse, including temperature, radiation, humidity,
and rainfall [15]; second, environmental factors change significantly during the growth
process of rice, making them difficult to predict [16]. The results of previous studies differ
due to different test varieties and research methods [17,18]. In this study, seven different
environmental treatments were used to grow rice to study the effects of temperature and
light on the yield and quality of high-quality rice, which represent the actual field growth
conditions of rice. Sufficient light and heat resources help maximize the likelihood of
cultivating high-quality rice [19,20]. Starch and protein are major components in rice
endosperm. Previous studies have demonstrated that temperature affects the activities of
enzymes related to amylose synthesis and decomposition, and indirectly affects amylose
content (AC) [21,22]. Previous studies have also found that the effect of temperature on AC
is related to the AC of the variety itself [23,24]. Most studies found that high temperatures
increased the activity of protein enzymes in the stem, sheath, and leaves, and that more
soluble nitrogen (N) compounds were transported to the grains, which increased the
protein content (PR) in grains [25,26]. Solar radiation also affects rice quality during the
grain-filling period. As solar radiation decreases, the ability of the plant to synthesize
carbohydrates weakens and the number of carbohydrates transferred to the grain decreases,
while the amount of N and protein transferred to the grain per unit increases [27].

However, previous studies primarily focused on a single meteorological factor. Due to
the differences between tested varieties and treatments, no uniform suitable temperature
range has been identified in which to grow high-quality rice [28,29]. There have been few
reports assessing how complex environmental factors affect rice eating quality.

From seed to cooked rice, rice has gone through production, processing, and consump-
tion. Rice growers look for ways to reduce costs and increase rice yields. Rice processing
enterprises pay more attention to the commodity quality of rice, while rice consumers pay
more attention to the edible and tasting quality of rice. Our previous research had shown
that among many meteorological factors, temperature was the key factor affecting yield
formation [30]. Rice yield was more easily affected by the temperature before heading when
they were planted along the lower reaches of Huai river. The excessively high temperature
before heading reduced the number of panicles per unit area of rice. Moreover, the sowing
times of mid maturity and late maturity varieties from 15 to 31 May and 15 to 18 May were
beneficial to high yield. Rice quality is formed after heading. Our research investigates how
the temperature after the heading stage influences the formation of better rice quality under
the optimum sowing period for high yields. We explored the temperature requirements
during the rice filling period to obtain better processing and appearance quality [31]. With
regard to the effects of temperature and solar radiation on the rice commodity quality, we
believed that early sowing was beneficial to improve the head milled rice rate of early
maturing varieties under appropriate early sowing conditions, but early sowing was not
conducive to improve the head milled rice rate of late maturing varieties. For appearance
quality, our study suggested that a lower temperature during grain filling was beneficial for
reducing the chalky grain rate. However, superior milling quality and appearance quality
were not equal to superior eating and tasting quality. We studied the response of rice
eating quality to environmental factors. It was found that the response of rice yield, eating
quality, and milling or appearance quality to rice temperature or solar radiation were not
identical. Moreover, our previous studies on the influence of temperature on the physical
and chemical indexes (amylose content, protein content, etc.) affecting rice eating quality
had not been clarified. In this study, we analyzed how meteorological indicators affects
rice quality in Jiangsu Province by sowing different rice varieties at seven different times.
The purpose of this study is to (1) clarify the meteorological characteristics of high-quality
rice in the lower reaches of the Huai river to obtain better eating quality and (2) propose a
suitable sowing time range for the production of high yield, high-quality rice in this area.
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2. Materials and Methods
2.1. Plant Materials and Experimental Design

Field experiments were conducted at the research farm of Yangzhou University in
Jiangsu Province, China (33◦35′ N, 118◦51′ E) in 2017 and 2018 during rice cropping seasons.
The soil of the field was muddy with 1.59 g kg−1 total nitrogen, 21.42 g kg−1 organic matter,
48.22 mg kg−1 available phosphorus, and 98.28 mg kg−1 available potassium. The rice
materials and sowing dates were listed in Table 1. The transplanting density was 27.8 × 104

hills per hectare (12 cm × 30 cm), with four seedings in each hill. The size of each subplot
was 20 m2 (4 m × 5 m), and three replicates were planted for each variety.

Table 1. The rice varieties and sowing dates.

Types Materials
Sowing Date (Month/Day)

T1 T2 T3 T4 T5 T6 T7

medium-maturing japonica soft rice Nangeng 2728

5/10 5/17 5/24 5/31 6/7 6/14 6/21

Nangeng 505

late-maturing japonica soft rice Nangeng 9108
Fenggeng 1606

late-maturing japonica non-soft rice Fenggeng 3227
Wuyungeng 80

A total of 270 kg ha−1 N was applied as urea in three stages: 94.5 kg ha−1 N before
transplanting, 94.5 kg ha−1 N at 7 days after transplanting, and 81 kg ha−1 N at 65 days
after transplanting. A total of 135 kg ha−1 calcium superphosphate (P2O5 content: 12%)
was applied at the per-transplanting stage. Similarly, 135 kg ha−1 potassium chloride (K2O
content: 60%) was applied at 7 days and 65 days after transplanting. Water, weeds, insects,
and disease were controlled as required, to avoid yield loss.

