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Abstract: Contamination by ergot caused by the phytopathogenic fungus Claviceps purpurea is a
constant threat to the whole rye value chain. Ergot alkaloids (EA) produced within the fungal sclerotia
are toxic for humans and animals and are subjected to strict regulations in human food. Our main
objective was to analyze whether less susceptible rye cultivars with a lower content of sclerotia also
contain fewer ergot alkaloids (EA). We analyzed 15 factorial single crosses in multi-environmental
trials with artificial inoculation for their ergot severity, the content of twelve EAs by HPLC, and
the total ergot content by ELISA. The genotypes displayed a wide range of pollen shedding from
fully sterile to fully fertile, of ergot severity expressed as percentage of sclerotia relative to the
harvest (0.22–11.47%), and of EA contents when analyzed by HPLC (0.57–45.27 mg/kg. Entry-mean
heritabilities were high throughout (0.87–0.98). The factorial analysis yielded a preponderance
of male general combining ability (GCA) variances, the estimates for the females were smaller,
although significant. EA contents measured by ELISA were, on average, seven times larger. The
correlation between ergot severity and EA contents determined by HPLC was r = 0.98 (p ≤ 0.01) and
only somewhat lower when analyzed by ELISA. In conclusion, less ergot prone rye genotypes also
support lower EA contents.

Keywords: Claviceps purpurea; ELISA; ergot severity; HPLC; pollen; Secale cereale

1. Introduction

Ergot is a century-old problem in rye (Secale cereale L.) cultivation and the disease-
causing pathogen Claviceps purpurea (Fr.) Tul. has as generalist a wide host range with
over 400 different grass species [1]. The fungus colonizes the unfertilized ovaries during
flowering [2] and causes the plant to form large overwintering organs, the purple-black
sclerotia [3]. They contain over 80 ergot alkaloids (EAs; [4]) that are dangerous to humans
and animals [5]. Because the fungus competes with pollen for the stigma, any conditions
where even only little pollen is available are conducive for infection. This includes cool,
damp weather at flowering that further promotes fungal infection [6]. Cultivation of hybrid
varieties based on cytoplasmic-male sterility (CMS) has also resulted in increased ergot
incidence since the mid-1980s because the required restorer-to-fertility (Rf ) genes provided
only 30–50% pollen shedding at that time [7,8]. Nowadays, non-adapted restorer genes
from Iranian primitive rye and Argentinean landraces are used in some hybrid varieties,
which cause a considerably better restoration and, thus, a significant reduction in ergot
content [9]. In the Descriptive List of Varieties of Germany, the susceptibility to ergot varies
between ratings of 3–6 on the 1–9 scale (1 = fully resistant, 9 = fully susceptible; [10]).

Total ergot alkaloid (EA) contents ranging from 3 to 300 µg/kg have been detected in
randomly collected rye samples from natural infections in Germany [11]. Because toxic EAs
occur in food and feed samples consistently, there are strict European Union limits on the
use of rye for human consumption with a maximum of 0.5 g sclerotia fragments/kg, and
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these limits are planned to be reduced to 0.2 g/kg as from 1 July 2023 [12]. In this context,
the six most frequent EAs (ergometrine, ergotamine, ergosine, ergocristine, ergocryptin,
ergocornine; [13]) with their inine epimers are to be regulated in unprocessed rye to a
maximum total content of 250 µg/kg from that date. Rye is used in Northern Europe
mainly for bread making, feeding, and bioenergy production and for these purposes
the occurrence of ergot sclerotia is harmful. Therefore, the question arises whether less
susceptible rye cultivars with a lower content of sclerotia also contain fewer alkaloids. For
this, we used CMS inbred lines to create 15 single crosses differing maximally in pollen
shedding, tested them in multi-site field trials with artificial infection, and measured the
alkaloid content using High Performance Liquid Chromatography (HPLC) analysis and a
commercial Enzyme-Linked Immunosorbent Assay (ELISA).

