
agriculture

Article

Disease Detection in Apple Leaves Using Deep Convolutional
Neural Network

Prakhar Bansal 1, Rahul Kumar 2 and Somesh Kumar 1,*

����������
�������

Citation: Bansal, P.; Kumar, R.;

Kumar, S. Disease Detection in Apple

Leaves Using Deep Convolutional

Neural Network. Agriculture 2021, 11,

617. https://doi.org/10.3390/

agriculture11070617

Academic Editor: Massimo Cecchini

Received: 6 May 2021

Accepted: 18 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ABV-Indian Institute of Information Technology & Management Gwalior, Madhya Pradesh,
Gwalior 474015, India; bansalprakhar.2266@gmail.com

2 Indian Institute of Technology Ropar, Rupnagar 14001, India; Rahul.kumar@iitrpr.ac.in
* Correspondence: somesh@iiitm.ac.in

Abstract: The automatic detection of diseases in plants is necessary, as it reduces the tedious work of
monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize
further degradation of plants. Besides the decline of plant health, a country’s economy is highly
affected by this scenario due to lower production. The current approach to identify diseases by an
expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained
DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple
trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases,
using its images. Various Image Augmentation techniques are included in this research to increase the
dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an
accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple
diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics
and can be deployed in the agricultural domain to identify plant health accurately and timely.

Keywords: machine learning; deep learning; convolutional neural network; transfer learning;
DenseNet121; EfficientNetB7; NoisyStudent

1. Introduction

The production of fruits and crops across the globe is highly influenced by various
diseases. A decrease in production leads to an economic degradation of the agricultural
industry worldwide. Apple trees are cultivated worldwide, and apple is one of the most
widely eaten fruits in the world. The world produced an estimated 86 million tons of
apples in 2018, and production and consumption have increased ever since [1]. However,
the average national yield of apples is low in comparison to the potential yield of apples.
The major factors for the low production of apples are ecological factors, poor post-harvest
technologies, less thrust on basic research, inadequate supply of quality planting materi-
als to farmers and socio-economic constraints, etc. Despite their high consumption and
medicinal benefits, apple trees are prone to a variety of diseases caused due to insects and
micro-organisms such as bacteria.There are several diseases which attack apple, the major
one being anthracnose (Neofabraea spp.) cedar apple rust (Gymnosporangium juniperivir-
ginianae), fireblight (Erwinia amylovora), scab (Venturia inaequalis) and powdery mildew
(Podosphaera leucotricha). The proper care of trees using fertilizers is thus an important step.
A timely determination of such conditions in the leaves can help the farmers and prevent
further losses by taking proper actions. Using just the traditional approaches for diag-
nosing the plant’s disease, farmers often miss the ideal time for preventing such diseases,
since the use of these conventional diagnostic approaches takes a lot of time. Currently,
there are no automated procedures for such timely detection, and expert supervision is
required frequently. A lack of automation leads to a waste of time and money, which
deteriorates the quality of fruits and crops. Advancement in technology has directed ma-
chine learning [2] and additional soft computing methods in this domain, which are very

Agriculture 2021, 11, 617. https://doi.org/10.3390/agriculture11070617 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-8712-1646
https://doi.org/10.3390/agriculture11070617
https://doi.org/10.3390/agriculture11070617
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11070617
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11070617?type=check_update&version=1

Agriculture 2021, 11, 617 2 of 23

useful in the automatic detection and classification of diseases in various plants. Anuradha
Badage [3] proposed a system that can periodically inform the farmers in advance about
the crop diseases and help them to take the required actions. The system used Canny
Edge Detection [4], which captures the deformities in the leaves and color changes in
the leaves to identify the diseases accurately. In another research, Korkut, Umut Baris
et al. [5] collected images of leaves of different plant species and extracted their features
via transfer learning. After that, various machine learning methods were employed on
the extracted features, and the final model was achieved with an accuracy of 94%. Despite
the advent of different machine learning approaches to enhance the overall efficiency of
disease analysis in plants/crops, multiple factors such as light conditions of crop images
and disease variations affect the detection accuracy. An evident advantage of deep learning
over machine learning is that deep learning techniques can be applied directly to raw data
in various formats such as .csv, .jpg, etc. Machine learning, on the other hand, requires
an additional step of pre-processing in the form of feature extraction. Conventional ma-
chine learning algorithms such as Support Vector Machines (SVMs) [6], Decision Trees [7],
Bayesian Networks [8], etc., are flat-algorithms. Flat indicates that these algorithms cannot
be applied to raw data directly. Figure 1 shows the steps involved in solving a problem
via machine learning. The raw data are fed to the model directly in deep learning and any
impurity in data can lead the incorrect learning of the model, and thus will not classify it
correctly.

Agriculture 2021, 11, x FOR PEER REVIEW 2 of 24

 Internal Use - Confidential

and money, which deteriorates the quality of fruits and crops. Advancement in
technology has directed machine learning [2] and additional soft computing methods in
this domain, which are very useful in the automatic detection and classification of diseases
in various plants. Anuradha Badage [3] proposed a system that can periodically inform
the farmers in advance about the crop diseases and help them to take the required actions.
The system used Canny Edge Detection [4], which captures the deformities in the leaves
and color changes in the leaves to identify the diseases accurately. In another research,
Korkut, Umut Baris et al. [5] collected images of leaves of different plant species and
extracted their features via transfer learning. After that, various machine learning
methods were employed on the extracted features, and the final model was achieved with
an accuracy of 94%. Despite the advent of different machine learning approaches to
enhance the overall efficiency of disease analysis in plants/crops, multiple factors such as
light conditions of crop images and disease variations affect the detection accuracy. An
evident advantage of deep learning over machine learning is that deep learning
techniques can be applied directly to raw data in various formats such as .csv, .jpg, etc.
Machine learning, on the other hand, requires an additional step of pre-processing in the
form of feature extraction. Conventional machine learning algorithms such as Support
Vector Machines (SVMs) [6], Decision Trees [7], Bayesian Networks [8], etc., are flat-
algorithms. Flat indicates that these algorithms cannot be applied to raw data directly.
Figure 1 shows the steps involved in solving a problem via machine learning. The raw
data are fed to the model directly in deep learning and any impurity in data can lead the
incorrect learning of the model, and thus will not classify it correctly.

Figure 1. Basic steps involved in machine learning problems.

The primary advantage of using deep learning [9] techniques is to eliminate the need
for feature extraction. Feature extraction is a complex process and requires a deep
understanding of the problem in hand. Deep learning algorithms determine high-level
features from data in an incremental manner. Figures 1 and 2 reveal the steps associated
with a deep learning problem. Deep learning combines the steps of feature extraction and
classification. Another advantage of deep learning algorithms is their great potential to
work with extensive data [10]. Pardede, Hilman F. et al. [11] used a convolutional
autoencoder to counter the problem of hand-crafted features. The autoencoder extracted
features via unsupervised learning techniques. The outputs of the autoencoder are later
fed to an SVM-based classifier for the purpose of feature learning. The advancements in
the domain of computer vision and deep learning have led to the use of convolutional
neural networks [12] (CNNs). CNNs have become the go-to models for image
classification tasks. The most significant advantage is its architecture and how it extracts
and passes features to the subsequent layers. A CNN consists of broadly two modules—
the feature extraction module and the classifier module. The role of the feature extraction
module is to draw out the relevant features from the image via convolution and pooling.
The classifier module acts upon the extracted features and performs the task of output
predictions. Figure 3 shows a simplified structure of convolutional neural networks.

Figure 1. Basic steps involved in machine learning problems.

The primary advantage of using deep learning [9] techniques is to eliminate the
need for feature extraction. Feature extraction is a complex process and requires a deep
understanding of the problem in hand. Deep learning algorithms determine high-level
features from data in an incremental manner. Figures 1 and 2 reveal the steps associated
with a deep learning problem. Deep learning combines the steps of feature extraction
and classification. Another advantage of deep learning algorithms is their great potential
to work with extensive data [10]. Pardede, Hilman F. et al. [11] used a convolutional
autoencoder to counter the problem of hand-crafted features. The autoencoder extracted
features via unsupervised learning techniques. The outputs of the autoencoder are later fed
to an SVM-based classifier for the purpose of feature learning. The advancements in the
domain of computer vision and deep learning have led to the use of convolutional neural
networks [12] (CNNs). CNNs have become the go-to models for image classification tasks.
The most significant advantage is its architecture and how it extracts and passes features to
the subsequent layers. A CNN consists of broadly two modules—the feature extraction
module and the classifier module. The role of the feature extraction module is to draw out
the relevant features from the image via convolution and pooling. The classifier module
acts upon the extracted features and performs the task of output predictions. Figure 3
shows a simplified structure of convolutional neural networks.

Agriculture 2021, 11, 617 3 of 23Agriculture 2021, 11, x FOR PEER REVIEW 3 of 24

 Internal Use - Confidential

Figure 2. Basic steps involved in deep learning problems.

Figure 3. The modules of a basic CNN.

Since 2016, many researchers have started to leverage the potential of CNNs to build
better image classifiers. Justine Boulent et al. [13], in their work, summarized 19 different
studies which made use of CNNs to detect the diseases in crops automatically. Their work
also highlights the significant shortcomings and issues in these studies. Keeping in
prospect the success of CNNs as a classifier for image data, we have tried to leverage its
functionality for our research. In this paper, we proposed an ensemble of three state-of-
the-art deep learning models—DenseNet121 [14], EfficientNetB7 [15], and EfficientNet
NoisyStudent [16] to automate the task of disease detection in apple’s leaves among four
classes—healthy, scab, rust, and multiple diseases. We used transfer learning [17] to
transfer the knowledge of the previously learned models into our research. We ensembled
the three model’s prediction outputs by Model Averaging [18], which reduces the
variance observed in the predictions across models.

The accuracy achieved by our proposed model on the validation dataset is 96.25%.
From the results, it is seen that the model outperformed various other previous models
proposed earlier in terms of its performance metrics such as accuracy, etc. The proposed
model uses Image Augmentation techniques such as Canny Edge Detection [4], Flipping,
Blurring, etc., to increase our dataset’s size and develop a more robust and generic model.
To the best of our knowledge, the techniques proposed in this paper are not available in
the previous literature and can significantly boost the model’s performance by providing
an enhanced dataset for training. Ensembling has led to a reduced variance in the
predictions and produced better accuracy in difficult cases of multiple diseased leaves. In
addition to this, the proposed model is deployed using a web application to make it easily
accessible for farmers.