2.2. Sampling and Measurements

All rice plants were harvested by hand. The moisture of the grain yield was deter-
mined to be 14%. During the maturity stages, three bundles of representative plants with
the average number of tillers in their respective blocks were selected. The panicles were
subjected to high-temperature desiccation at 105 ◦C for 30 min and then dried at 80 ◦C to a
constant weight. The dry weights were then measured.

Amylose content (AC) was determined by assessing the absorption at 620 nm by
scanning the iodine absorption spectrum from 400 to 900 nm with a spectrophotometer (Ul-
trospec 6300 pro, Amershan Biosciences, Cambridge, Sweden). The values were converted
to AC, referencing a standard curve prepared from rice.

Rice starch viscosity characteristics were evaluated using an RVA (Model no. RVA-3D;
Newport Scientific, Sydney, Australia), as described by Zhu et al. [32]. Viscosity values were
recorded as centipoises (cP). A Kjelec™ 8400 equipment (Infratec 1241, FOSS, Copenhagen,
Denmark) was used to determine the N content of the panicles and the N content of milled
rice, while the protein content (PC) was obtained by multiplying the product of N content
by 5.95 [33].

STA1 A (Satake, Hiroshima, Japan) was used to assess the taste value of the rice grains.
The taste value is a comprehensive evaluation of cooked rice and includes appearance,
hardness, viscosity, and degree of balance. The primary function of this test was to convert
the various physicochemical parameters of rice into a comprehensive evaluation of eating
quality (CEQ).

The effective accumulated temperature (EAT) is the sum of the mean daily tempera-
tures during each phenological stage in which the mean daily temperature is above 10 ◦C
each day [6].
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The cumulative solar radiation (CSR) in the determined growth duration, expressed
as MJ m−2, was calculated as:

CSR = ∑Q × Growth duration (1)

Q
Q0

= a + b× S
S0

(2)

where Q is global solar radiation (MJ m−2 d−1), Q0 is the extraterrestrial solar radiation
(MJ m−2 d−1), S is the actual sunshine hours of a day, and S0 is the potential sunshine
hours of a day.

Relative CEQ = CEQTi
∑ CEQTn

, where CEQTi represents the CEQ of rice under Ti treatment,
CEQTn represents the CEQ under treatment that allows the rice to reach full maturity [34,35],
and SMR: n = 7, SLR: n = 4, LR: n = 4.

2.3. Statistical Analysis

Data were analyzed using analysis of variance (ANOVA) with SPSS 13.0. Means
were compared using the least significant difference (LSD) test at the 0.05 probability level.
Graphs were prepared using SigmaPlot 10.0.

3. Results
3.1. Characteristics of Meteorological Indicators
3.1.1. Temperature

The mean daily temperature (Tmean), maximum temperature (Tmax), minimum tem-
perature (Tmin), day temperature (DT), and night temperature (NT) had similar variation
characteristics during the rice growing season (Figure 1). The five temperature indicators
showed a gradually increasing trend since 1 May, reached the maximum value in late July,
then showed a slowly decreasing trend, and reached the lowest value in early November.
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Figure 1. Daily temperature variation during the rice growing season. Tmean, The mean daily temperature; Tmax, maximum
temperature; Tmin, minimum temperature; DT, day temperature; NT, night temperature. (a): 2017; (b): 2018.

3.1.2. Sunshine Hours and Solar Radiation

In this study, the widely used Angstrom-Prescott (AP) model was used to convert
the number of sunshine hours into daily total solar radiation (photosynthetically active
radiation). Therefore, the mean sunshine hours (MSH) and mean daily solar radiation
Rmean in the rice growing season showed similar variation characteristics (Figure 2). The
Rmean showed an overall trend of decreasing day by day, and the change law was consistent
in the two years.
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Figure 2. Variation of mean sunshine hours during rice growing season. MSH: mean sunshine hours; Rmean: mean daily
solar radiation; (a): 2017; (b): 2018.

3.1.3. Rainfall and Relative Humidity

The rainfall in the growing season of rice was mainly concentrated in July and August,
and the monthly rainfall were different in different years (Figure 3). Due to the differences
in mean daily rainfall (MDR), the annual changes of mean relative humidity (MRH),
daytime relative humidity (DH) and night relative humidity (NH) were different. The
relative humidity from July to September were slightly higher than that in other months in
the rice growing season (Figure 4).
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3.2. Difference of Main Meteorological Indicators in Different Growth Stages of Rice

According to the variation characteristics of Tmean, Tmax, Tmin, DT, NT, MSH, Rmean,
MRH, DH, NH, and MDR, we selected four meteorological indicators, Tmean, Rmean, MRH,
and MDR, as the main meteorological indicators to study the differences of meteorological
indicators in rice growth stages under seven sowing time treatments.