2. Materials and Methods
2.1. Field Trials and Inoculation Procedure

Fifteen factorial single crosses were produced by crossing four female lines (SE) of
the Petkus gene pool in the cytoplasmic-male sterility (CMS) inducing Pampa cytoplasma
with four male lines (PE) by KWS LOCHOW GMBH, Bergen, Germany. Two of the
male lines (PE2, PE4) had non-adapted Rf genes, one (PE3) had European Rf genes, all
being from the Carsten gene pool, and one line (PE5) was a non-restorer from the Petkus
gene pool, providing only non-pollen shedding progeny as negative control. In 2018 and
2019, the field trials were conducted at the following 6 locations: Oberer Lindenhof (OLI;
48◦28′25.5′ ′ N 9◦18′17.9′ ′ E), Braunschweig (BRS; 52◦16′33.4′ ′ N 10◦34′09.3′ ′ E), Wohlde
(WOH; 52◦48′48.7′ ′ N 9◦59′53.1′ ′ E), Petkus (PET; 51◦59′14′ ′ N 13◦21′22′ ′ E) in Germany,
Kościelna Wieś (KOS; 51◦46′28.7′ ′ N 18◦00′58.0′ ′ E), and Zybiszów (ZYB; 51◦03′51.9′ ′ N
16◦54′45.4′ ′ E) in Poland. Data of BRS 2018 were lacking because of missing infections. The
field trials were grown in a chessboard-like design with locally grown triticale (×Triticosecale
Wittm.) as surrounding border plots [14] completely randomized with two replications.
The size of the large-drilled plots varied between 5.0 and 6.9 m2 according to the location.
Sowing was carried out in September/October with a seed density of 200 kernels/m2,
all chemical treatments (herbicide, fertilizer, fungicide, growth regulator) were applied
conventionally at the different locations.

After collecting C. purpurea samples from Germany, Poland, and Austria, the labora-
tory of Dr. B. Rodemann (Julius Kühn-Institute, Institute for Plant Protection in Field Crops
and Grassland, Braunschweig, Germany) produced the inoculum as previously described
in detail by Miedaner et al. [15]. Briefly, each sample was isolated separately according
to Kirchhoff [16] and autoclaved wheat-grain medium colonized by C. purpurea was used
to produce conidia for inoculation. Suspending the colonized wheat in tap water and
adjusting the concentration to 3 × 106 spores/mL was done directly before inoculation.
For inoculation, a mix of three country-specific inocula from Germany, Poland, and Austria
were used to guarantee a wide ecological range of the inoculum, whereas the inoculation
procedure was performed as described in Kodisch et al. [17].

Visual scoring of the anthers (size, dehiscence) in the field on a scale of 1–9 was
done to evaluate the degree of pollen fertility as described in Geiger and Morgenstern [7]
due to a highly positive correlation (r > 0.9, p ≤ 0.01) between this anther score and
pollen amount [8]. This scale varied from male-sterile (score: 1–3), partially male-fertile
(score: 4–6) and male-fertile (score: 7–9) plants, whereas the classes were categorized by
increasing anther size. Scorings were done several times at mid-flowering of the respective
plot. At dough ripening stage (BBCH 85–89; [18]), a subplot of 1 m2 from the center of the
large plot was harvested by hand while avoiding secondary tillers. After drying (30 ◦C), all
heads of one plot were threshed by a large single-head thresher (Pelz K 35, Saatzuchtbedarf
Baumann, Waldenburg, Germany). The sclerotia and sclerotia fragments were sorted out
by hand, grain and ergot samples were separately weighed and calculated as percentage of
ergot sclerotia relative to the total grain sample by weight (=ergot severity).
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2.2. Sample Preparation

For preparing the samples for chemical analyses, grain and sclerotia were merged in
sub-samples of 200 g according to the respective ergot severity due to a better handling.
Afterwards, the sub-samples were milled (Ultra Centrifugal Mill ZM 200, 1 mm sieve,
Retsch, Haan, Germany) and the flour was used for all analyses. Samples of OLI in 2018
and 2019 were analyzed by HPLC and ELISA.

2.3. High Performance Liquid Chromatography (HPLC) Analysis of EAs

HPLC analysis was performed as described in detail by Kodisch et al. [17] according to
BVL L 15.01/02-5:2012-01 [19] with some minor alterations. In short, HPLC was performed
for the samples from two locations (OLI18, OLI19) by the Austrian Agency for Health and
Food Safety, Institute for Food Safety (AGES, Linz, Austria). Twelve EAs were quantified:
ergometrine, ergometrinine, ergosine, ergosinine, ergotamine, ergotaminine, ergocornine,
ergocorninine, α-ergocryptine, α-ergocryptinine, ergocrystine, and ergocrystinine. The
EA content was determined as the sum of all individual EAs, individual EA values lower
than the quantitation limit (LOQ < 0.02 mg/kg) were taken as zero. Subsequently, the term
“(total) EA content (determined) by HPLC” is related to the sum of these 12 EAs.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA) of EAs