The remainder of this paper is organized as follows: In Section 2, a detailed
background study is presented, which includes the work carried out previously in this
domain. Section 3 discusses the proposed methodology, which summarizes the working
steps taken to reach our proposed model. Details about the dataset, Image Augmentation

Figure 2. Basic steps involved in deep learning problems.

Agriculture 2021, 11, x FOR PEER REVIEW 3 of 24

 Internal Use - Confidential

Figure 2. Basic steps involved in deep learning problems.

Figure 3. The modules of a basic CNN.

Since 2016, many researchers have started to leverage the potential of CNNs to build
better image classifiers. Justine Boulent et al. [13], in their work, summarized 19 different
studies which made use of CNNs to detect the diseases in crops automatically. Their work
also highlights the significant shortcomings and issues in these studies. Keeping in
prospect the success of CNNs as a classifier for image data, we have tried to leverage its
functionality for our research. In this paper, we proposed an ensemble of three state-of-
the-art deep learning models—DenseNet121 [14], EfficientNetB7 [15], and EfficientNet
NoisyStudent [16] to automate the task of disease detection in apple’s leaves among four
classes—healthy, scab, rust, and multiple diseases. We used transfer learning [17] to
transfer the knowledge of the previously learned models into our research. We ensembled
the three model’s prediction outputs by Model Averaging [18], which reduces the
variance observed in the predictions across models.

The accuracy achieved by our proposed model on the validation dataset is 96.25%.
From the results, it is seen that the model outperformed various other previous models
proposed earlier in terms of its performance metrics such as accuracy, etc. The proposed
model uses Image Augmentation techniques such as Canny Edge Detection [4], Flipping,
Blurring, etc., to increase our dataset’s size and develop a more robust and generic model.
To the best of our knowledge, the techniques proposed in this paper are not available in
the previous literature and can significantly boost the model’s performance by providing
an enhanced dataset for training. Ensembling has led to a reduced variance in the
predictions and produced better accuracy in difficult cases of multiple diseased leaves. In
addition to this, the proposed model is deployed using a web application to make it easily
accessible for farmers.

The remainder of this paper is organized as follows: In Section 2, a detailed
background study is presented, which includes the work carried out previously in this
domain. Section 3 discusses the proposed methodology, which summarizes the working
steps taken to reach our proposed model. Details about the dataset, Image Augmentation

Figure 3. The modules of a basic CNN.

Since 2016, many researchers have started to leverage the potential of CNNs to build
better image classifiers. Justine Boulent et al. [13], in their work, summarized 19 different
studies which made use of CNNs to detect the diseases in crops automatically. Their
work also highlights the significant shortcomings and issues in these studies. Keeping
in prospect the success of CNNs as a classifier for image data, we have tried to leverage
its functionality for our research. In this paper, we proposed an ensemble of three state-
of-the-art deep learning models—DenseNet121 [14], EfficientNetB7 [15], and EfficientNet
NoisyStudent [16] to automate the task of disease detection in apple’s leaves among four
classes—healthy, scab, rust, and multiple diseases. We used transfer learning [17] to transfer
the knowledge of the previously learned models into our research. We ensembled the three
model’s prediction outputs by Model Averaging [18], which reduces the variance observed
in the predictions across models.

The accuracy achieved by our proposed model on the validation dataset is 96.25%.
From the results, it is seen that the model outperformed various other previous models
proposed earlier in terms of its performance metrics such as accuracy, etc. The proposed
model uses Image Augmentation techniques such as Canny Edge Detection [4], Flipping,
Blurring, etc., to increase our dataset’s size and develop a more robust and generic model.
To the best of our knowledge, the techniques proposed in this paper are not available in the
previous literature and can significantly boost the model’s performance by providing an
enhanced dataset for training. Ensembling has led to a reduced variance in the predictions
and produced better accuracy in difficult cases of multiple diseased leaves. In addition to
this, the proposed model is deployed using a web application to make it easily accessible
for farmers.

The remainder of this paper is organized as follows: In Section 2, a detailed back-
ground study is presented, which includes the work carried out previously in this domain.
Section 3 discusses the proposed methodology, which summarizes the working steps taken
to reach our proposed model. Details about the dataset, Image Augmentation techniques
used, Modeling, and Ensembling are discussed in this section. Section 4 describes the

Agriculture 2021, 11, 617 4 of 23

results obtained and a brief comparison with previous researches. Finally, this paper is
concluded in Section 5.

2. Related Works

Many studies used machine learning and other soft computing techniques in the
agricultural domain for disease detection and classification. Korkut, Umut Baris et al. [5]
used various machine learning methods to develop their proposed model for detecting
diseases in different species plants. The proposed model achieved an accuracy of 94%.
Pardede, Hilman F. et al. [11] used a variant of traditional convolutional neural networks
(CNNs)—a convolutional autoencoder—and formulated an unsupervised feature learning
algorithm to classify various diseases in plants. Selvaraj, M.G. et al. [19] classified diseases
in banana plants via machine learning models derived from the pixel-based classification
of multi-level images obtained through a satellite with an accuracy of over 97% in disease
classification. Rumpf, T. et al. [20] in their research, separated non-diseased sugar beet
leaves from diseased ones. Their approach relied on spectral vegetation indices and SVMs,
and 97% accuracy was achieved by the final model on the validation dataset. Aditya
Sinha et al. [21] in their study, summarized widespread approaches and methodologies
utilized for the discovery, quantification, and division of diseases by previous researchers
to know the scope of modification. S. Ramesh et al. [22] created their dataset for crop
disease detection. They extracted features using a histogram of an oriented gradient (HOG).
Yang, Tingwei Guo et al. [23] in their paper, prefaced the utilization of machine learning
in plant immunity gene development and plant bug distribution. The problem with the
above research is their inability to automate the part of feature extraction. Researchers
who used machine learning techniques have to divide the overall process into two parts
—feature wrenching and grouping. With the improvements in deep learning and computer
vision, various research is currently being carried out to overcome the drawbacks and
limitations of these machine learning-based studies by combining the step of feature
extraction and classification.

S.P. Mohanty et al. [24] used a publicly available dataset with more than fifty-four
thousand images of infected and normal plant leaves. They practiced a deep convolu-
tional neural network to distinguish fourteen crop varieties and twenty-six bugs. The final
model delivered an accuracy of 99.35% on the validation dataset. Saleem, M.H. et al. [25]
explained and compared various approaches based on deep learning to detect plant dis-
eases. P. Goncharov et al. [26] developed a Deep Siamese convolutional network for the
organization of grape leaf disease. J. Sun et al. [27] proposed a unique three-step approach
to detect maize leaf blight disease using a CNN-based model. They recommended a way
to consolidate three vital dataset transformation parts, tweaking network, and discovery
modules. Authors in [28] proposed a model for automatic disease detection in vineyard
crops by developing an original image registration method. The suggested method deliv-
ered more than 92% of apprehension at the level of grapevine and 87% at the leaf level.
Lu, Yang et al. [29] proposed a novel method to identify rice crop diseases depending on
deep convolutional neural network (CNN) techniques to identify ten common rice dis-
eases. Authors in [30] developed a CNN-based approach to classify the images of banana
leaves as healthy or diseased by using LeNet [31] architecture via transfer learning. The
authors argued that the model showed to be effective in adapting to different conditions.
Barbedo, Jayme G.A. et al. [32] analyzed the prime factors that hinder the effectiveness of
deep CNNs and discussed some tunings that can be carried out in the design to overcome
these problems. The authors summarized their findings in the paper by highlighting
various advantages and disadvantages, which concluded the subject on a more realistic
note. Liu, Bin et al. [33] created a unique structure of a deep convolutional neural network
based on AlexNet, to identify apple leaf pathogens among the classes—brown spot, mo-
saic, alternaria leaf spot, and rust. Their dataset contained more than thirteen thousand
images of ailing apple leaves, divided proportionally amongst the four identified classes.
Z. Chuanlei et al. [34] used various pattern recognition methods and image processing

Agriculture 2021, 11, 617 5 of 23

techniques to classify apple leaf diseases. From each image, thirty-eight features were
extracted via pattern recognition techniques. The extracted features were represented based
on texture, color, shape, etc. From these 38 features, only the most essential features were
used for training. The selected features were then finally fed to an SVM classifier which
classified the images with more than 90% accuracy. Bingze Dai, Tian Qiu et al. [35], in
their work, used a histogram of gradients (HOG) and pre-trained CNNs to extract features
and then applied an SVM and transferred learning methods using four deep learning
models, i.e., VGG, DenseNet, ResNet [36] and GoogLeNet [37]. S. Melike et al. [38], in
their study, proposed a faster region-based convolutional neural network (Faster R-CNN)
to classify apple leaf diseases. The model was based on the Inception v2 architecture.
Jiang, Peng et al. [39], in their work, used a deep convolutional neural network for the
classification of apple leaf diseases in real time. They combined the GoogLeNet Inception
architecture with the Rainbow concatenation [40] method (INAR-SSD) via transfer learning
to produce a deep CNN. Their proposed INAR-SSD model was trained on a dataset con-
taining more than twenty-six thousand images of apple leaves with different diseases. The
results exhibited that the model achieved an acceptable performance with 78.80% accuracy
on the real-time data with an overall speed of 23.13 frames per second during classification.

The following three points list the limitations of the previous research and how we
intend to overcome this in our research.

1. Previous models have limitations in utilising the advantage of Image Augmentation
techniques properly. Our proposed model uses various Image Augmentation tech-
niques such as Canny Edge Detection, Flipping, Blurring, etc., to enhance our dataset.
These techniques can help in building a robust model.

2. The performance of many of the previously proposed model were not adequate,
especially under challenging cases, e.g., identifying leaves with multiple diseases.
In our research, we have used an ensemble of pre-trained deep learning models.
The advantage of this is that our proposed model combines the predictions of three
models and can perform well under challenging situations.

3. We have deployed the proposed model in the form of a web application that serves
as an easy-to-use system for I users. The user has to upload the leaf’s image on our
web application, and the result is obtained in a couple of seco.

3. Methodology

In this section, we explain our step-wise methodology to elaborate the proposed
model. Figure 4 shows the flow diagram that lists these main steps.

3.1. Dataset Collection

The dataset used in this research is an openly available dataset, which is a subset of
the dataset created by the Plant Pathology and Plant-Microbe Biology Section of the Cornell
University [41]. The original dataset contains 3651 high-grade images of apple leaves
with various foliar diseases. The images are captured by hand in different scenarios such
as variable lighting, different angles, different surfaces, etc., to represent a more general
dataset that covers most possibilities. The dataset used in this research contains 3642
images of apple leaves distributed proportionally among four classes—cedar apple rust,
multiple diseases, healthy leaves, and apple scab. The distribution of these four classes is
shown in the pie chart represented in Figure 5. Out of the 3642 images available to us, only
5% of the plants have multiple diseases, i.e., having both scab and rust. The other three
classes—healthy, cedar apple rust, and apple scab, are equivalent in proportion. The correct
classification of apple leaves among the following four categories is the prime objective of
this research.