The late-maturing japonica soft rice (SLR) and late-maturing japonica non-soft rice (LR)
had similar phenological periods under the same sowing time treatment. Both the SLR
and LR failed to fully mature in varieties T5, T6, and T7. The harvest date (November 8)
was considered the deadline for rice growth and was used to calculate the Tmean, effective
accumulated temperature (EAT), Rmean, and cumulative solar radiation (CSR). In the
analysis of meteorological indicators, SLR and LR were analyzed as the same growth type.
The linear model demonstrated that the Tmean, EAT, Rmean, and CSR from the heading
to maturity stages of medium-maturity japonica soft rice (SMR) decreased by 1.0–1.1 ◦C,
53.2–55.1 ◦C, 0.5–0.6 MJ m−2, and 16.9–24.1 MJ m−2, respectively, when the sowing date
was delayed by 10 days. The Tmean, EAT, Rmean, and CSR of late-maturing japonica rice
decreased by 1.1 ◦C, 51.0–51.8 ◦C, 0.1–0.9 MJ m−2, and 6.6–25.5 MJ m−2, respectively, when
the sowing date was delayed by 10 days [30,31]. The data of the above were published
in a study. However, rice quality includes milling quality, appearance quality, and eating
quality, and different rice quality indexes have different responses to meteorological factors.
The demand of meteorological indicators for forming the best eating quality of rice in this
area is still not clear. In this work, we mainly studied the influence of meteorological factors
on rice eating quality that consumers are most concerned about.

The rainfall in the grain filling stage of different types of rice showed a great difference
between the two years, and the rainfall in 2017 was significantly higher than that in 2018
(Figure 5). In general, rainfall indicators vary greatly from year to year. The average
humidity from heading to maturity varies greatly from year to year, which may be related
to the different rainfall days (Figures 6 and 7).

3.3. Effects of T and R on Rice Eating Quality and Physicochemical Indicators of Rice

An analysis of the comprehensive evaluation of the eating quality (CEQ) of the three
types of rice showed that CEQ decreased as both T and R decreased at the heading to
maturity stages (Table 2). The CEQ of SMR, SLR, and LR in T2–T7 was 2.17–23.92%,
1.27–17.66%, and 1.02–24.32% lower than in T1, respectively. Under the same T and R
treatments, the CEQ of SLR and SMR were both higher than the CEQ of LR.
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Table 2. Influence of T and R on the eating quality of different types of rice 1.

Type Treatment Appearance Hardness Viscosity Degree of
Balance CEQ

2017

SMR

T1 6.7 a 6.7 e 7.4 a 6.9 a 71.6 a

T2 6.6 b 6.8 de 7.0 b 6.7 b 69.5 b

T3 6.2 c 6.9 cd 6.8 b 6.4 c 67.9 c

T4 5.6 d 7.1 c 6.1 c 6.0 d 64.4 d

T5 5.3 e 7.3 b 5.7 d 5.5 e 61.6 e

T6 4.8 f 7.4 b 5.4 e 4.9 f 59.5 f

T7 4.7 a 7.8 a 5.1 f 4.6 g 57.1 g

SLR

T1 7.2 b 6.3 d 7.9 a 7.3 a 75.0 a

T2 6.8 b 6.5 c 7.6 b 7.1 a 73.0 b

T3 6.7 b 6.7 b 7.3 c 6.7 b 70.9 c

T4 6.7 c 6.9 b 6.5 d 6.3 c 68.5 d

T5 6.2 d 6.9 b 6.4 de 6.2 c 66.7 e

T6 5.8 e 6.9 b 6.2 e 5.9 d 65.6 e

T7 5.3 a 7.1 a 5.6 f 5.3 e 62.0 f

LR

T1 5.6 a 7.1 d 6.4 a 5.8 a 64.9 a

T2 5.8 b 7.1 c 6.6 b 5.9 b 66.0 b

T3 4.9 c 7.4 c 5.4 c 4.9 c 59.5 c

T4 5.6 d 7.3 b 5.8 d 5.3 d 62.6 d

T5 4.2 e 7.6 b 4.5 e 4.2 d 54.9 e

T6 4.7 f 7.4 a 5.4 e 4.9 e 59.3 f

T7 3.7 g 7.9 a 4.1 f 3.4 f 51.5 g

2018

SMR

T1 7.6 a 6.3 e 8.0 a 7.6 a 76.3 a

T2 7.3 b 6.6 d 7.9 b 7.3 b 74.3 b

T3 6.9 c 6.9 c 7.6 c 6.9 c 71.8 c

T4 6.3 d 7.1 b 7.1 d 6.3 d 68.2 d

T5 5.9 e 7.2 b 6.5 e 5.9 e 65.7 e

T6 5.7 f 7.2 b 6.1 f 5.7 f 64.0 ef

T7 5.3 g 7.5 a 6.0 f 5.3 g 62.2 f

SLR

T1 7.8 a 6.0 e 8.1 a 7.9 a 78.0 a

T2 7.5 b 6.2 d 7.9 a 7.6 b 76.3 ab

T3 7.3 c 6.3 cd 7.7 b 7.4 c 74.9 b

T4 6.8 d 6.3 cd 7.1 c 7.0 d 72.0 c

T5 6.6 e 6.5 bc 6.7 d 6.8 e 69.5 d

T6 6.2 f 6.6 b 6.2 e 6.2 f 67.1 e

T7 6.0 g 6.9 a 6.0 f 5.8 g 65.3 f

LR

T1 6.3 a 6.8 d 7.1 a 6.5 a 69.2 a

T2 6.0 b 6.8 cd 6.6 b 6.1 b 67.3 b

T3 5.8 c 7.0 bc 6.4 c 5.6 c 65.5 c

T4 5.5 d 7.0 b 5.8 d 5.6 c 61.5 d

T5 4.6 e 7.5 a 5.5 e 4.9 d 58.8 e

T6 4.6 e 7.6 a 5.0 f 4.4 e 57.2 f

T7 4.3 f 7.7 a 4.5 g 4.3 e 54.8 g

Year (Y) ** ** ** ** **

Type (T) ** ** ** ** **

Sowing date (S) ** ** ** ** **

Y × T ** ** ** ** **
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Table 2. Cont.