ELISA analysis was performed as previously described in detail by Kodisch et al. [17].
Briefly, the competitive ErgoREAD ELISA (LCTech GmbH, Obertaufkirchen, Germany) was
conducted at the University of Hohenheim. After extraction and filtration, the company’s
internal protocol was performed and, afterwards, the extinction values were determined
by a microplate reader (‘Sunrise’) with integrated Magellan software (Tecan Group Ltd.,
Männedorf, Switzerland) relative to the standard samples (0, 0.025, 0.1, 0.25, 0.5, 0.75,
1 µg·kg−1). Higher EA concentrations were accordingly diluted to fit into this range.
The EA content was calculated using the proprietary software of LCTech GmbH (Ober-
taufkirchen, Germany), all samples were analyzed as duplicates.

2.5. Statistical Analyses

For all analyses, single-plot data were used. Outliers were identified according to
Bernal-Vasquez et al. [20] and handled in the following as missing values. For ergot severity
and EA contents, a square-root transformation was performed because the residuals did
not follow a normal distribution in any environment for biological reasons. After perform-
ing the analyses of variance (ANOVA) for each location independently, the ANOVA was
computed combined across locations for each trait using the methods described in [21].
The effect of the factor ‘genotype’ was taken as fixed and the factors ‘replication’ and
‘environment’ as random. For all statistics, significance levels of 0.05 or 0.01 were used.
Entry-mean heritability (H2

G) across all environments was calculated as the ratio of geno-
typic to phenotypic variance considering the number of replicates end environments [22].
The software R [23] and R-Studio (Version 3.5.1) [24] were used for all analyses including
the Pearson correlation coefficient (r). In the tables and figures, the original means are
reported. Multiple testing was performed by a Tukey test at p = 0.05 as implemented
in R-Studio.

3. Results

Fifteen single crosses consisting of four female and four male lines were tested for
anther score, ergot severity, and EA contents determined by HPLC and ELISA (Table 1).
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Table 1. Means of anther score (1–9), ergot severity (%), and ergot alkaloid (EA) contents determined
by HPLC and ELISA (mg/kg) across two environments for the combination of four female CMS lines
and four male lines after inoculation by Claviceps purpurea.

Female Male Line

Line PE2 PE3 PE4 PE5 Mean Sign. a

Anther score (1–9):

SE2 8.25 8.25 7.75 2.00 6.56 a
SE3 8.00 - 7.50 3.00 6.17 a
SE4 7.75 4.75 7.25 1.50 5.31 b
SE5 7.75 4.00 7.75 1.75 5.31 b

Mean 7.94 5.67 7.56 2.06 5.84
Sign. a a b a c

Ergot severity (%):

SE2 0.44 0.57 0.54 11.47 3.26 a
SE3 0.25 - 0.43 4.16 1.61 b
SE4 0.22 1.63 0.37 5.12 1.84 b
SE5 0.31 3.09 0.39 6.76 2.64 ab

Mean 0.31 1.76 0.43 6.88 2.34
Sign. a a b a c

EAs HPLC (mg/kg):

SE2 5.25 1.51 1.02 45.27 13.26 a
SE3 0.57 - 1.72 11.28 4.52 c
SE4 0.92 6.48 1.54 17.27 6.55 b
SE5 1.91 9.99 2.25 16.35 7.63 b

Mean 2.16 5.99 1.63 22.54 7.99
Sign. a a b a c

EAs ELISA (mg/kg):

SE2 32.64 18.30 28.40 75.82 38.79 a
SE3 20.94 - 43.67 133.09 65.90 b
SE4 22.13 51.29 27.28 126.99 56.92 ab
SE5 55.85 112.99 27.06 88.48 71.10 b

Mean 32.89 60.86 31.60 106.10 58.18
Sign. a a a a b

a Treatments with the same letter are not significantly different (Tukey test, p ≤ 0.05). The other letters(a,b)
indicate the significance.

