
agriculture

Article

3D Point Cloud on Semantic Information for Wheat Reconstruction

Yuhang Yang 1, Jinqian Zhang 1,†, Kangjie Wu 1,†, Xixin Zhang 1,†, Jun Sun 1, Shuaibo Peng 1, Jun Li 2

and Mantao Wang 2,*

����������
�������

Citation: Yang, Y.; Zhang, J.; Wu, K.;

Zhang, X.; Sun, J.; Peng, S.; Li, J.;

Wang, M. 3D Point Cloud on

Semantic Information for Wheat

Reconstruction. Agriculture 2021, 11,

450. https://doi.org/10.3390/

agriculture11050450

Academic Editors: Maciej

Zaborowicz and Dawid Wojcieszak

Received: 24 March 2021

Accepted: 27 April 2021

Published: 16 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China;
yangyuhang@stu.sicau.edu.cn (Y.Y.); zhangjinqian@stu.sicau.edu.cn (J.Z.);
wukangjie@stu.sicau.edu.cn (K.W.); zhangxixin@stu.sicau.edu.cn (X.Z.); 2019319014@stu.sicau.edu.cn (J.S.);
201703982@stu.sicau.edu.cn (S.P.)

2 Sichuan Key Laboratory of Agricultural Information Engineering, Ya’an 625000, China; lijun@sicau.edu.cn
* Correspondence: wangmantao@sicau.edu.cn; Tel.: +86-152-8128-6169
† These authors contributed equally to this work.

Abstract: Phenotypic analysis has always played an important role in breeding research. At present,
wheat phenotypic analysis research mostly relies on high-precision instruments, which make the
cost higher. Thanks to the development of 3D reconstruction technology, the reconstructed wheat 3D
model can also be used for phenotypic analysis. In this paper, a method is proposed to reconstruct
wheat 3D model based on semantic information. The method can generate the corresponding 3D
point cloud model of wheat according to the semantic description. First, an object detection algorithm
is used to detect the characteristics of some wheat phenotypes during the growth process. Second, the
growth environment information and some phenotypic features of wheat are combined into semantic
information. Third, text-to-image algorithm is used to generate the 2D image of wheat. Finally, the
wheat in the 2D image is transformed into an abstract 3D point cloud and obtained a higher precision
point cloud model using a deep learning algorithm. Extensive experiments indicate that the method
reconstructs 3D models and has a heuristic effect on phenotypic analysis and breeding research by
deep learning.

Keywords: wheat phenotype; object detection; text-to-image; 3D point cloud

1. Introduction

Wheat, as a type of cereal crop, is widely planted throughout the world. Its caryopsis
is one of the staple foods of human beings. According to the statistics, wheat provides
more than a 20% proportion of the world’s protein and heat for the human body [1]. A
study has indicated that the required crop yield is expected to be doubled by 2050 in order
to meet the demands of the rapid population growth [2]. As the climate changes, the
breeding of high-yield and drought-resistant wheat varieties has been widely concerned
and recognized.

Screening wheat seeds with high-yield and anti-disease genes is one of the solutions
to increase yield. At present, phenotypic analysis is one of the curcial methods to screen
fine varieties in breeding laboratory. Usually, the phenotypic data need to be measured
manually by researchers with instruments, which makes the research process longer and
the efficiency low. Fortunately, the rapid development of deep learning has enabled com-
puter vision to be combined with breeding research. The wheat 3D point cloud model
reconstructed by deep learning algorithms can be used to measure phenotypic data. The
algorithm model of deep learning can also effectively replace some trivial and miscella-
neous tasks that need to be completed manually. The 3D wheat model reconstructed by
the algorithm can be used to calculate plant height, leaf area, leaf thickness, and other
information. Moreover, the point cloud model can be used for segmentation tasks. It is
easy to distinguish the stems and leaves of wheat and to measure various data separately
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by using the point cloud model. In this paper, as shown in Figure 1, our work is mainly
divided into three parts.