Type Treatment Appearance Hardness Viscosity Degree of
Balance CEQ

Y × S ** ** ** ** ns

T × S ** ** ** ** *

Y × T × S ** ** ** ** ns
1 SMR: medium-maturing japonica soft varieties, SLR: late-maturing japonica soft varieties, LR: late-maturing
japonica non-soft rice varieties, CEQ: comprehensive evaluation of eating quality. Different letters indicate
statistical significance at the p = 0.05 level within the same column. ns: not significant at the p = 0.05 level.
* Significant at the p = 0.05 level. ** Significant at the p = 0.01 level.

The amylose content (AC) in three rice varieties increased as T and R decreased
(Table 3). The AC of SMR, SLR, and LR in the T2–T7 stages were 0.76–26.96%, 1.88–28.20%,
and 1.45–18.76% higher than in the T1 stages, respectively. The protein content (PR) of
three types of rice increased as T and R decreased, and the PR of SMR, SLR, and LR in the
T2–T7 stages were 2.04–17.60%, 1.13–11.32%, and 2.27–13.83% higher than in the T1 stage,
respectively.

Table 3. Effect of T and R on AC and PR in rice 1.

Type Treatment
AC (%) PR (%)

2017 2018 2017 2018

SMR T1 7.96 d 8.31 c 7.36 d 7.22 e

T2 8.02 d 8.45 c 7.51 d 7.41 e

T3 8.57 c 8.43 c 7.84 cd 7.63 d

T4 8.70 c 8.92 b 8.11 bc 7.81 cd

T5 9.38 b 9.15 b 8.31 abc 7.96 c

T6 10.05 a 9.19 b 8.44 ab 8.28 b

T7 10.11 a 9.54 a 8.61 a 8.49 a

SLR T1 9.72 e 8.97 c 6.81 d 6.80 c

T2 10.15 d 9.14 c 7.00 cd 6.88 c

T3 10.61 c 9.38 c 7.15 bc 6.92 c

T4 11.19 b 10.32 b 7.28 abc 7.18 b

T5 11.53 ab 11.18 a 7.42 ab 7.26 b

T6 11.79 a 11.37 a 7.53 a 7.49 a

T7 11.90 a 11.50 a 7.58 a 7.50 a

LR T1 15.49 e 14.49 e 6.91 d 6.82 e

T2 15.71 e 15.21 d 7.13 c 6.97 d

T3 16.13 d 15.69 c 7.19 bc 7.10 d

T4 16.21 d 15.82 c 7.26 bc 7.37 c

T5 16.81 c 15.89 c 7.38 b 7.57 b

T6 17.25 b 16.46 b 7.58 a 7.70 ab

T7 17.73 a 17.21 a 7.75 a 7.76 a

Year (Y) ** **

Type (T) ** **

Sowing date (S) ** **

Y×T ** ns

Y×S ns ns

T×S ** ns

Y×T×S ** ns
1 AC: amylose content, PR: protein content. Different letters indicate statistical significance at the p = 0.05 level
within the same column. ns: Not significant at the p = 0.05 level. ** Significant at the p = 0.01 level.
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Under the same T and R conditions, the AC of SMR was lower than that of SLR
and LR. The PR of SLR was slightly lower than that of SMR and LR. Correlation analysis
demonstrated that there was a significant negative correlation between the CEQ, PR, and
AC of SMR, SLR, and LR (Table 4).

Table 4. Correlation of the CEQ with AC and PR 1.

Quality
Trait

SMR SLR LR

PR AC PR AC PR AC

CEQ −0.908 ** −0.653 ** −0.925 ** −0.965 ** −0.848 ** −0.900 **
1. ** Significant at the p = 0.01 level. r0.01 = 0.478.

3.4. Effect of T and R on N Content in Rice

The methods currently used to determine the PR of foods, including the Kjeldahl and
Dumas methods, depend on the determination of N. As T and R decreased, variations
in the N content of the rice grain of the SMR, SLR, and LR varieties was consistent with
the increasing PR observed in milled rice by the Kjeldahl method (Table 5). The analysis
of rice yield and N accumulation in ears at the maturity stage demonstrated that the rice
yield of SMR, SLR, and LR in the T2–T7 stages decreased by 2.15–28.35%, 2.02–33.30%,
and 2.20–32.93%, respectively, compared with the T1 stage. Compared with T1, the N
accumulation in the spikes of SMR and SLR in the T2–T7 stage decreased by 1.82–22.87%
and 0.11–33.81%, respectively. In 2017, N accumulation in the spikes of LR in T2–T7 stages
decreased by 1.66–29.08% compared with T1. In 2018, N accumulation in the spikes of T2
was the highest, and the N accumulation in the T3–T7 stages was 3.54%, 7.90%, 18.55%,
25.04%, and 28.90% lower than in the T2 stage, respectively. The primary reason for the
increase in both N content and PR was that N accumulation in panicles at the maturity
stage decreased less than the rice yield.