The crosses displayed the whole range of pollen shedding from full male sterility
(AS 1.50) to full male fertility (AS 8.25) by the variation of the males possessing none (PE5),
only European (PE3), and additionally non-adapted Rf genes (PE2, PE4). Accordingly,
they differed significantly (p ≤ 0.05) in their mean performance with anther scores ranging
from 2.06 to 7.94 on the 1–9 scale. Also, the female lines showed a significant (p ≤ 0.05),
although much smaller difference in AS ranging from 5.31 to 6.56. Especially, SE2 could
be fully restored by the European Rf line PE3, while this male led only to low anther
scores with SE4 and SE5, illustrating a specific combining ability. Ergot severities ranged
widely from 0.22% to 11.47% across 11 environments. Highly positive and significant
correlations were observed for ergot severities (r = 0.97; p ≤ 0.001, Figure 1a and anther
scores (r = 0.98; p ≤ 0.001, Figure 1b) when comparing all 11 environments and the two test
environments (OLI18, OLI19) used for alkaloid analyses illustrating the representativeness
of the test environments.
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Figure 1. Association across all environments vs. test environments for 15 single crosses after
inoculation with C. purpurea for (a): ergot severity (%) and (b): anther score (1–9).

A clear negative association between ergot severity and anther scores was found for the
two test environments (r = −0.87, p ≤ 0.01). The same narrow association between anther
score and ergot severity was also found across all 11 environments (r = −0.91, p ≤ 0.01).
The factorial crosses also differed strongly for their EA contents ranging from 0.57 to
45.27 mg/kg when analyzed by HPLC. The combination SE2 × PE5 had an unusually high
EA content. The EA contents measured by ELISA were, on average, seven times higher
than analyzed with HPLC. Nevertheless, the correlation between both analytical methods
was significant (r = 0.53, p ≤ 0.05). When the combination SE2 × PE5 was omitted from
this analysis, the coefficient of correlation between both methods was raised to r = 0.87
(p ≤ 0.01). The correlations between ergot severity and EA contents determined by HPLC
and ELISA were r = 0.98 (p ≤ 0.01, Figure 2) and r = 0.63 (p ≤ 0.05, without SE2 × PE5:
r = 0.84, p ≤ 0.01), respectively.
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The analyses of variance showed very high genotypic entry-mean heritabilities ranging
from 0.80 to 0.98 (Table 2).

Table 2. Estimates of variance components for general (GCA) and specific combining ability (SCA) and genotypic entry-
mean heritability (H2

G) of four female CMS lines and four male restorer lines for ergot severity, anther score (AS), and ergot
alkaloid (EA) contents analyzed by HPLC and ELISA across all environments (n = 11) and the test environments (n = 2).

All Environments (n = 11) Test Environments (n = 2)
Parameter Ergot Severity a Anther Score Ergot Severity a Anther Score EA Content HPLC a EA Content ELISA a

Variance components:
GCA male (M) 13.07 *** 271.98 *** 13.39 *** 115.5 *** 1429 *** 17612 ***
GCA female (F) 0.37 ** 5.64 *** 0.38 *** 6.08 ** 182 *** 3849 *

SCA 0.25 ** 4.04 *** 0.57 *** 3.69 ** 242 *** 2845 *
M × environment (E) 1.32 *** 17.44 *** 0.68 *** 0.06 831 *** 3586 *

F × E 0.17 ** 1.13 0.16 * 0.58 158 *** 3243
F ×M × E 0.14 ** 1.26 * 0.15 * 1.25 190 *** 3032 *

Error 0.08 0.83 0.05 1.01 5 1159
H2

G 0.87 0.89 0.95 0.88 0.98 0.8

*, **, *** Significant at p = 0.05, 0.01, 0.001, respectively. a Data have been square-root transformed.

The estimates for ergot severity and anther scores across the test environments were
of the same magnitude of those calculated across all environments. The variances of the
male lines were of highest importance for all traits. The shares of the female lines and
that of the female ×male interaction (SCA, specific combining ability) were of equal size.
The interactions with environments were significant for ergot severities and EA content
measured by HPLC but of lesser importance for the other traits. Calculated across the
genetic variance, the share of the male parent was 93% and 92% for ergot severity and
anther score and 77% and 73% for EA contents measured by HPLC and ELISA, respectively.
The female and SCA effects had also clearly an impact on alkaloid contents.

The fifteen single crosses did not show large deviations in their amount (%) of the
individual EA profile relative to the total EA content (Supplementary Table S2). The most
important individual EA was ergocristin, followed by alpha-ergocryptin and ergotamine.
The amount of the –inine epimers were in all cases lower than the respective –in form.