Agriculture 2021, 11, 617 6 of 23Agriculture 2021, 11, x FOR PEER REVIEW 6 of 24

 Internal Use - Confidential

Figure 4. Workflow for the proposed methodology.

Figure 5. Distribution of classes in our dataset.

3.1.1. Healthy
It can be seen in Figure 6 that healthy leaves are entirely spotless and are green with

no signs of any disease. Our dataset contains about 28.3% healthy leaves.

Figure 6. Healthy leaf.

Figure 4. Workflow for the proposed methodology.

Agriculture 2021, 11, x FOR PEER REVIEW 6 of 24

 Internal Use - Confidential

Figure 4. Workflow for the proposed methodology.

Figure 5. Distribution of classes in our dataset.

3.1.1. Healthy
It can be seen in Figure 6 that healthy leaves are entirely spotless and are green with

no signs of any disease. Our dataset contains about 28.3% healthy leaves.

Figure 6. Healthy leaf.

Figure 5. Distribution of classes in our dataset.

3.1.1. Healthy

It can be seen in Figure 6 that healthy leaves are entirely spotless and are green with
no signs of any disease. Our dataset contains about 28.3% healthy leaves.

Agriculture 2021, 11, x FOR PEER REVIEW 6 of 24

 Internal Use - Confidential

Figure 4. Workflow for the proposed methodology.

Figure 5. Distribution of classes in our dataset.

3.1.1. Healthy
It can be seen in Figure 6 that healthy leaves are entirely spotless and are green with

no signs of any disease. Our dataset contains about 28.3% healthy leaves.

Figure 6. Healthy leaf. Figure 6. Healthy leaf.

Agriculture 2021, 11, 617 7 of 23

3.1.2. Apple Scab

Figure 7 shows the leaf of an apple tree with apple scab disease. We can see that the
leaves have brown spots/marks. A scab is often caused by a fungus that infects the leaves
and the fruits, which makes the fruit unhealthy for eating. In our dataset, about 32.5% of
images are of apple scab.

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 24

 Internal Use - Confidential

3.1.2. Apple Scab
Figure 7 shows the leaf of an apple tree with apple scab disease. We can see that the

leaves have brown spots/marks. A scab is often caused by a fungus that infects the leaves
and the fruits, which makes the fruit unhealthy for eating. In our dataset, about 32.5% of
images are of apple scab.

Figure 7. Leaf with apple scab.

3.1.3. Cedar Apple Rust
Figure 8 shows the leaf of an apple tree having cedar apple rust. We can see that the

leaves have dense yellowish marks. Rust is often caused in plants via a unique fungus
named ‘rust fungus’. In our dataset, about 34.2% of images are of cedar apple rust.

Figure 8. Leaf with cedar apple rust.

3.1.4. Multiple Diseases
Leaves with multiple diseases show signs of having both apple scab, i.e., having

brown spots, and cedar apple rust, i.e., having yellow marks as shown in Figure 9. The
leaves are severely damaged in this case and are very difficult to treat. Our dataset has
only 5% images from this class.

Figure 9. Leaf with multiple diseases.

Figure 7. Leaf with apple scab.

3.1.3. Cedar Apple Rust

Figure 8 shows the leaf of an apple tree having cedar apple rust. We can see that the
leaves have dense yellowish marks. Rust is often caused in plants via a unique fungus
named ‘rust fungus’. In our dataset, about 34.2% of images are of cedar apple rust.

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 24

 Internal Use - Confidential

3.1.2. Apple Scab
Figure 7 shows the leaf of an apple tree with apple scab disease. We can see that the

leaves have brown spots/marks. A scab is often caused by a fungus that infects the leaves
and the fruits, which makes the fruit unhealthy for eating. In our dataset, about 32.5% of
images are of apple scab.

Figure 7. Leaf with apple scab.

3.1.3. Cedar Apple Rust
Figure 8 shows the leaf of an apple tree having cedar apple rust. We can see that the

leaves have dense yellowish marks. Rust is often caused in plants via a unique fungus
named ‘rust fungus’. In our dataset, about 34.2% of images are of cedar apple rust.

Figure 8. Leaf with cedar apple rust.

3.1.4. Multiple Diseases
Leaves with multiple diseases show signs of having both apple scab, i.e., having

brown spots, and cedar apple rust, i.e., having yellow marks as shown in Figure 9. The
leaves are severely damaged in this case and are very difficult to treat. Our dataset has
only 5% images from this class.

Figure 9. Leaf with multiple diseases.

Figure 8. Leaf with cedar apple rust.

3.1.4. Multiple Diseases

Leaves with multiple diseases show signs of having both apple scab, i.e., having
brown spots, and cedar apple rust, i.e., having yellow marks as shown in Figure 9. The
leaves are severely damaged in this case and are very difficult to treat. Our dataset has
only 5% images from this class.

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 24

 Internal Use - Confidential

3.1.2. Apple Scab
Figure 7 shows the leaf of an apple tree with apple scab disease. We can see that the

leaves have brown spots/marks. A scab is often caused by a fungus that infects the leaves
and the fruits, which makes the fruit unhealthy for eating. In our dataset, about 32.5% of
images are of apple scab.

Figure 7. Leaf with apple scab.

3.1.3. Cedar Apple Rust
Figure 8 shows the leaf of an apple tree having cedar apple rust. We can see that the

leaves have dense yellowish marks. Rust is often caused in plants via a unique fungus
named ‘rust fungus’. In our dataset, about 34.2% of images are of cedar apple rust.

Figure 8. Leaf with cedar apple rust.

3.1.4. Multiple Diseases
Leaves with multiple diseases show signs of having both apple scab, i.e., having

brown spots, and cedar apple rust, i.e., having yellow marks as shown in Figure 9. The
leaves are severely damaged in this case and are very difficult to treat. Our dataset has
only 5% images from this class.

Figure 9. Leaf with multiple diseases.

Figure 9. Leaf with multiple diseases.

3.2. Image Augmentation

Image Augmentation refers to the process of augmenting our dataset to include more
images by using various techniques such as: Rotation, Flipping, adding noise to the image,
shear, shifts, etc. The advantages of this process are twofold. When our dataset is small,

Agriculture 2021, 11, 617 8 of 23

image augmentation can help us expand our dataset size without collecting new images
manually. Image augmentation helps improve the performance of a model and helps build
a better model by reducing the problem of overfitting in deep learning [42].

3.2.1. Canny Edge Detection

The edge detection process dramatically simplifies the analysis and training of images
by significantly reducing the area under observation. At the same time, it retains the much-
needed structural information of the picture contained in the boundaries. Canny Edge
Detection [4] is a powerful computational approach for edge detection first introduced by
John Canny. Canny Edge detection includes five steps, as shown in Figure 10.

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 24

 Internal Use - Confidential

3.2. Image Augmentation
Image Augmentation refers to the process of augmenting our dataset to include more

images by using various techniques such as: Rotation, Flipping, adding noise to the image,
shear, shifts, etc. The advantages of this process are twofold. When our dataset is small,
image augmentation can help us expand our dataset size without collecting new images
manually. Image augmentation helps improve the performance of a model and helps
build a better model by reducing the problem of overfitting in deep learning [42].

3.2.1. Canny Edge Detection
The edge detection process dramatically simplifies the analysis and training of

images by significantly reducing the area under observation. At the same time, it retains
the much-needed structural information of the picture contained in the boundaries.
Canny Edge Detection [4] is a powerful computational approach for edge detection first
introduced by John Canny. Canny Edge detection includes five steps, as shown in Figure
10.

Figure 10. Steps involved in Canny Edge Detection.

The result of these five steps is a two-dimensional binary map (0 or 255) indicating
the location of edges on the image. The result of applying this algorithm on the images of
our dataset used in this work is shown in Figure 11.

Figure 11. Output of Canny Edge Detection.

Figure 10. Steps involved in Canny Edge Detection.

The result of these five steps is a two-dimensional binary map (0 or 255) indicating
the location of edges on the image. The result of applying this algorithm on the images of
our dataset used in this work is shown in Figure 11.

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 24

 Internal Use - Confidential

3.2. Image Augmentation
Image Augmentation refers to the process of augmenting our dataset to include more

images by using various techniques such as: Rotation, Flipping, adding noise to the image,
shear, shifts, etc. The advantages of this process are twofold. When our dataset is small,
image augmentation can help us expand our dataset size without collecting new images
manually. Image augmentation helps improve the performance of a model and helps
build a better model by reducing the problem of overfitting in deep learning [42].

3.2.1. Canny Edge Detection
The edge detection process dramatically simplifies the analysis and training of

images by significantly reducing the area under observation. At the same time, it retains
the much-needed structural information of the picture contained in the boundaries.
Canny Edge Detection [4] is a powerful computational approach for edge detection first
introduced by John Canny. Canny Edge detection includes five steps, as shown in Figure
10.

Figure 10. Steps involved in Canny Edge Detection.

The result of these five steps is a two-dimensional binary map (0 or 255) indicating
the location of edges on the image. The result of applying this algorithm on the images of
our dataset used in this work is shown in Figure 11.

Figure 11. Output of Canny Edge Detection. Figure 11. Output of Canny Edge Detection.

3.2.2. Flipping

Flipping is an operation that flips or upturns the order of rows (Horizontal Flipping)
or the order of columns (Vertical Flipping) of the channels of an image. Consider an image
with three channels of size (n × m) represented as Aijk, where k is 3, meaning the red, green,
and blue channels. The mathematical equations for flipping are shown below:

Aijk = Ai(m+1−j).k (1)

Agriculture 2021, 11, 617 9 of 23

Aijk = A(n+1−i).j.k (2)

Equation (1) represents vertical flipping, while Equation (2) represents horizontal
flipping. The flipped images act as new images for our model and thus aid the overall
process of building a robust model. An example of a flipped image for our dataset is shown
in Figure 12.

Agriculture 2021, 11, x FOR PEER REVIEW 9 of 24

 Internal Use - Confidential

3.2.2. Flipping
Flipping is an operation that flips or upturns the order of rows (Horizontal Flipping)

or the order of columns (Vertical Flipping) of the channels of an image. Consider an image
with three channels of size (n × m) represented as Aijk, where k is 3, meaning the red, green,
and blue channels. The mathematical equations for flipping are shown below: 𝐴 = 𝐴 . (1)𝐴 = 𝐴 . . (2)

Equation (1) represents vertical flipping, while Equation (2) represents horizontal
flipping. The flipped images act as new images for our model and thus aid the overall
process of building a robust model. An example of a flipped image for our dataset is
shown in Figure 12.