Figure 1. The architecture of our work. Part 1 is the detection model; the model can detect whether
the wheat leaves are unfolded or not, and the probability of leaf unfolded and the information of
growth environment are composed of semantic information for the next stage. Part 2 uses semantic
information and real images to train a generator that can transform semantic information to images.
Part 3 uses the image generated in Part 2 to reconstruct the 3D point cloud model of wheat.

Object-Detection: we used object detection algorithm to detect and judge whether
the wheat leaves are unfolded. JC Zadoks et al. [3] proposed the decimal code for the
growth stages of cereals. We drew lessons from the method proposed by P Sadeghi-
Tehran et al. [4] to judge the growth stage of wheat. The unfoldment of different leaves
represents that wheat enters different growth stages. With the help of the detection model,
we can automatically judge which growth stage the wheat is in and record the time from
sowing to the growth stage. Compared with the traditional machine learning and image
processing methods [4], our method does not need to perform complex preprocessing on
the image, the detection speed of our method is increased by about 30%, and the detection
accuracy is higher. The object detection algorithm is used to collect wheat phenotype
information, and the information is made into text descriptions of the wheat.

Text-to-Image: it is very difficult to transform semantic information into point cloud
directly, so we used 2D images as the intermediate medium. We used Attentional Gen-
erative Adversarial Networks (AttnGAN) [5] to transform the growth environment and
phenotypic information collected during wheat growth from the text domain to image
domain. In the process of wheat growth, we used the temperature and humidity sensor to
record the temperature and humidity information of the wheat growth environment in real
time and reserved the information. Then, we combined the information with the probability
and time of leaf unfolded detected in the first stage to a complete text description, which
is used to train the AttnGAN. In the end, the AttnGAN model outputs images according
to the text description. After testing, the inception score (IS) [6] of the generated images
reached 4.41 and the R-precision [5] reached 64.78%.

Three-Dimensional Point Cloud: in this part, we used images that were generated
in the second part to reconstruct the 3D model of wheat. It is really hard to reconstruct the
3D point cloud from the generated images. Therefore, the method we used is to complete
the task in two stages. In the first stage, we reconstructed the wheat from a 2D image into
a rough point cloud. Although the point cloud generated in the first stage is somewhat
ambiguous, it still meets the shape characteristics of wheat. In the second stage, the point
cloud, which is generated in the first stage, is used as the input. Then, an unsupervised
learning method is used to generate more accurate point cloud. Moreover, the point cloud
generated in this stage is closer to the shape of real wheat.
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This paper is organized into five sections, including the present one. Section 2 intro-
duces the development and important contributions of the fields covered in this paper.
Section 3 describes how to collect datasets and to preprocess the collected data. At the
same time, the theoretical derivation of the model used in this paper is illustrated in detail.
In Section 4, the training process and the experimental results are displayed and discussed,
and we list a series of comparative experiments that we performed. The feasibility and
effectiveness of the experiment are discussed in this section. The last section summarizes
the contribution of this paper, and future research directions are proposed. The contribution
of our method is threefold:

1. A wheat dataset is proposed, which contains wheat data annotation for object detec-
tion, text-to-image, and 3D point cloud; it can be used by other researchers.

2. The method of object detection is used to automatically detect when wheat enters
each growth stage.

3. We proposed a method to reconstruct a 3D point cloud model of wheat by text
description; the method is based on multi-task cooperation.

2. Related Work

Reconstructing 3D point cloud of wheat is not an easy task, it is particularly difficult
to implement end-to-end generation. Therefore, it is a better choice to use mult- task
cooperation. The final solution is to combine the three algorithms of object detection,
text-to-image, and 3D point cloud reconstruction to achieve this purpose.