4. Discussion

Ergot alkaloids are clearly an important concern in the total rye value chain. Although
high concentrations are rarely found in food samples, the stricter EU regulations expected
in 2023 [12] and general concerns of consumers on food security cast a poor image upon
the acceptance of rye. Even worse, home-grown rye is not controlled and can be sus-
pected to have even higher alkaloid concentrations despite the high sensitivity of some
livestock [13]. Because no fungicides against ergot are registered on the EU market [25,26],
it is of utmost importance to reduce ergot sclerotia in the rye harvest by breeding. It was
shown previously that cultivars with a high pollen shedding lead always to a lower ergot
contamination [27,28], thus confirming the tight correlations between anther score and
ergot severity found here among 15 single crosses.

In our study, ergocristin and alpha-ergocryptin were the main EAs. In the literature,
the abundance of the single EAs differed strongly with the experiments [29–31], therefore,
it was shown again that shifting of the EA profile seems to happen regularly. Only the fact
seems to be consistent that the amounts of the –inine epimers are lower than the respective
–in forms, which was also the case here. These –inine epimers are probably biologically
inactive but can also be contributing to the toxicity due to epimerization conversions [13].

In recent studies, only a moderate correlation between ergot severity and EA content
was found in rye [11]. Additionally, a large screening approach of 372 winter rye samples
across three cultivars, three isolates, eleven locations in three countries, and two years
resulted in a similar moderate, positive covariation between ergot severity and EA content
determined by HPLC (r = 0.53, p < 0.01, [17]). Obviously, EA contents are highly affected
by the interactions with isolates, locations, and years. However, when we concentrate
on genotypic differences such as in this study, correlations between ergot severity and
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EA content become obviously much closer. An explanation could be the low number of
environments in this study. However, the two locations used for the chemical analysis
differed strongly for ergot severity as well as for anther score while both traits correlated
nearly perfectly with the full number of environments. So, the data are representative and
could be probably extrapolated, but of course, it has to be verified in future datasets. This
also confirms the findings of Tittlemier et al. [32] where a strong linear relationship of ergot
sclerotia and EA concentration could be detected in wheat.

Ergot severities at the two test environments were considerably higher than among
the 11 environments. This was probably caused by the fact that the test location OLI
has a very high amount of yearly precipitation [33] and the year 2018 was extremely dry
in other locations, which is well known to hinder ergot infection [6]. This shows once
again the necessity of having suitable locations for ergot testing [34]. Another important
point for correlation analyses is, that we had here a maximum range of ergot severity and
EA contents among the 15 single crosses from 0.22% to 11.47% and 0.57 to 45.27 mg/kg,
respectively. This was not given in the earlier calibration study where we tested only three
genotypes with only a small difference regarding their ergot reaction [17]. In this earlier
study, the main differences among EA contents came from isolate and environmental
factors. Screening approaches that are fast, cheap, and easy to handle were found to be
not yet convincing because of a poor relationship between ELISA and HPLC results in
recent calibration studies [28,35]. The correlation of ELISA and HPLC found in this study
was moderate, which could also be caused by the higher range for ergot reaction of the
genotypes here.

The high preponderance of the male GCA variance for ergot severity illustrates that
it is promising to reduce ergot susceptibility in hybrid rye by breeding for high pollen
shedding, e.g., by introgressing non-adapted Rf genes [9] or by using alternative CMS
cytoplasms that are easier to restore [36]. However, when a high pollen shedding is inte-
grated in all rye hybrid breeding programs, the only way to make further achievements in
reducing ergot towards the low percentages known from wheat is an additional resistance
of the female parent for which first indications have been shown in this study and else-
where [15,37]. This might be also of great importance for reducing EA contents in future
breeding programs because the female lines contributed to the EA contents 10% to 16% of
the total genetic variance compared to only 2.6% for ergot severity.

5. Conclusions

We could demonstrate that hybrid cultivars with a low proportion of sclerotia in the
harvest also contain less EA content, which is auspicious for farmer, milling, and breeding
companies as well as consumers. In future, this tight correlation between ergot severity
and EA content should be substantiated by a larger number of hybrids that show a distinct
reaction to ergot, and additionally maternal effects should be further exploited in breeding
programs with an increased effort to reduce EA content to meet the future limits.
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10.3390/agriculture11060526/s1, Table S1: Means of anther score (1–9). ergot severity (%). and
ergot alkaloid contents (mg/kg) measured by HPLC and ELISA of 15 single-cross hybrids across
all environments and the test environments after inoculation by Claviceps purpurea, Table S2: Ergot
severity (%) and individual and total ergot alkaloid contents (mg/kg) measured by HPLC of 15
hybrids across two environments.
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