Figure 12. Output of Flipping.

3.2.3. Convolution
Convolution is the process wherein a 2D matrix, or a mask, convolves or moves over

an image step-by-step and calculates the dot product with each window along the way.
The dot product involves the multiplication of corresponding cells of the mask and the
window followed by adding all the obtained values. The size of the mask is usually of the
order (1 × 1), (3 × 3), (5 × 5), or (7 × 7). Consider an image with N rows and M columns and
the kernel having n rows and m columns, then the size of the final image will be N—n + 1
rows, and M—m + 1 columns. In mathematical terms, convolution can be represented as
[43]:

𝑂 𝑖, 𝑗 = 𝐼 𝑖 + 𝑘 1, 𝑗 + 𝑙 1 . 𝐾 𝑘, 𝑙 (3)

Here, i runs from 1 to N—n + 1 and j runs from 1 to M—m + 1. The output of the final
image after convolution changes with the kernel values. The output of convolution in our
case is shown in Figure 13.

Figure 13. Output of convolution.

Figure 12. Output of Flipping.

3.2.3. Convolution

Convolution is the process wherein a 2D matrix, or a mask, convolves or moves over
an image step-by-step and calculates the dot product with each window along the way.
The dot product involves the multiplication of corresponding cells of the mask and the
window followed by adding all the obtained values. The size of the mask is usually of the
order (1 × 1), (3 × 3), (5 × 5), or (7 × 7). Consider an image with N rows and M columns
and the kernel having n rows and m columns, then the size of the final image will be N—n
+ 1 rows, and M—m + 1 columns. In mathematical terms, convolution can be represented
as [43]:

O(i, j) =
m

∑
k=1

n

∑
l=1

I(i + k− 1, j + l − 1). K(k, l) (3)

Here, i runs from 1 to N—n + 1 and j runs from 1 to M—m + 1. The output of the final
image after convolution changes with the kernel values. The output of convolution in our
case is shown in Figure 13.

Agriculture 2021, 11, x FOR PEER REVIEW 9 of 24

 Internal Use - Confidential

3.2.2. Flipping
Flipping is an operation that flips or upturns the order of rows (Horizontal Flipping)

or the order of columns (Vertical Flipping) of the channels of an image. Consider an image
with three channels of size (n × m) represented as Aijk, where k is 3, meaning the red, green,
and blue channels. The mathematical equations for flipping are shown below: 𝐴 = 𝐴 . (1)𝐴 = 𝐴 . . (2)

Equation (1) represents vertical flipping, while Equation (2) represents horizontal
flipping. The flipped images act as new images for our model and thus aid the overall
process of building a robust model. An example of a flipped image for our dataset is
shown in Figure 12.

Figure 12. Output of Flipping.

3.2.3. Convolution
Convolution is the process wherein a 2D matrix, or a mask, convolves or moves over

an image step-by-step and calculates the dot product with each window along the way.
The dot product involves the multiplication of corresponding cells of the mask and the
window followed by adding all the obtained values. The size of the mask is usually of the
order (1 × 1), (3 × 3), (5 × 5), or (7 × 7). Consider an image with N rows and M columns and
the kernel having n rows and m columns, then the size of the final image will be N—n + 1
rows, and M—m + 1 columns. In mathematical terms, convolution can be represented as
[43]:

𝑂 𝑖, 𝑗 = 𝐼 𝑖 + 𝑘 1, 𝑗 + 𝑙 1 . 𝐾 𝑘, 𝑙 (3)

Here, i runs from 1 to N—n + 1 and j runs from 1 to M—m + 1. The output of the final
image after convolution changes with the kernel values. The output of convolution in our
case is shown in Figure 13.

Figure 13. Output of convolution.

Figure 13. Output of convolution.

3.2.4. Blurring

In capturing an image for predicting its class, many defects can appear, such as blurred
images, noise, poor contrast, etc. The most common of them is a blurred image, and it
becomes difficult for a trained model to classify these images. Therefore, to make our
model immune to such imperfections, we augment images by the process of Blurring.
Blurring, in simple terms, is the addition of noise to an image to make it unclear. In the
process of Blurring, one must be sure to change only minor details and not to over-add the

Agriculture 2021, 11, 617 10 of 23

noise. In our work, we have blurred our images by convolving them with a normalized
block filter as shown [44] below:

K =
1
9

 1 1 1
1 1 1
1 1 1

 (4)

It takes the average of all the values present under the kernel area and the central
value is replaced with the average value. The result of blurring on the image of our dataset
is shown in Figure 14.

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 24

 Internal Use - Confidential

3.2.4. Blurring
In capturing an image for predicting its class, many defects can appear, such as

blurred images, noise, poor contrast, etc. The most common of them is a blurred image,
and it becomes difficult for a trained model to classify these images. Therefore, to make
our model immune to such imperfections, we augment images by the process of Blurring.
Blurring, in simple terms, is the addition of noise to an image to make it unclear. In the
process of Blurring, one must be sure to change only minor details and not to over-add
the noise. In our work, we have blurred our images by convolving them with a normalized
block filter as shown [44] below: 𝐾 = 19 1 1 11 1 1 1 1 1 (4)

It takes the average of all the values present under the kernel area and the central
value is replaced with the average value. The result of blurring on the image of our dataset
is shown in Figure 14.

Figure 14. Output of Blurring.

3.3. Dataset Partition
Our dataset contains a total of 3642 images of apple leaves. We divided these images

in the ratio 17:3 between the training and validation dataset, i.e., 85% of the images were
used for training, and the rest 15% of the images were used for validation. This means
3095 are the training images and 547 are validation images. We also carried out the process
of Image Augmentation to elevate the size of the training dataset. Shuffling was carried
out before splitting to get rid of any groups or collections already present in the dataset.

3.4. Modeling
3.4.1. Multiclass Classification

Multiclass classification is a subset of classification problems wherein there are more
than two classes. In our study, there were four classes of apple leaf diseases that needed
to be classified. The below figure illustrates the general structure of a CNN classifier. As
we can see in Figure 15, an input is fed to the convolution stack, which extracts features
via convolution, and the extracted features are then pooled to reduce the feature map size.
The reduced feature map size is then mapped to a vector representing the final output
classes for the problem via a dense layer.

Figure 14. Output of Blurring.

3.3. Dataset Partition

Our dataset contains a total of 3642 images of apple leaves. We divided these images
in the ratio 17:3 between the training and validation dataset, i.e., 85% of the images were
used for training, and the rest 15% of the images were used for validation. This means 3095
are the training images and 547 are validation images. We also carried out the process of
Image Augmentation to elevate the size of the training dataset. Shuffling was carried out
before splitting to get rid of any groups or collections already present in the dataset.

3.4. Modeling
3.4.1. Multiclass Classification

Multiclass classification is a subset of classification problems wherein there are more
than two classes. In our study, there were four classes of apple leaf diseases that needed to
be classified. The below figure illustrates the general structure of a CNN classifier. As we
can see in Figure 15, an input is fed to the convolution stack, which extracts features via
convolution, and the extracted features are then pooled to reduce the feature map size. The
reduced feature map size is then mapped to a vector representing the final output classes
for the problem via a dense layer.

Agriculture 2021, 11, x FOR PEER REVIEW 11 of 24

 Internal Use - Confidential

Figure 15. Simplified multiclassification model.

3.4.2. Transfer Learning
Transfer learning [17] is, in simple words, the process wherein the model trained for

a task is used again as an initial point to train another model. Transfer learning is an
essential mechanism in machine learning to resolve the fundamental dilemma of
inadequate practice data. It tries to shift the information from the origin domain to the
destination domain by slackening the premise that the practice data and the test data need
to be comparable. The problem of inadequate data is unavoidable in many circumstances.
The whole process of data collection and refining is cumbersome and requires time and
patience. The learning process of a model using transfer learning is illustrated in Figure
16.

Figure 16. Transfer learning process.

The main aim of deep transfer learning is to utilize knowledge gained in some other
domain. Here, the source domain and the target domain need not be identically
equivalent. In our research, we have designed an ensemble of three deep learning models,
each of which is built upon a pre-trained base model, e.g., DenseNet.

3.4.3. Model Structure
Each of the deep learning models that are part of the final ensemble assumes a

general flow, as shown in Figure 17.

Figure 15. Simplified multiclassification model.

Agriculture 2021, 11, 617 11 of 23

3.4.2. Transfer Learning

Transfer learning [17] is, in simple words, the process wherein the model trained for a
task is used again as an initial point to train another model. Transfer learning is an essential
mechanism in machine learning to resolve the fundamental dilemma of inadequate practice
data. It tries to shift the information from the origin domain to the destination domain by
slackening the premise that the practice data and the test data need to be comparable. The
problem of inadequate data is unavoidable in many circumstances. The whole process of
data collection and refining is cumbersome and requires time and patience. The learning
process of a model using transfer learning is illustrated in Figure 16.

Agriculture 2021, 11, x FOR PEER REVIEW 11 of 24

 Internal Use - Confidential

Figure 15. Simplified multiclassification model.

3.4.2. Transfer Learning
Transfer learning [17] is, in simple words, the process wherein the model trained for

a task is used again as an initial point to train another model. Transfer learning is an
essential mechanism in machine learning to resolve the fundamental dilemma of
inadequate practice data. It tries to shift the information from the origin domain to the
destination domain by slackening the premise that the practice data and the test data need
to be comparable. The problem of inadequate data is unavoidable in many circumstances.
The whole process of data collection and refining is cumbersome and requires time and
patience. The learning process of a model using transfer learning is illustrated in Figure
16.

Figure 16. Transfer learning process.

The main aim of deep transfer learning is to utilize knowledge gained in some other
domain. Here, the source domain and the target domain need not be identically
equivalent. In our research, we have designed an ensemble of three deep learning models,
each of which is built upon a pre-trained base model, e.g., DenseNet.

3.4.3. Model Structure
Each of the deep learning models that are part of the final ensemble assumes a

general flow, as shown in Figure 17.

Figure 16. Transfer learning process.

The main aim of deep transfer learning is to utilize knowledge gained in some other
domain. Here, the source domain and the target domain need not be identically equivalent.
In our research, we have designed an ensemble of three deep learning models, each of
which is built upon a pre-trained base model, e.g., DenseNet.

3.4.3. Model Structure

Each of the deep learning models that are part of the final ensemble assumes a general
flow, as shown in Figure 17.

Agriculture 2021, 11, x FOR PEER REVIEW 12 of 24

 Internal Use - Confidential

Figure 17. Basic structure for our three models.