• Deep Learning in Wheat Breeding

With increasing population pressure and the subsequent demand for agricultural
products, countries in the world will face the problem of insufficient crop production.
Plant researchers have been trying to propose strategies for increasing the production of
wheat. Nimai Senapati et al. [7] pointed out the importance of drought tolerance during
reproductive development to increase wheat yield under climate change. Lin Ma et al. [8]
isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B, and
3D, and temporal and spatial expression analysis showed that TaGS5-3A was preferentially
expressed in young spikes and developing grains. Muhammad Adeel Hassan et al. [9]
evaluated the vegetation indices (Vls) of crops at different growth stages using multi-
spectral images of unmanned aerial vehicle (UAV).Some researchers used the analysis of
wheat phenotypes to judge the advantages and disadvantages of wheat varieties so as to
select good varieties to increase yield. At present, some researchers have used the method
of deep learning to assist wheat research. Aleksandra Wolanin et al. [10] estimated the
yield of wheat with explainable deep learning. Xu Wang et al. [11] used high-throughput
phenotyping with deep learning to understand the genetic structure of flowering time in
wheat. Liheng Zhong et al. [12] completed the mapping of winter wheat with the method
of deep learning. The above work has made great contribution to wheat breeding, but
these methods generally require a large amount of manual operation and measurement of
related instruments. In contrast, our work focuses on the automatic reconstruction of the
3D point cloud model of each growth stage of wheat.

• Object Detection Algorithms

Thus far, object detection is one of the most mature areas of deep learning, and it has
been applied in many industries. The growth stage of wheat is usually judged by the unfold-
ing of leaves, and the object detection algorithm can effectively detect whether the leaf is
fully unfolded. Recently, object detection algorithms can be divided into two categories: the
first is two-stage algorithms, the most representative of which is the Region-Convolutional
Neural Networks (R-CNN) series, including fast R-CNN [13], faster R-CNN [14], Region-
Fully Convolutional Neural Networks (R-FCN) [15], and Libra R-CNN [16]. These methods
rely on CNN to generate Region Proposal and then classify and regress on region proposal.
The characteristic of this type of method is that the accuracy is generally higher but the
speed is slower than the one-stage method. For one-stage algorithms, the most representa-
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tive models are You Only Look Once (YOLO) series [17–20], Single Shot MultiBox Detector
(SSD) [21], and RetinaNet [22], which can directly predict the bounding box and class
probability from the input image. Due to the need to monitor the growth of wheat in real
time, the one-stage method is better. Early YOLO models such as YOLOv1 and YOLOv2
only support the detection task of low-resolution images, and the detection effect for small
objects cannot satisfy the actual needs. YOLOv4 has good performance in both detection
accuracy and speed, so we chose YOLOv4 as the detection model and CSPDarknet53 [23]
as the backbone and used the attention mechanism to improve the performance of the
model on our own dataset.

• Text-to-Image Algorithms

Recently, great progress has been achieved in image generation with the emergence
of Generative Adversarial Networks (GANs) [24]. Many fields such as image restoration,
style transfer, video generation, music generation, text-to-image, etc. have made many
interesting applications with the help of GANs. Because we need to reconstruct 3D point
cloud of wheat from 2D images, the algorithm of text-to-image is completely consistent
with our application scenario. Compared with traditional generative models, GANs have
two major characteristics. (1) GANs do not need to rely on any prior distribution. It
only needs to sample from a distribution (usually a Gaussian distribution) for training.
(2) The GAN models generate real-like samples in a very simple way; they only need
to be forwarded through the generator. Generating high-resolution images from text
descriptions is a challenging task. Initially, the models can only translate text to image
pixels [25]. Stacked Generative Adversarial Networks (StackGAN) used a two-stage GAN
to translate text information into a 256 × 256 real image for the first time [26]. Based
on stackGAN, stackGAN-v2 is composed of multiple generators and discriminators and
arranged in a tree shape, generating multi-scale images of the same scene from different
branches of the tree [27]. AttnGAN allows for attention-driven, multi-stage refinement
for fine-grained text-to-image generation. This model pays more attention to the details
of related vocabulary in semantic description, and the generated image quality is better,
which is why we chose AttnGAN.