Table 5. Effects of T and R on rice yield and N accumulation of different types of rice 1.

Type Treatment
Yield (t ha−1) N Accumulation in

Rice Grain (kg ha−1)
N content in Rice

Grain (%)

2017 2018 2017 2018 2017 2018

SMR

T1 9.92 a 10.05 a 132.51 a 132.29 a 1.26 d 1.24 d

T2 9.71 ab 9.82 ab 129.84 ab 129.89 a 1.26 d 1.25 d

T3 9.37 bc 9.51 bc 126.22 ab 125.98 ab 1.26 d 1.28 c

T4 9.10 c 9.20 c 124.90 b 124.60 ab 1.28 cd 1.29 bc

T5 8.32 d 8.49 d 113.65 c 114.96 bc 1.30 c 1.29 bc

T6 7.62 e 7.87 e 107.49 cd 107.83 cd 1.34 b 1.31 b

T7 7.11 e 7.27 f 102.64 d 102.04 d 1.37 a 1.35 a

SLR

T1 10.23 a 10.47 a 124.66 a 125.57 a 1.13 d 1.13 d

T2 10.02 ab 10.16 ab 124.53 a 124.79 a 1.14 cd 1.14 d

T3 9.54 b 9.66 bc 118.29 ab 119.58 a 1.15 c 1.15 cd

T4 8.97 c 9.10 c 113.48 b 115.29 a 1.19 b 1.18 bc

T5 8.20 d 8.25 d 101.07 c 101.08 b 1.20 b 1.19 b

T6 7.47 e 7.58 de 91.88 cd 94.28 bc 1.21 a 1.21 ab

T7 6.83 f 6.98 e 82.51 d 86.95 c 1.22 a 1.23 a

LR

T1 10.38 a 10.38 a 130.37 a 130.50 a 1.14 d 1.14 d

T2 10.05 ab 10.15 a 128.20 a 131.23 a 1.14 cd 1.14 d

T3 9.56 b 9.70 b 124.07 ab 126.59 ab 1.15 cd 1.16 c

T4 8.99 c 9.10 c 117.03 b 120.86 b 1.16 c 1.18 c

T5 8.04 d 8.18 d 105.17 c 106.89 c 1.20 b 1.20 b

T6 7.48 e 7.58 e 99.11 cd 98.37 d 1.22 ab 1.22 a

T7 6.97 e 6.96 f 92.46 d 93.30 d 1.24 a 1.23 a
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Table 5. Cont.

Type Treatment
Yield (t ha−1) N Accumulation in

Rice Grain (kg ha−1)
N content in Rice

Grain (%)

2017 2018 2017 2018 2017 2018

Year (Y) * ns ns

Type (T) ns ** **

Sowing date (S) ** ** **

Y × T ns ns ns

Y × S ns ns ns

T × S ns ns **

Y × T × S ns ns ns
1. Different letters indicate statistical significance at the p = 0.05 level within the same column. ns: Not significant
at the p = 0.05 level. * Significant at the p = 0.05 level, ** Significant at the p = 0.01 level.

3.5. Effects of T and R on RVA of Rice

A Rapid Visco Analyzer (RVA) was used to assess the pasting properties of rice
flour [36]. The characteristics of rice as determined by RVA analysis were significantly
different under different T and R conditions (Table 6). The SLR, SMR, and LR rice varieties
all had higher peak viscosity, trough viscosity, final viscosity, pasting temperatures, and
smaller setbacks in the T1–T3 stages. Therefore, decreases in T and R from the heading
stage to the maturity stage deteriorated the pasting properties of rice and decreased eating
quality. The characteristic values of the RVA parameters of different types of rice differ
under the same T and R conditions. Compared with the LR, the SMR and SLR with low
AC have both a larger peak viscosity and a larger final viscosity, a smaller trough viscosity,
and lower breakdown, setback, and consistence values.

Table 6. Influence of T and R on RVA parameters of different types of rice 1.

Type Treatment
Peak

Viscosity
(cP)

Trough
Viscosity

(cP)

Breakdown
(cP)

Final
Viscosity

(cP)

Setback
(cP)

Consistence
(cP)

Peak Time
(min)

Pastingte
Temperature

(◦C)