As it can be seen, the input layer assumes an image of size M × N × 3. In our case, the
images are trimmed to the dimensions (512 × 512 × 3) before feeding it to the base pre-
trained model. The functional layer represents the pre-trained model. These models are
already trained using some other datasets, and we make use of their weights via transfer
learning. The output of the functional layer is then fed to a Global Average Pooling layer
[45]. The idea of introducing this layer is to reduce the size of the feature map to a 1D
vector by averaging the values present in the pool (in our case, each m × n 2D vector). This
layer outputs a one-dimensional vector which is fed to a fully connected dense layer. This
final layer reduces the size to 4 classification categories and applies the SoftMax activation
[46]. SoftMax function consumes a one-dimensional vector of Z values and outputs its
normalized form, which consists of Z probabilities, each representing the probability of
the classification falling in one of the Z classes. In our case, the value of Z is 4. The sum of
all the probabilities equals 1 and the value of the SoftMax score lies between [0,1] (0 and 1
inclusive). The target class with the highest probability is termed as the output of the
whole classifier. Our models make use of the Adam Optimizer [47]. Adam optimization
is an algorithm that iteratively updates network weights epoch by epoch. When compared
to its counter algorithms, it is more effective and faster. During the training of the models,
we kept the number of epochs to be 20 and the batch size per epoch as 128.

3.4.4. DenseNet121
Dense Convolutional Networks [14] (DenseNet) are a class of neural networks

wherein each layer obtains inputs from every layer behind it and forwards its own feature
map to all the subsequent layers. In a traditional convolutional network, the input passes
through all the layers in a rather sequential fashion. In DenseNet, every layer acquires the
knowledge of every preceding layer in a feed-forward fashion, as seen in Figure 18.

Figure 17. Basic structure for our three models.

Agriculture 2021, 11, 617 12 of 23

As it can be seen, the input layer assumes an image of size M × N × 3. In our
case, the images are trimmed to the dimensions (512 × 512 × 3) before feeding it to the
base pre-trained model. The functional layer represents the pre-trained model. These
models are already trained using some other datasets, and we make use of their weights
via transfer learning. The output of the functional layer is then fed to a Global Average
Pooling layer [45]. The idea of introducing this layer is to reduce the size of the feature
map to a 1D vector by averaging the values present in the pool (in our case, each m × n
2D vector). This layer outputs a one-dimensional vector which is fed to a fully connected
dense layer. This final layer reduces the size to 4 classification categories and applies the
SoftMax activation [46]. SoftMax function consumes a one-dimensional vector of Z values
and outputs its normalized form, which consists of Z probabilities, each representing the
probability of the classification falling in one of the Z classes. In our case, the value of
Z is 4. The sum of all the probabilities equals 1 and the value of the SoftMax score lies
between [0, 1] (0 and 1 inclusive). The target class with the highest probability is termed
as the output of the whole classifier. Our models make use of the Adam Optimizer [47].
Adam optimization is an algorithm that iteratively updates network weights epoch by
epoch. When compared to its counter algorithms, it is more effective and faster. During the
training of the models, we kept the number of epochs to be 20 and the batch size per epoch
as 128.

3.4.4. DenseNet121

Dense Convolutional Networks [14] (DenseNet) are a class of neural networks wherein
each layer obtains inputs from every layer behind it and forwards its own feature map to all
the subsequent layers. In a traditional convolutional network, the input passes through all
the layers in a rather sequential fashion. In DenseNet, every layer acquires the knowledge
of every preceding layer in a feed-forward fashion, as seen in Figure 18.

Agriculture 2021, 11, x FOR PEER REVIEW 13 of 24

 Internal Use - Confidential

Figure 18. DenseNet block architecture [14].

A DenseNet with L layers has L(L + 1)/2 connection compared to just L connections
in a traditional convolution network. DenseNets have many captivating advantages: they
mitigate the fading gradient obstacle, increase feature distribution, support feature reuse,
and also considerably decrease the number of parameters. Since each layer receives input
from every layer behind it, DenseNets are usually more compact since they extract almost
the same number of features in a relatively smaller-sized network.

In this work, we have used the DenseNet121 variant of DenseNet pre-trained on
ImageNet [48] dataset. The ‘121′ in DenseNet121 refers to the number of layers that
include trainable weights leaving the locked layers. Figure 19 represents the structure of
our model that provides for the pre-trained DenseNet121 model.

Figure 19. DenseNet fundamental block.

3.4.5. EfficientNet
EfficientNet [15] is a type of convolutional neural network that employs a unique

scaling method that evenly scales each dimension, i.e., width, depth, and resolution
adopting a compound coefficient.

Scaling is a major concern for most data science practitioners across the world.
Scaling of a network is performed mainly across three dimensions—width, depth, and
resolution. However, it has been observed that scaling initially does increase accuracy, but
the spike in accuracy saturates gradually with scaling [15]. In other words, traditional
ConvNets may not perform scaling ‘efficiently’. EfficientNets simplifies this problem of

Figure 18. DenseNet block architecture [14].

A DenseNet with L layers has L(L + 1)/2 connection compared to just L connections in
a traditional convolution network. DenseNets have many captivating advantages: they
mitigate the fading gradient obstacle, increase feature distribution, support feature reuse,
and also considerably decrease the number of parameters. Since each layer receives input
from every layer behind it, DenseNets are usually more compact since they extract almost
the same number of features in a relatively smaller-sized network.

In this work, we have used the DenseNet121 variant of DenseNet pre-trained on
ImageNet [48] dataset. The ‘121′ in DenseNet121 refers to the number of layers that include
trainable weights leaving the locked layers. Figure 19 represents the structure of our model
that provides for the pre-trained DenseNet121 model.

Agriculture 2021, 11, 617 13 of 23

Agriculture 2021, 11, x FOR PEER REVIEW 13 of 24

 Internal Use - Confidential

Figure 18. DenseNet block architecture [14].

A DenseNet with L layers has L(L + 1)/2 connection compared to just L connections
in a traditional convolution network. DenseNets have many captivating advantages: they
mitigate the fading gradient obstacle, increase feature distribution, support feature reuse,
and also considerably decrease the number of parameters. Since each layer receives input
from every layer behind it, DenseNets are usually more compact since they extract almost
the same number of features in a relatively smaller-sized network.

In this work, we have used the DenseNet121 variant of DenseNet pre-trained on
ImageNet [48] dataset. The ‘121′ in DenseNet121 refers to the number of layers that
include trainable weights leaving the locked layers. Figure 19 represents the structure of
our model that provides for the pre-trained DenseNet121 model.

Figure 19. DenseNet fundamental block.

3.4.5. EfficientNet
EfficientNet [15] is a type of convolutional neural network that employs a unique

scaling method that evenly scales each dimension, i.e., width, depth, and resolution
adopting a compound coefficient.

Scaling is a major concern for most data science practitioners across the world.
Scaling of a network is performed mainly across three dimensions—width, depth, and
resolution. However, it has been observed that scaling initially does increase accuracy, but
the spike in accuracy saturates gradually with scaling [15]. In other words, traditional
ConvNets may not perform scaling ‘efficiently’. EfficientNets simplifies this problem of

Figure 19. DenseNet fundamental block.

3.4.5. EfficientNet

EfficientNet [15] is a type of convolutional neural network that employs a unique
scaling method that evenly scales each dimension, i.e., width, depth, and resolution
adopting a compound coefficient.

Scaling is a major concern for most data science practitioners across the world. Scaling
of a network is performed mainly across three dimensions—width, depth, and resolution.
However, it has been observed that scaling initially does increase accuracy, but the spike
in accuracy saturates gradually with scaling [15]. In other words, traditional ConvNets
may not perform scaling ‘efficiently’. EfficientNets simplifies this problem of scaling by
something known as Compound Scaling [49]. In this technique, a Compound Coefficient is
used to scale the network uniformly across the three dimensions. The graph in Figure 20
shows how EfficientNet outperforms various other state-of-the-art models on the ImageNet
dataset classification task and does not saturate when the number of trainable parameters
is increased.

Agriculture 2021, 11, x FOR PEER REVIEW 14 of 24

 Internal Use - Confidential

scaling by something known as Compound Scaling [49]. In this technique, a Compound
Coefficient is used to scale the network uniformly across the three dimensions. The graph
in Figure 20 shows how EfficientNet outperforms various other state-of-the-art models on
the ImageNet dataset classification task and does not saturate when the number of
trainable parameters is increased.

Figure 20. NoisyStudent Training curve w.r.t number of parameters [16].

For our research, we used the EfficientB7 model pre-trained on the ImageNet dataset.
Figure 21 represents the structure of our model that includes the pre-trained
EfficientNetB7 model.

Figure 21. EfficientNetB7 fundamental block.

3.4.6. EfficientNet Noisy Student
EfficientNet Noisy Student [16] implements the idea of Noisy Student Training. In

this process, the EfficientNet model is initially trained on the ImageNet dataset of labeled
images, and then the predictions of this model are used as pseudo-labels for the remaining
unlabeled images. This process is repeated back and forth with the injection of noise so
that the final model generalizes better than the initial models. EfficientNet Noisy student
has outperformed EfficientNet on several tasks since its knowledge base includes visual-
rich representations gained by training over noisy images. It can be seen in the graph in
Figure 20 that NoisyStudent outperforms all other EfficientNet variants in terms of
accuracy on ImageNet task classification.

In our research, we have used pre-trained EfficientNetB7 having noisy student
weights. Figure 22 below represents the structure of our model that makes use of pre-
trained EfficientNet Noisy Student.

Figure 20. NoisyStudent Training curve w.r.t number of parameters [16].

For our research, we used the EfficientB7 model pre-trained on the ImageNet dataset.
Figure 21 represents the structure of our model that includes the pre-trained
EfficientNetB7 model.

Agriculture 2021, 11, 617 14 of 23

Agriculture 2021, 11, x FOR PEER REVIEW 14 of 24

 Internal Use - Confidential

scaling by something known as Compound Scaling [49]. In this technique, a Compound
Coefficient is used to scale the network uniformly across the three dimensions. The graph
in Figure 20 shows how EfficientNet outperforms various other state-of-the-art models on
the ImageNet dataset classification task and does not saturate when the number of
trainable parameters is increased.

Figure 20. NoisyStudent Training curve w.r.t number of parameters [16].

For our research, we used the EfficientB7 model pre-trained on the ImageNet dataset.
Figure 21 represents the structure of our model that includes the pre-trained
EfficientNetB7 model.

Figure 21. EfficientNetB7 fundamental block.