• Reconstruction of Wheat 3D Model

Three-dimensional images are a special form of information expression. Its charac-
teristic is to express the data of three dimensions in the space. Its forms of expression
include depth map, geometric model, and point cloud model. Point cloud data are the
most common and basic 3D model. Recently, deep learning on point clouds has thrived.
Currently, there are many methods based on multiple views, such as Multi-view convo-
lutional neural networks (MVCNN) [28] and Multi-view harmonized bilinear network
(MHBN) [29]. Some methods such as DensePoint [30] and ConvPoint [31,32] are based
on 3D discrete convolution; these methods define convolutional kernels on regular grids,
where the weights for neighboring points are related to offsets with respect to the center
point. some researchers have tried to reconstruct the 3D model of wheat. WeiFang et al. [33]
proposed high-throughput volumetric reconstruction for a 3D wheat plant architecture.
Research centers such as the Donald Danforth Plant Science Center and the Commonwealth
Science and Industrial Research Organization (CSIRO) proposed a solution for 3D model
reconstruction of plants based on 2D imaging [34]. Michael P. Pound et al. [35] proposed
to use single-view images to optimize the model based on image information, curvature
constraints, and the position of neighboring surfaces and to reconstruct a three-dimensional
model of the plant. All of these works have achieved good results. However, the above
works require the use of high-precision instruments or manual measurement of certain
plant parameters to better reconstruct the three-dimensional model of the plant. Workload
and cost are relatively high. In this paper, we use [36] to build the wheat 3D structure
points. Specifically, this method takes a 3D point cloud as input and encodes it as a set of
local features. The local features are then passed through a novel point integration module
to produce a set of 3D structure points.
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3. Materials and Methods

This section is divided into two parts. The first part mainly introduces data acquisition
and preprocessing. The second part introduces the details of the algorithm we used.

3.1. Materials
3.1.1. RGB Image and Semantic Information

In order to collect the data continuously, we developed a set of equipment with a
Raspberry Pi. The device is equipped with a RASPBERRY PI CAMERA MODULE V2
camera (Premier Farnell., London, UK), which has a prime lens and the image pixels up
to 3280 × 2464. In the process of wheat growth, the phenomenon of occlusion between
leaves is common. Therefore, only collecting a single-view image cannot meet the data
requirement of the detection task. In fact, a rotatable turntable can solve this problem well;
we simply put the wheat culture dish on it and let the turntable rotate slowly. It is easy
to collect multi-view images in this way. The whole collecting process was completed in
the breeding laboratory, and the advantage is that the whole process was not affected by
environmental factors. Finally, we collected 2000 images of the wheat growing process. The
dataset contains images of the growing process of 50 wheat plants, and at least 30 images
were collected for each wheat plant. These images were used for the training of the
object-detection task and text-to-image task, respectively.

DHT11 [37] is a temperature and humidity sensor with calibrated digital signal output.
We used it to collect the temperature and soil humidity of the wheat-growing environ-
ment. Then, all information such as temperature, soil humidity, wheat plant height, and
leaf unfolded probability were combined into semantic information, which was used for
training of the text-to-image task. Finally, we made 2000 textual annotations. The semantic
information and the corresponding image example are shown in Figure 2.

Figure 2. The left side is a captured image, and the right side is a text description of the image in
the dataset.

3.1.2. Data Preprocessing

Since the input nodes of the deep learning network are fixed but the pixel size of the
collected images is different, the images need to be resized first. We resized the original
image to 1024 × 1024 pixels and then entered it into YOLOv4 for training. The growth
environment of wheat is changeable: different weather conditions will lead to different
light intensities, and different wind speeds will change the posture of wheat. Therefore, in
order to improve the robustness of the model, we flipped the original image a few angles
and gamma transformed the image. In addition, considering the hardware noise of the
imaging sensor, such as the electronic circuit noise caused by low illumination or high
temperature in the camera sensor, it is necessary to add gaussian noise and salt and pepper
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noise to make the model obtain a better fitting effect in an uncertain environment. After
data augmentation, our dataset was expanded to 5000 images. In addition, the dataset also
contains labels for object detection training, point cloud markers of wheat model, and text
description of the image.