2017

SMR T1 3012 a 1060 ab 1620 a 1951 a −1392 b 560 a 5.19 c 81.30 a

T2 3075 a 1137 a 1716 a 1938 a −1359 b 579 a 5.23 bc 80.90 ab

T3 2692 b 1063 ab 1634 a 1629 b −1058 a 571 a 5.32 abc 81.23 a

T4 2666 b 1092 ab 1645 a 1574 b −1021 a 553 a 5.36 abc 80.46 bc

T5 2611 b 1077 ab 1657 a 1534 b −954 a 580 a 5.38 abc 80.34 bc

T6 2626 b 1054 ab 1625 a 1573 b −1002 a 571 a 5.45 ab 80.18 bc

T7 2549 b 1024 b 1613 a 1525 b −936 a 589 a 5.50 a 79.76 c

SLR T1 2759 a 1470 a 2067 a 1289 a −692 c 597 cd 6.05 abc 72.24 b

T2 2525 b 1345 abc 1939 ab 1180 cd −585 b 595 cd 6.12 ab 71.20 bc

T3 2606 b 1379 ab 2040 ab 1227 ab −566 b 662 ab 6.03 abc 71.81 b

T4 2567 b 1407 ab 1995 ab 1160 ab −572 b 588 d 6.12 ab 71.58 b

T5 2505 b 1300 bcd 1932 ab 1206 bcd −573 b 632 bc 6.12 a 70.43 c

T6 2365 c 1211 cd 1892 ab 1154 abc −473 a 681 a 5.97 c 78.34 a

T7 2297 c 1171 d 1878 b 1127 cd −420 a 707 a 6.00 bc 78.91 a

LR T1 2699 a 1612 a 2693 a 1087 d −6 e 1081 bc 6.20 ab 72.19 bc

T2 2652 a 1584 a 2665 a 1068 a 13 e 1081 bc 6.20 ab 72.63 bc

T3 2695 a 1612 a 2712 a 1083 a 17 de 1101 ab 6.13 b 71.40 c

T4 2699 a 1625 a 2739 a 1074 a 40 cd 1114 ab 6.13 b 71.41 c

T5 2537 a 1524 a 2598 a 1013 b 61 c 1074 bc 6.18 ab 73.01 b

T6 2572 a 1654 a 2664 a 919 d 92 b 1010 cd 6.28 a 73.00 b

T7 2391 a 1417 a 2549 a 974 c 158 a 1132 a 6.08 b 79.53 a
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Table 6. Cont.

Type Treatment
Peak

Viscosity
(cP)

Trough
Viscosity

(cP)

Breakdown
(cP)

Final
Viscosity

(cP)

Setback
(cP)

Consistence
(cP)

Peak Time
(min)

Pastingte
Temperature

(◦C)

2018

SMR T1 3234 a 1256 a 1783 a 1977 a −1451 d 526 ab 5.07 b 82.21 a

T2 3137 a 1248 a 1755 a 1889 a −1382 d 507 bc 5.08 b 82.11 a

T3 2806 b 1201 b 1691 b 1605 b −1115 c 490 cd 5.28 a 80.94 b

T4 2780 b 1188 b 1704 b 1592 b −1076 bc 517 ab 5.27 a 80.54 bc

T5 2656 c 1154 cd 1679 b 1502 bc −977 ab 525 ab 5.35 a 79.94 cd

T6 2633 c 1098 d 1606 c 1535 bc −1027 abc 508 bc 5.27 a 79.71 d

T7 2574 c 1114 d 1645 d 1460 c −929 a 531 a 5.38 a 79.35 d

SLR T1 2822 a 1478 a 2074 a 1344 a −748 c 596 d 5.83 c 72.40 a

T2 2555 c 1309 b 1889 de 1247 b −666 b 581 d 5.88 c 70.80 c

T3 2616 b 1401 cd 2022 b 1216 bc −594 b 622 c 6.02 a 70.36 c

T4 2525 c 1336 cd 1930 cd 1188 bcd −595 b 594 d 5.93 bc 71.43 b

T5 2425 d 1276 d 1970 c 1149 cde −455 a 694 a 5.95 ab 69.43 d

T6 2314 e 1178 e 1851 e 1136 de −463 a 673 b 5.92 bc 69.43 d

T7 2300 e 1205 e 1894 d 1095 e −407 a 688 ab 6.00 a 69.23 d

LR T1 2816 a 1579 ab 2542 a 1237 a −274 e 963 b 6.10 bc 73.40 a

T2 2703 b 1554 b 2552 ab 1149 b −151 d 998 b 6.10 bc 71.98 b

T3 2677 b 1639 a 2631 b 1038 c −46 c 992 b 6.22 a 72.99 a

T4 2524 c 1527 b 2593 b 997 c 70 b 1067 a 6.15 b 71.79 b

T5 2322 d 1351 c 2421 c 971 cd 98 b 1070 a 6.02 d 71.06 c

T6 2310 d 1401 c 2479 d 910 de 169 a 1078 a 6.07 cd 70.81 c

T7 2229 e 1336 c 2414 d 892 e 186 a 1078 a 6.07 bc 70.84 c

Year (Y) ns ns * ns ** ** ** **

Type (T) ** ** ** ** ** ** ** **

Sowing date (S) ** ** ** ** ** ** ** **

Y × T ** ** ** ns ns ** ns **

Y × S ** * ns ** ** ** ** **

T × S ** ** * ** ** ** ** **

Y × T × S ns ns ns ns ** ** ** **
1. Different letters indicate statistical significance at the p = 0.05 level within the same column. ns: Not significant at the p = 0.05 level.
* Significant at the p = 0.05 level, ** Significant at the p = 0.01 level.