3.4.6. EfficientNet Noisy Student
EfficientNet Noisy Student [16] implements the idea of Noisy Student Training. In

this process, the EfficientNet model is initially trained on the ImageNet dataset of labeled
images, and then the predictions of this model are used as pseudo-labels for the remaining
unlabeled images. This process is repeated back and forth with the injection of noise so
that the final model generalizes better than the initial models. EfficientNet Noisy student
has outperformed EfficientNet on several tasks since its knowledge base includes visual-
rich representations gained by training over noisy images. It can be seen in the graph in
Figure 20 that NoisyStudent outperforms all other EfficientNet variants in terms of
accuracy on ImageNet task classification.

In our research, we have used pre-trained EfficientNetB7 having noisy student
weights. Figure 22 below represents the structure of our model that makes use of pre-
trained EfficientNet Noisy Student.

Figure 21. EfficientNetB7 fundamental block.

3.4.6. EfficientNet Noisy Student

EfficientNet Noisy Student [16] implements the idea of Noisy Student Training. In
this process, the EfficientNet model is initially trained on the ImageNet dataset of labeled
images, and then the predictions of this model are used as pseudo-labels for the remaining
unlabeled images. This process is repeated back and forth with the injection of noise so
that the final model generalizes better than the initial models. EfficientNet Noisy student
has outperformed EfficientNet on several tasks since its knowledge base includes visual-
rich representations gained by training over noisy images. It can be seen in the graph
in Figure 20 that NoisyStudent outperforms all other EfficientNet variants in terms of
accuracy on ImageNet task classification.

In our research, we have used pre-trained EfficientNetB7 having noisy student weights.
Figure 22 below represents the structure of our model that makes use of pre-trained
EfficientNet Noisy Student.

Agriculture 2021, 11, x FOR PEER REVIEW 15 of 24

 Internal Use - Confidential

Figure 22. EfficientNet Noisy Student fundamental block.

3.5. Ensembling
A disadvantage of using predictions of multiple deep learning classifiers is that they

have high variance. Since each classifier is trained individually with different data being
fed to it in each epoch, each of them updates their weight in isolation and thus present
different results on the task of classifying the same image. A simple approach to tackle the
above problem is to combine the predictions from all the classifiers somehow. This shall
reduce the variance, and the ensemble will generalize well compared to the individual
models. The ensemble approach used in this research is Model Averaging [18]. In this
approach, every classifier’s contribution remains equal to compute the final prediction.
The algorithm used for Model Averaging is shown in Figure 23. Unweighted averaging
might be a reasonable ensemble for similar base learners of comparable performance [50].
To predict class probability, the result is computed by calculating the argmax of the
summed probabilities for each class.

Figure 23. Algorithm for Model Averaging.

4. Experimental Results and Analyses
In this section, the experimental setup is first introduced, followed by the description

of various performance metrics, analysis and comparison of our results, a description of
computational resources, and information about the model deployment.

Figure 22. EfficientNet Noisy Student fundamental block.

3.5. Ensembling

A disadvantage of using predictions of multiple deep learning classifiers is that they
have high variance. Since each classifier is trained individually with different data being
fed to it in each epoch, each of them updates their weight in isolation and thus present
different results on the task of classifying the same image. A simple approach to tackle the
above problem is to combine the predictions from all the classifiers somehow. This shall
reduce the variance, and the ensemble will generalize well compared to the individual
models. The ensemble approach used in this research is Model Averaging [18]. In this
approach, every classifier’s contribution remains equal to compute the final prediction. The
algorithm used for Model Averaging is shown in Figure 23. Unweighted averaging might
be a reasonable ensemble for similar base learners of comparable performance [50]. To

Agriculture 2021, 11, 617 15 of 23

predict class probability, the result is computed by calculating the argmax of the summed
probabilities for each class.

Agriculture 2021, 11, x FOR PEER REVIEW 15 of 24

 Internal Use - Confidential

Figure 22. EfficientNet Noisy Student fundamental block.

3.5. Ensembling
A disadvantage of using predictions of multiple deep learning classifiers is that they

have high variance. Since each classifier is trained individually with different data being
fed to it in each epoch, each of them updates their weight in isolation and thus present
different results on the task of classifying the same image. A simple approach to tackle the
above problem is to combine the predictions from all the classifiers somehow. This shall
reduce the variance, and the ensemble will generalize well compared to the individual
models. The ensemble approach used in this research is Model Averaging [18]. In this
approach, every classifier’s contribution remains equal to compute the final prediction.
The algorithm used for Model Averaging is shown in Figure 23. Unweighted averaging
might be a reasonable ensemble for similar base learners of comparable performance [50].
To predict class probability, the result is computed by calculating the argmax of the
summed probabilities for each class.

Figure 23. Algorithm for Model Averaging.

4. Experimental Results and Analyses
In this section, the experimental setup is first introduced, followed by the description

of various performance metrics, analysis and comparison of our results, a description of
computational resources, and information about the model deployment.

Figure 23. Algorithm for Model Averaging.

4. Experimental Results and Analyses

In this section, the experimental setup is first introduced, followed by the description
of various performance metrics, analysis and comparison of our results, a description of
computational resources, and information about the model deployment.

4.1. Experimental Setup

We developed and trained our model using Python3. Along with Python, we lever-
aged the functionalities of various frameworks and libraries such as Keras, Tensorflow,
Pandas, Numpy for our purpose. We used Kaggle [51] that offers free access to TPUs
(Tensor Processing Units) for a fixed number of hours per week [52]. Tensor Processing
Units, developed by Google, are custom-developed application-specific integrated circuits
(ASICs) to hasten machine learning and deep learning-related work. TPU v3-8 provides
128 GB of RAM and 19.6 GB of disk space along with eight computational cores. We used
tf.data dataset [53] api of Tensorflow to create a dataset from the input images and apply
transformations to the data. To transform the dataset, we mapped our dataset to functions
for Flipping, Rotation, Blurring, etc. We loaded our model using the sequential class of
Keras and specified weights as image net. While loading the model, functional calls to
the required metrics such as: precision, F1, etc., were selected. We ran around 20 epochs
with 12 steps per epochs for a Batch size of 128. The starting value of the learning rate was
kept as 1 × 10−5. The results were obtained via the history object obtained after fitting our
models. The visualization of results was achieved by using the Seaborn [54] library offered
by Python. Finally, the ensembling was carried out by averaging the corresponding cell
values for the prediction matrices of the trained models.

4.2. Performance Metrics

The performance of our proposed model and individual pre-trained models are
assessed by four metrics, i.e., Validation Accuracy, positive predictive value (PPV), also
known as Precision, Recall, and F1-Score. In addition to these, confusion matrices are
shown for each model, and the necessary conclusions are drawn. The plots for Accuracy
vs. Epochs have also been presented for the pre-trained models.

Accuracy, in simple words, is the number of accurate predictions made concerning
the total predictions made by a model. [55].

Accuracy =
Number o f correct predictions
Total number o f predictions

(5)

Agriculture 2021, 11, 617 16 of 23

Precision is the ratio of the number of correct positive results divided by the number
of positive results predicted by the classifier [55].

Precision =
TruePositives

TruePositives + FalsePositives
(6)

Recall is the ratio of the number of correct positive results divided by the number of
all relevant samples (all samples that should have been identified as positive) [55].

Recall =
TruePositives

TruePositives + FalseNegatives
(7)

F1-Score is the harmonic mean of Precision and Recall [55].

F1 =
2

1
precision + 1

recall
(8)

The value of the F1-score lies in the range of [0, 1]. A higher value of F1 signifies
a better balance in Precision and Recall. In other words, the higher value of this metric
indicates a better and robust model.

4.3. Performance Benchmarking

In this section, we present the results of our proposed model alongside the results
of the pre-trained models. Table 1 shows the accuracy of the pre-trained models and our
proposed model at different values of the train-test split. It is observed that DenseNet121
and EfficientNetB7 tend to achieve the best accuracy at a 0.15 split ratio, but EfficientNet
NoisyStudent classifies most accurately at a 0.20 split ratio. Our proposed model achieves
an accuracy of 96.25% on a 0.15 split ratio. Figure 24 shows the plots of Accuracy vs. Epochs
for the pre-trained models and our proposed model.

Agriculture 2021, 11, x FOR PEER REVIEW 17 of 24

 Internal Use - Confidential

and EfficientNetB7 tend to achieve the best accuracy at a 0.15 split ratio, but EfficientNet
NoisyStudent classifies most accurately at a 0.20 split ratio. Our proposed model achieves
an accuracy of 96.25% on a 0.15 split ratio. Figure 24 shows the plots of Accuracy vs.
Epochs for the pre-trained models and our proposed model.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Epochs

 DenseNet121 Train
 EfficientNetB7 Train
 NoisyStudent Train
 DenseNet121 Val
 EfficientNetB7 Val
 NoisyStudent Val

Figure 24. Accuracy vs. Epochs plot for our model.

Table 1. Accuracy of the pre-trained and proposed model at various split ratios.

Split DenseNet121 EfficientNetB7 NoisyStudent Our Model
0.10 0.9398 0.9416 0.9095 0.9344
0.15 0.9526 0.9562 0.9124 0.9625
0.20 0.9511 0.9506 0.9233 0.9499
0.25 0.9414 0.9471 0.8991 0.9211
0.30 0.9232 0.9376 0.9091 0.9301

Tables 2 and 3 show the precision and recall of the pre-trained models and our
proposed model at different values of train-test split. It is observed that the value of recall
and precision of our proposed model is higher than the pre-trained models. The best
values are obtained at a 0.15 split ratio.

Table 2. Precision of pre-trained models and proposed model at various split ratios.

Split DenseNet121 EfficientNetB7 NoisyStudent Our Model
0.10 0.8432 0.8637 0.8344 0.8555
0.15 0.8637 0.8901 0.8479 0.9091
0.20 0.9496 0.8871 0.8544 0.8963
0.25 0.8598 0.8388 0.8282 0.8446
0.30 0.8876 0.8876 0.8298 0.8991

Figure 24. Accuracy vs. Epochs plot for our model.

Agriculture 2021, 11, 617 17 of 23

Table 1. Accuracy of the pre-trained and proposed model at various split ratios.

Split DenseNet121 EfficientNetB7 NoisyStudent Our Model

0.10 0.9398 0.9416 0.9095 0.9344
0.15 0.9526 0.9562 0.9124 0.9625
0.20 0.9511 0.9506 0.9233 0.9499
0.25 0.9414 0.9471 0.8991 0.9211
0.30 0.9232 0.9376 0.9091 0.9301

Tables 2 and 3 show the precision and recall of the pre-trained models and our
proposed model at different values of train-test split. It is observed that the value of recall
and precision of our proposed model is higher than the pre-trained models. The best values
are obtained at a 0.15 split ratio.