3.6. Correlation between Eating Quality and T and R from the Heading to Maturity Stages

Correlation analysis demonstrated that the CEQ of the SMR, SLR, and LR rice vari-
eties was significantly positively correlated with the Tmean, EAT, CR, and MRH from the
heading to maturity stages (Table 7). There was a significant positive correlation between
CEQ and Rmean, and CSR and SMR. However, for SLR and LR, there was no significant
correlation between CEQ and solar radiation. The correlation coefficient between CEQ
and temperature from the heading to maturity stages of SMR, SLR, and LR rice varieties
were higher than the correlation coefficients between CEQ and solar radiation, rainfall, and
relative humidity. This indicates that the temperature affects the eating quality of rice more
than other meteorological indictors. This region has abundant solar radiation resources
and rainfall, meaning that they are not a limiting factor affecting the production of rice
with good CEQ.

Table 7. Correlation between CEQ and meteorological indicators 1.

Type
2017 2018

Tmean EAT Rmean CSR CR MRH Tmean EAT Rmean CSR CR MRH

SMR 0.848 ** 0.873 ** 0.663 ** 0.602 * 0.818 ** 0.737 ** 0.958 ** 0.953 ** 0.920 ** 0.878 ** 0.873 ** 0.937 **
SLR 0.935 ** 0.963 ** 0.317 −0.118 0.937 ** 0.895 ** 0.964 ** 0.967 ** 0.957 ** 0.716 ** 0.733 ** 0.929 **
LR 0.978 ** 0.974 ** 0.458 −0.093 0.938 ** 0.924 ** 0.963 ** 0.959 ** 0.947 ** 0.696 ** 0.777 ** 0.944 **

1 * Significant at the p = 0.05 level. ** Significant at the p = 0.01 level. SMR: r0.01 = 0.661; r0.05 = 0.533, SLR and LR: r0.01 = 0.478; r0.05 = 0.374.
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3.7. Temperature Characteristics and Optimal Sowing Date Range for Producing Rice with High
Eating Quality

If the CEQ of rice under a certain temperature condition exceeds the average CEQ of
the rice variety under fully mature treatments, then the rice is considered to have good
eating quality under that temperature. Under fully mature conditions, the CEQs of SMR,
SLR, and LR were significantly positively correlated with Tmean and EAT from the heading
to maturity stages (Figures 8 and 9). The range of Tmean and EAT for the relative CEQs of
SMR, SLR, and LR from the heading to maturity stages according to the linear equation are
listed in Table 8 when the relative eating value exceeds 1.0. The temperature demand from
the heading to maturity stages was higher for SMR rice than for the SLR and LR varieties.
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Table 8. Characteristics of temperature in the grain filling stage for good eating quality rice (◦C).

Temperature SMR SLR LR

EAT
Yield 580.6 (±4.2)–724.9 (±13.2) 574.7 (±2.0)–673.8 (±14.4) 575.7 (±0.6)–673.8 (±14.4)
CEQ 577.7 (±7.6)–715.6 (±13.2) 572.7 (±2.5)–673.8 (±14.4) 579.1 (±5.7)–664.8 (±1.6)

Tmean
Yield 20.4 (±0.2)–23.0 (±0.4) 20.3 (±0.1)–22.1 (±0.1) 20.3 (±0.1)–22.1 (±0.1)
CEQ 20.4 (±0.2)–23.0 (±0.4) 20.3 (±0.2)–22.1 (±0.1) 22.0 (±0.1)–22.0 (±0.1)

The temperature characteristics of 2011, 2014, and 2015 are different from those of
other years, which have been analyzed in detail in a separate paper [31]. This indicates
that the remaining seven years of T and R conditions are normal. The optimal date ranges
for sowing rice to obtain relatively high yields and good eating quality are listed in Table 9.
The earliest suitable sowing date for SMR, SLR, and LR rice varieties to obtain high yield
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and good eating quality was May 15, and the latest optimal sowing dates for SMR, SLR,
and LR were June 1, May 18, and May 20, respectively.

Table 9. The range of suitable sowing dates over the years was deduced according to the requirement
of EAT in the grain filling stage for rice to obtain good eating quality 1.

Yield ESD

SMR SLR LR

LSD LSD LSD
2017 2018 2017 2018 2017 2018

2007 5/10 5/29 6/1 5/21 5/21 5/20 5/22
2008 5/15 5/30 6/1 5/20 5/22 5/20 5/22
2009 4/28 6/1 6/2 5/20 5/22 5/19 5/24
2010 5/14 6/4 6/6 5/22 5/24 5/22 5/25
2011 5/23 5/26 5/28 - - - -
2012 4/18 5/30 6/1 5/18 5/20 5/18 5/21
2013 4/27 6/4 6/5 5/23 5/24 5/23 5/25
2014 5/6 5/19 5/21 5/6 5/8 - 5/8
2015 4/23 5/17 5/20 5/3 5/5 5/1 5/6
2016 4/26 5/31 6/2 5/16 5/18 5/16 5/20

1 ESD: earliest suitable sowing date; LSD: latest suitable sowing date.

4. Discussion
4.1. Effects of T and R on Rice Eating Quality

In this study, the CEQ of all rice varieties tested was highest in the T1 stage. Compared
with T1, the appearance and viscosity of cooked rice in the T2–T7 stages worsened and
hardness increased. A lower coefficient of correlation was observed between CEQ and
solar radiation than between CEQ and temperature. There was a significant positive
correlation between CEQ and CR, but the CR from heading to maturity of rice in 2017 was
200–350 mm more than that in 2018, and the annual difference was much greater than that
in different sowing time treatments. The differences in relative humidity between years
were also greater than that in different sowing time treatments. Therefore, we believe that
the CR and relative humidity under sowing time treatments were not the meteorological
factors limiting the increase of CEQ, and temperature was the primary environmental
factor affecting the eating quality of rice in the lower reaches of the Huai river.

The eating quality of rice is affected by AC and PR [8,37,38], and the grain-filling stage
is the most important period affecting the physicochemical properties of rice [16,19]. The
AC of three types of rice increased as temperatures decreased in the heading to maturity
stages. A significant negative correlation between the AC and CEQ of rice was observed,
which was consistent with the conclusion of previous studies: that reducing amylose
improved eating quality [11]. The results of the RVA analysis of rice are closely related to
AC. Most varieties with good eating quality had large breakdowns and small setbacks [39].
The peak viscosity, trough viscosity, final viscosity, and pasting temperature of all three
varieties decreased as temperatures decreased, while the setback and consistence increased,
which was similar to the results of previous studies [23,33]. Therefore, sowing early can
increase temperatures from the heading to maturity stages, reduce AC, and improve the
eating quality of rice. Under the same T and R conditions, the setback and consistence
values of the SMR and SLR varieties were both lower in the LR variety. Selecting varieties
with low AC can improve eating quality.

Rice PR is used to measure the nutritional quality of rice [40], and is an important factor
affecting the eating quality of rice [25]. Previous studies have suggested that increases in PR
slow the water absorption rate of rice, reduce the amount of water absorbed, insufficiently
gelatinize rice, and increase the hardness of cooked rice [41,42]. The N content of milled
rice was measured using the Kjeldahl method and converted into PR. The N content of
the panicle and the PR of milled rice for all rice varieties increased as Tmean decreased
from the heading to maturity stages, which was not consistent with the positive correlation
between PR and temperature identified by most studies [21,25]. In this study, the Tmean
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(17.3–21.2 ◦C) in T3–T7 from the heading to maturity stages was lower than the optimal
temperature (21.7–26.7 ◦C) of the rice-filling stage [28]. Lower temperatures decreased rice
yield more than that the N accumulation decreased in the panicle, which caused both the
grain N content and PR in milled rice to increase. Increases in PR eventually reduced the
eating quality of rice.

4.2. Temperature Characteristics and Suitable Sowing Dates to Cultivate High-Quality Rice in the
Lower Reaches of the Huai River

Researchers have improved the yield and quality of rice by breeding varieties, chang-
ing cropping systems, and adjusting cultivation and management measures [15,43–46].
This study found significant differences in the eating quality of rice under different tem-
perature conditions. Under relatively high yield conditions, the Tmean range from the
heading to maturity stages of the SMR, SLR, and LR varieties that produced relatively
high CEQ values were 20.2–23.3 ◦C, 20.2–22.1 ◦C, and 20.3–22.1 ◦C, respectively. These
ranges were lower than the optimal temperatures identified by previous studies. The
different temperature ranges are related to differences between the varieties used in this
experiment [47], as well as the different T and R resources of the test site [16].

Winter wheat in the lower reaches of the Huai river is typically harvested from 1 to 15
June [48]. After assessing the time of harvesting and other agricultural factors, the earliest
optimal sowing date for rice in this region is 16 May. The sowing date ranges for SMR,
SLR, and LR under a rice-wheat double-cropping system are 16 May–1 June, 16–18 May,
and 16–20 May, respectively. If SMR, SLR, and LR rice varieties are sown earlier than 15
May, there is a risk of low temperatures, and thus cold-temperature damage during the
seedling period.

5. Conclusions

Temperature is the primary environmental factor affecting the eating quality of rice in
the lower reaches of the Huai river. The lower temperature from the heading to maturity
stage reduced the amylose content and protein content of rice, and the viscosity and
hardness of cooked rice decreased; CEQ also decreased. An analysis of the different types
of temperature and meteorological conditions in 2007–2016 found that the Tmean ranges
from the heading to maturity stages of the SMR, SLR, and LR varieties that produced
relatively high CEQ values were 20.2–23.3 ◦C, 20.2–22.1 ◦C, and 20.3–22.1 ◦C, respectively.
The optimal date ranges for sowing the SMR, SLR, and LR varieties under a rice-wheat
double-cropping system were 16 May–1 June, 16–18 May and 16–20 May, respectively. This
study proposed a suitable temperature range for growing three types of rice, which will
help mitigate the adverse effects of future climate change impacts on the eating quality of
rice in the lower reaches of the Huai river. The suitable temperature range and sowing
date identified by this study are only applicable to rice with carpet seedlings sown by
mechanical transplanting; whether they are applicable to planting rice using other methods,
such as direct seeding, requires additional research.
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