Table 2. Precision of pre-trained models and proposed model at various split ratios.

Split DenseNet121 EfficientNetB7 NoisyStudent Our Model

0.10 0.8432 0.8637 0.8344 0.8555
0.15 0.8637 0.8901 0.8479 0.9091
0.20 0.9496 0.8871 0.8544 0.8963
0.25 0.8598 0.8388 0.8282 0.8446
0.30 0.8876 0.8876 0.8298 0.8991

Table 3. Recall of pre-trained models and proposed model at various split ratios.

Split DenseNet121 EfficientNetB7 NoisyStudent Our Model

0.10 0.8442 0.8637 0.8344 0.8518
0.15 0.8637 0.8961 0.8429 0.8977
0.20 0.9496 0.8870 0.8542 0.8951
0.25 0.8221 0.8388 0.8238 0.8331
0.30 0.8806 0.8806 0.8301 0.8881

Table 4 shows the F1 scores of the pre-trained models and our proposed model at
different values of the train-test split. The table proves that our model beats the F1 scores
of the pre-trained models at all split values. The F1-score is highest at a 0.15 split with a
value of 0.9098.

Table 4. F1-Scores of pre-trained models and proposed model at various split ratios.

Split DenseNet121 EfficientNetB7 NoisyStudent Our Model

0.10 0.8442 0.8637 0.8329 0.8497
0.15 0.8637 0.8922 0.8453 0.9098
0.20 0.9496 0.8871 0.8576 0.8732
0.25 0.8560 0.8382 0.8249 0.8490
0.30 0.8839 0.8839 0.8290 0.8987

Figure 25 shows that all the three pre-trained models perform well in the case of
healthy, scab, and rust classes, but for images with multiple diseases, the performance is
not up to the mark. On average, DenseNet121 only classifies 62 images correctly out of
100 images with multiple diseases, while this number is 69 for EfficientNetB7 and 54 for
EfficientNet NoisyStudent. In the proposed model, we ensemble the predictions of the
three models—DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent via Model
Averaging. This will reduce the variance across the predictions of the three models. The
performance of our proposed model on this dataset can be viewed from the confusion
matrix shown in Figure 25. It is observed that the proposed model outperforms all three
models in a case, when the leaf has multiple diseases. On average, the proposed model
correctly predicts 90 images as multiple diseases out of 100 images. Table 5 shows the

Agriculture 2021, 11, 617 18 of 23

performance of GoogleNet, ResNet, VggNet-16, and DenseNet on the same classes we
trained our proposed model for [35].

Agriculture 2021, 11, x FOR PEER REVIEW 19 of 24

 Internal Use - Confidential

(a)

(b)

Figure 25. Cont.

Agriculture 2021, 11, 617 19 of 23Agriculture 2021, 11, x FOR PEER REVIEW 20 of 24

 Internal Use - Confidential

(c)

(d)

Figure 25. Confusion matrices for pre-trained and proposed model. (a) Confusion matrix for DenseNet121; (b) confusion
matrix for EfficientNetB7; (c) confusion matrix for NoisyStudent; (d) confusion matrix for our proposed model.

Figure 25. Confusion matrices for pre-trained and proposed model. (a) Confusion matrix for
DenseNet121; (b) confusion matrix for EfficientNetB7; (c) confusion matrix for NoisyStudent; (d) con-
fusion matrix for our proposed model.

Agriculture 2021, 11, 617 20 of 23

Table 5. Comparison of previous models with our model.

Model Accuracy

DenseNet 0.9260
GoogleNet 0.9530

EfficientNetB7 0.9562
ResNet20 0.9370

VggNet-16 0.9400
Our Model 0.9625

It is clear from Table 5 that our model outperforms various state-of-the-art CNN
models on the given dataset in terms of accuracy.

4.4. Computational Resources

According to the theory of computation, the most straightforward computational
resources are the time taken for calculation, the number of parameters involved, and the
memory required. In this section, we have summarized the computational requirements
of our proposed model based on these three factors. The TPU provided by Kaggle gives
128 GB of memory, out of which our model’s peak usage was 16 GB of memory. This was
the case when the batch size was 128. The training time for our model ranges from 31.6
min to 42.7 min, which depends upon factors such as: available free memory, network
bandwidth, etc. The prime parameters involved in the computation of our proposed model
are batch size, number of epochs, and steps per epoch. The values for these factors have
been given in Section 4.1. It is observed that the computational time is directly proportional
to the batch size and the steps per epoch.

4.5. Model Deployment

We have deployed our proposed model using a web application. We have named
our web application Leaviify. This application aims to serve as an easy-to-use platform for
people to leverage the functionality of our model.

4.5.1. Overview

To use our system, the user has to visit our web application and upload the image
of the apple leaf for which he wants to check the class. On clicking the upload button,
the image is sent to the backend, where it is fed to our model, and the result is showed
to the user. Figure 26 shows the snapshot of our web application which depicts the
above-foresaid process. The entire code of our web application is available at https:
//github.com/prakhar070/apple-disease-detection (accessed on 20 April 2021) [56].

Agriculture 2021, 11, x FOR PEER REVIEW 21 of 24

 Internal Use - Confidential

Table 5. Comparison of previous models with our model.

Model Accuracy
DenseNet 0.9260
GoogleNet 0.9530

EfficientNetB7 0.9562
ResNet20 0.9370

VggNet-16 0.9400
Our Model 0.9625

It is clear from Table 5 that our model outperforms various state-of-the-art CNN
models on the given dataset in terms of accuracy.

4.4. Computational Resources
According to the theory of computation, the most straightforward computational

resources are the time taken for calculation, the number of parameters involved, and the
memory required. In this section, we have summarized the computational requirements
of our proposed model based on these three factors. The TPU provided by Kaggle gives
128GB of memory, out of which our model’s peak usage was 16GB of memory. This was
the case when the batch size was 128. The training time for our model ranges from 31.6
min to 42.7 min, which depends upon factors such as: available free memory, network
bandwidth, etc. The prime parameters involved in the computation of our proposed
model are batch size, number of epochs, and steps per epoch. The values for these factors
have been given in Section 4.1. It is observed that the computational time is directly
proportional to the batch size and the steps per epoch.

4.5. Model Deployment
We have deployed our proposed model using a web application. We have named

our web application Leaviify. This application aims to serve as an easy-to-use platform
for people to leverage the functionality of our model.

4.5.1. Overview
To use our system, the user has to visit our web application and upload the image of

the apple leaf for which he wants to check the class. On clicking the upload button, the
image is sent to the backend, where it is fed to our model, and the result is showed to the
user. Figure 26 shows the snapshot of our web application which depicts the above-
foresaid process. The entire code of our web application is available at
https://github.com/prakhar070/apple-disease-detection (accessed on 20 April 2021) [56].

Figure 26. Snapshot of the web application. Figure 26. Snapshot of the web application.

https://github.com/prakhar070/apple-disease-detection
https://github.com/prakhar070/apple-disease-detection

Agriculture 2021, 11, 617 21 of 23

4.5.2. Web Application Work Flow

The working algorithm of our system is summarized in the following points—

1. User visits our web application and uploads the image of apple leaf. All this takes
place at the frontend.

2. The image uploaded is then sent to the backend, where it is fed to the CNN model.
At the backend, we have stored the weights of our proposed model in the form of an
HDF5 file [57]. The model is loaded from this HDF5 file. Before feeding the image to
the model, the image is first trimmed into the required shape of 512 × 512.

3. The result returned by our model is a NumPy array of size (4,1), which includes the
probability of the four classes. The class with the maximum probability is extracted.

4. The results are shown to the user at the frontend, and the image is stored in our
database to enhance our model.

4.5.3. Technologies Used

Our web application has a simple frontend designed using Javascript, CSS, and HTML.
The backend of our application uses Ruby on Rails which is a server-side web application
framework. The backend of our application maps the frontend to our deep learning model.
The proposed model uses technologies such as Python, Keras, Tensorflow, NumPy and
Pandas, etc. to store the images in a database to make them available for future training;
we have used MySQL, an open-source RDBMS.

5. Conclusions

In this paper, we proposed an ensemble of pre-trained deep learning models—
DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent—and analyzed their per-
formance on a dataset containing images of apple leaves. The dataset includes 3642 apple
leaves with four classes—apple scab, apple cedar rust, multiple diseases, and healthy. The
major limitation of this work that we focused on only four classes of the images that only
relate to two foliar diseases. We also analyzed and compared its performance with various
state-of-the-art models and concluded that it outperformed all those models, which are
trained on the same dataset. We also examined the scores of the three models individually
for multiple metrics such as accuracy, precision, recall, F1, etc. Finally, we ensembled the
predictions of the three models via averaging. Our final model achieves an accuracy of
96.25% on the validation dataset. With this accuracy in the picture, farmers can use this
approach to automate disease classification in apple trees. This will save not only time,
but also money since the need for experts can be minimized in certain situations. We also
deployed the proposed model via an easy-to-use web application, so that naive users find
it easy to use our model. This application is very useful for farmers in far remote areas,
where the services of plant pathologists are not easily accessible. In future work, we aim to
expand the classes under focus for our model to include other categories of foliar diseases.
Additionally, we intend to widen our dataset to include more images of apple leaves to
build better models for future.

Author Contributions: Conceptualization, S.K.; methodology, P.B., R.K.; software, P.B., R.K.; valida-
tion, P.B., S.K., R.K.; formal analysis, P.B.; investigation, P.B., R.K., writing—original draft preparation,
P.B., S.K.; writing—review and editing, S.K., P.B.; visualization, R.K., P.B.; supervision, S.K.; project
administration, S.K., funding acquisition, S.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author and also available on github [56].

Agriculture 2021, 11, 617 22 of 23

Acknowledgments: We are grateful for anonymous reviewers’ hard work and comments that
allowed us to improve the quality of this paper. We are also thankful to Sanjeev Kumar for providing
his inputs in the revision of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Apple. Wikipedia. 2021. Available online: https://en.wikipedia.org/wiki/Apple (accessed on 22 April 2021).
2. Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [CrossRef]
3. Badage, A. Crop disease detection using machine learning: Indian agriculture. Int. Res. J. Eng. Technol. 2018, 5, 866–869.
4. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [CrossRef]
5. Korkut, U.B.; Göktürk, Ö.B.; Yildiz, O. Detection of Plant Diseases by Machine Learning. In Proceedings of the 2018 26th Signal

Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4.
6. Noble, W.S. What Is a Support Vector Machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]
7. Quinlan, J.R. Simplifying Decision Trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [CrossRef]
8. Huang, Y.; Li, L. Naive Bayes Classification Algorithm Based on Small Sample Set. In Proceedings of the 2011 IEEE International

Conference on Cloud Computing and Intelligence Systems, Beijing, China, 15–17 September 2011; pp. 34–39.
9. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
10. Kumar, E.P.; Sharma, E.P. Artificial neural networks-a study. Int. J. Emerg. Eng. Res. Technol. 2014, 2, 143–148.
11. Pardede, H.F.; Suryawati, E.; Sustika, R.; Zilvan, V. Unsupervised Convolutional Autoencoder-Based Feature Learning for

Automatic Detection of Plant Diseases. In Proceedings of the 2018 International Conference on Computer, Control, Informatics
and Its Applications (IC3INA), Tangerang, Indonesia, 1–2 November 2018; pp. 158–162.

12. Howard, A.G. Some Improvements on Deep Convolutional Neural Network Based Image Classification. arXiv 2013,
arXiv:1312.5402.

13. Boulent, J.; Foucher, S.; Théau, J.; St-Charles, P.-L. Convolutional Neural Networks for the Automatic Identification of Plant
Diseases. Front. Plant Sci. 2019, 10, 941. [CrossRef]

14. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

15. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 24 May 2019; pp. 6105–6114.

16. Xie, Q.; Luong, M.-T.; Hovy, E.; Le, Q.V. Self-Training With Noisy Student Improves ImageNet Classification. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp.
10684–10695.

17. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Artificial Neural Networks
and Machine Learning-ICANN 2018 Lecture Notes in Computer Science; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.,
Maglogiannis, I., Eds.; Springer: Cham, Germany, 2018; Volume 11141. [CrossRef]

18. Steel, M.F.J. Model Averaging and Its Use in Economics. J. Econ. Lit. 2020, 58, 644–719. [CrossRef]
19. Selvaraj, M.G.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-Powered Banana Diseases and Pest

Detection. Plant Methods 2019, 15, 92. [CrossRef]
20. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance. Comput.

Electron. Agric. 2010, 74, 91–99. [CrossRef]
21. Sinha, A.; Shekhawat, R.S. Review of Image Processing Approaches for Detecting Plant Diseases. IET Image Process. 2019, 14,

1427–1439. [CrossRef]
22. Ramesh, S.; Hebbar, R.; Niveditha, M.; Pooja, R.; Shashank, N.; Vinod, P.V. Plant Disease Detection Using Machine Learning.

In Proceedings of the 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C),
Bangalore, India, 25–28 April 2018; pp. 41–45.

23. Yang, X.; Guo, T. Machine Learning in Plant Disease Research. Eur. J. Biomed. Res. 2017, 3, 6–9. [CrossRef]
24. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7.

[CrossRef] [PubMed]
25. Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant Disease Detection and Classification by Deep Learning. Plants 2019, 8, 468. [CrossRef]
26. Goncharov, P.; Ososkov, G.; Nechaevskiy, A.; Uzhinskiy, A.; Nestsiarenia, I. Disease Detection on the Plant Leaves by Deep

Learning. In Proceedings of the International Conference on Neuroinformatics, Moscow, Russia, 8–12 October 2018; Kryzhanovsky,
B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y., Eds.; Advances in Neural Computation, Machine Learning, and Cognitive
Research II. Springer International Publishing: Cham, Germany, 2019; pp. 151–159.

27. Sun, J.; Yang, Y.; He, X.; Wu, X. Northern Maize Leaf Blight Detection Under Complex Field Environment Based on Deep Learning.
IEEE Access 2020, 8, 33679–33688. [CrossRef]

28. Vine Disease Detection in UAV Multispectral Images Using Optimized Image Registration and Deep Learning Segmentation
Approach. Comput. Electron. Agric. 2020, 174, 105446. [CrossRef]

29. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocomputing 2017, 267, 378–384. [CrossRef]

https://en.wikipedia.org/wiki/Apple
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1109/TPAMI.1986.4767851
http://doi.org/10.1038/nbt1206-1565
http://doi.org/10.1016/S0020-7373(87)80053-6
http://doi.org/10.1038/nature14539
http://doi.org/10.3389/fpls.2019.00941
http://doi.org/10.1007/978-3-030-01424-7_27
http://doi.org/10.1257/jel.20191385
http://doi.org/10.1186/s13007-019-0475-z
http://doi.org/10.1016/j.compag.2010.06.009
http://doi.org/10.1049/iet-ipr.2018.6210
http://doi.org/10.18088/ejbmr.3.1.2017.pp6-9
http://doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://doi.org/10.3390/plants8110468
http://doi.org/10.1109/ACCESS.2020.2973658
http://doi.org/10.1016/j.compag.2020.105446
http://doi.org/10.1016/j.neucom.2017.06.023

Agriculture 2021, 11, 617 23 of 23

30. Amara, J.; Bouaziz, B.; Algergawy, A. A Deep Learning-Based Approach for Banana Leaf Diseases Classification. In Datenbanksys-
teme für Business, Technologie und Web (BTW 2017)-Workshopband; Mitschang, B., Nicklas, D., Leymann, F., Schöning, H., Herschel,
M., Teubner, J., Härder, T., Kopp, O., Wieland, M., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2017; pp. 79–88.

31. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

32. Factors Influencing the Use of Deep Learning for Plant Disease Recognition. Biosyst. Eng. 2018, 172, 84–91. [CrossRef]
33. Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks. Symmetry

2018, 10, 11. [CrossRef]
34. Chuanlei, Z.; Shanwen, Z.; Jucheng, Y.; Yancui, S.; Jia, C. Apple Leaf Disease Identification Using Genetic Algorithm and

Correlation Based Feature Selection Method. Int. J. Agric. Biol. Eng. 2017, 10, 74–83. [CrossRef]
35. Dai, B.; Qiu, T.; Ye, K. Foliar Disease Classification. Available online: http://noiselab.ucsd.edu/ECE228/projects/Report/15

Report.pdf (accessed on 20 April 2021).
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper With

Convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

38. Sardoğan, M.; Özen, Y.; Tuncer, A. Detection of Apple Leaf Diseases Using Faster R-CNN. Düzce Üniversitesi Bilim Teknol. Derg.
2020, 8, 1110–1117. [CrossRef]

39. Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on
Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [CrossRef]

40. Jeong, J.; Park, H.; Kwak, N. Enhancement of SSD by Concatenating Feature Maps for Object Detection. arXiv 2017,
arXiv:1705.09587.

41. Plant Pathology 2020-FGVC7. Available online: https://kaggle.com/c/plant-pathology-2020-fgvc7/data/ (accessed on 20 April 2021).
42. Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. arXiv 2017,

arXiv:1712.04621.
43. Glossary-Convolution. Available online: https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm (accessed on 18 April 2021).
44. OpenCV: Smoothing Images. Available online: https://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html

(accessed on 18 April 2021).
45. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2014, arXiv:1312.4400.
46. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of Trends in Practice and Research for

Deep Learning. arXiv 2018, arXiv:1811.03378.
47. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
48. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
49. Nain, A. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Available online: https://

medium.com/@nainaakash012/efficientnet-rethinking-model-scaling-for-convolutional-neural-networks-92941c5bfb95
(accessed on 25 May 2021).

50. Ju, C.; Bibaut, A.; van der Laan, M. The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks
for Image Classification. J. Appl. Stat. 2018, 45, 2800–2818. [CrossRef] [PubMed]

51. Kaggle: Your Machine Learning and Data Science Community. Available online: https://www.kaggle.com/
(accessed on 20 April 2021).

52. Tensor Processing Units (TPUs) Documentation. Available online: https://www.kaggle.com/docs/tpu (accessed on 20 April 2021).
53. Tf.Data.Dataset | TensorFlow Core v2.4.1. Available online: https://www.tensorflow.org/api_docs/python/tf/data/Dataset

(accessed on 20 April 2021).
54. Seaborn: Statistical Data Visualization—Seaborn 0.11.1 Documentation. Available online: https://seaborn.pydata.org/#:~{}:text=

Seaborn%20is%20a%20Python%20data,attractive%20and%20informative%20statistical%20graphics (accessed on 20 April 2021).
55. Mishra, A. Metrics to Evaluate Your Machine Learning Algorithm. Available online: https://towardsdatascience.com/metrics-

to-evaluate-your-machine-learning-algorithm-f10ba6e38234 (accessed on 18 April 2021).
56. Available online: https://github.com/prakhar070/apple-disease-detection (accessed on 20 April 2021).
57. The HDF5®Library & File Format. The HDF Group. Available online: https://www.hdfgroup.org/solutions/hdf5/

(accessed on 22 April 2021).

http://doi.org/10.1109/5.726791
http://doi.org/10.1016/j.biosystemseng.2018.05.013
http://doi.org/10.3390/sym10010011
http://doi.org/10.25165/ijabe.v10i2.2166
http://noiselab.ucsd.edu/ECE228/projects/Report/15Report.pdf
http://noiselab.ucsd.edu/ECE228/projects/Report/15Report.pdf
http://doi.org/10.29130/dubited.648387
http://doi.org/10.1109/ACCESS.2019.2914929
https://kaggle.com/c/plant-pathology-2020-fgvc7/data/
https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
https://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html
https://medium.com/@nainaakash012/efficientnet-rethinking-model-scaling-for-convolutional-neural-networks-92941c5bfb95
https://medium.com/@nainaakash012/efficientnet-rethinking-model-scaling-for-convolutional-neural-networks-92941c5bfb95
http://doi.org/10.1080/02664763.2018.1441383
http://www.ncbi.nlm.nih.gov/pubmed/31631918
https://www.kaggle.com/
https://www.kaggle.com/docs/tpu
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://seaborn.pydata.org/#:~{}:text=Seaborn%20is%20a%20Python%20data,attractive%20and%20informative%20statistical%20graphics
https://seaborn.pydata.org/#:~{}:text=Seaborn%20is%20a%20Python%20data,attractive%20and%20informative%20statistical%20graphics
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://github.com/prakhar070/apple-disease-detection
https://www.hdfgroup.org/solutions/hdf5/

	Introduction
	Related Works
	Methodology
	Dataset Collection
	Healthy
	Apple Scab
	Cedar Apple Rust
	Multiple Diseases

	Image Augmentation
	Canny Edge Detection
	Flipping
	Convolution
	Blurring

	Dataset Partition
	Modeling
	Multiclass Classification
	Transfer Learning
	Model Structure
	DenseNet121
	EfficientNet
	EfficientNet Noisy Student

	Ensembling

	Experimental Results and Analyses
	Experimental Setup
	Performance Metrics
	Performance Benchmarking
	Computational Resources
	Model Deployment
	Overview
	Web Application Work Flow
	Technologies Used

	Conclusions
	References