3.2. Methods
3.2.1. Detection Model

Object detection is the first part of the whole work, which is mainly used to detect
whether the blade is unfolded. The structure of YOLOv4 [20] can be divided into three
parts: backbone feature extraction network, enhanced feature extraction network, and
Yolo-Head. Moreover, the anchor used in YOLOv4 is the same as YOLOv3. In the backbone
network, YOLOv4 adopts Cross Stage Partial Network (CSPDarknet53). The main idea is
multiple stacking of residual networks, which uses a large residual edge span connection
structure to extract edge information better. It is worth noting that the last three effective
layers obtained by CSPDarknet53 are all used as input for feature fusion to improve the
network performance. YOLOv4’s neck is divided into Spatial Pyramid Pooling (SPP) [38]
and Feature Pyramid Networks (FPN) [39]. The most prominent feature of SPP is that it can
easily achieve multi-scale training. SPP can extract features from images of different sizes;
it can also output features of any size by adjusting the size and stride of the kernel. FPN
adopts a jump connection structure, and a multi-dimensional fusion feature layer is finally
obtained by convolution, sampling, and splicing. It combines multiple effective feature
layers through continuous convolution and sampling. The bottom-up and top-down
network designs enable fine-grained feature information to be directly integrated with
the final feature layer. This short-circuit concept makes fine-grained localized information
available on the top floor.

In the priors-anchor part, YOLOv4 does not directly predict the width, height, and
center point coordinates of the bounding box; it predicts the offset. Compared with direct
location prediction, it is easier to predict the offset and to avoid the problem that the
bounding box may appear at any position of the image. The offset formula is defined
as follows: 

bx = σ(tx) + Cx
by = σ

(
ty
)
+ Cy

bw = pwetw , bh = pheth

σ(t0) = Pr(object)× IOU(b, object)

, (1)

where bx, by is the center coordinates of the prediction box. bw, by represent the length and
width of the prediction box. t0 is the confidence score. Cx, Cy is the upper-left coordinates
of the grid cell in the feature map, and pw and ph are the width and height of the default
bounding box mapped to the feature map. In the process of training, the correct bounding
box is obtained by fitting four parameters tx, ty, tw, and th. The loss function of YOLOv4 is
divided into three parts: confidence loss, classification loss, and bounding box regression
loss. Compared with YOLOv3, YOLOv4 changes only in bounding box regression loss,
YOLOv3 uses Mean Squared Error (MSE) loss in bounding box regression, while YOLOv4
uses Complete-Intersection over Union (CIoU) [40] loss. CIoU is defined as follows:

ξCloU = 1− IoU +
ρ2(b,bgt)

c2 + αv, where

a = v
(1−IOU)+v , v = 4

π2

(
arctan wgt

hgt − arctan w
h

)2 , (2)

where α is the weight factor and measures the similarity of the aspect ratio and
ρ2(b,bgt)

c2 is
the Distance-Intersection over Union (DIoU) [40]. CIoU combines the advantages of various
loss functions well and fully considers the relationship of various prediction indicators.
IoU is used to express the co-selection rate between the bounding box and ground truth.
DIoU is used to make the bounding box regress better. α is used to measure the aspect ratio
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of the bounding box, which reflects the offset between the bounding and ground truth.
The information detected by the model is used to train Attentional Generative Adversarial
Networks (AttnGAN) [5].

3.2.2. Text-to-Image Model

Compared with other GAN models, AttnGAN has two special characteristics: (1) an at-
tentional generative network; (2) Deep attentional multimodal similarity model (DAMSM) [5].
Most recently proposed text-to-image synthesis methods are based on GANs. These meth-
ods usually encode the whole text description into a global sentence vector as the condition
for GAN-based image generation [41]. It leads to a lack of important fine-grained infor-
mation at the word level and prevents the generation of high-quality images. AttnGAN
not only encodes the natural language description into a global sentence vector but also
encodes each word in the sentence into a word vector. In the first stage, the network utilizes
the global sentence vector to generate a low-resolution image. In the next stage, it uses the
image vector in each subregion to query word vectors by using an attention layer to form a
word-context vector. The final objective function of the AttnGAN is defined as follows:

ξ = ξG + λξDAMSM, where ξG =
m−1

∑
i=0

ξGi , (3)

where ξG is the GAN loss that jointly approximates conditional and unconditional dis-
tributions and λ is a hyperparameter to balance the two terms. ξDAMSM is a word-level
fine-grained image-text matching loss computed by the DAMSM. Additionally, the loss for
Gi is defined as follows:

ξGi = −
1
2

Ex̂i∼PGi [log(Di(x̂i))]︸ ︷︷ ︸
uncondtional-loss

−1
2

Ex̂i∼PGi [log(Di(x̂i, ē))]︸ ︷︷ ︸
condtional-loss

, (4)

where x̂i is from the model distribution PGi. The function is divided into two parts: the
unconditional-loss determines whether the image is fake or real, and the conditional-loss
determines whether the image and the semantic information match. At each stage of the
AttnGAN, the generator Gi has a corresponding discriminator Di, each discriminator Di
is trained to classify the input into the class of real or fake, and the loss for Di is defined
as follows:

ξDi = −
1
2

Exi∼Pdatai [log Di(xi)]−
1
2

Ex̂i∼PGi [log(1− Di(x̂i))]︸ ︷︷ ︸
unconditional-loss

+

−1
2

Exi∼Pdatai [log Di(xi, ē)]− 1
2

Ex̂i∼PGi [log(1− Di(x̂i, ē))]︸ ︷︷ ︸
condtional −loss

,
(5)

where xi is from the true image distribution pdata , x̂i is from the model distribution PGi,
both of them are at the ith scale, and ē is a global sentence vector.

The second part of the objective function is the loss function of the Deep attentional
multimodal similarity model (DAMSM) [5] model. DAMSM learns two neural networks,
which map words of the sentence and subregions of the image to a common semantic space
and calculate the fine-grained loss of image generation. The neural networks learned by
DAMSM are Long Short-Term Memory (LSTM) [42] and Convolutional Neural Network
(CNN); the specific structure of these two networks will not be introduced in this paper. The
LSTM network is used to extract semantic vectors from text descriptions; the CNN network
is built upon the Inception-v3 [43] model pretrained on ImageNet [44]. We extracted global
features from the last average pool layer of Inception-v3 and added a perceptron layer
to convert image features into a common semantic space for text features. DAMSM uses
image-text matching score to evaluate the result. The 2D image generated by the model is
an important medium for reconstructing 3D point cloud.
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3.2.3. Three-Dimensional Point Cloud Model

Our ultimate goal is to reconstruct the 3D point cloud model of wheat using text
description, the generated 2D image is only a medium in the middle. In this stage, 3D
point clouds need to be reconstructed from a single 2D image. Because 2D images are
generated from models, it is impossible to use a depth camera and other devices to collect
point cloud data, so we reconstructed the point cloud in two stages. In the first stage, we
used a model that can generate point cloud from a single image [45]. Due to the lack of
depth information, the shape of the point cloud reconstructed in the first stage is a little
ambiguous. In the second stage, the method we used is an end-to-end framework [36],
which can learn intrinsic structure points from point clouds. The framework consists of two
parts: PointNet++ and Point integration model. The whole structure is shown in Figure 3.

Figure 3. Stage I reconstructs a sparse point cloud from a single image, and the point cloud is used
as the input to generate final structure points in stage II.

The input to PointNet++ is a point cloud, and the point cloud first enters an encoder.
The encoder extract sample points Q = {q1, q2, . . . , ql}

(
qi ∈ R3) with the features F =

{ f1, f2, . . . , fl}
(

fi ∈ R3); l is the number of sample points; and c indicates the dimension
of the feature representation. Additionally, the input to the point integration model is the
points Q with the local contextual features F, which were obtained by the PointNet++ [46].
Shared Multi-Layer Perceptron (MLP) is a shared multi-layer perceptron block followed
by softmax. It is used as an activation function to generate the probability maps P =
{p1, p2, . . . , pm} . The pi

j in the probability map pi indicates the probability of the point qi
being the structure point Si. Therefore, the output points S can be defined as follows:

Si =
l

∑
j=1

qj pi
j, where

l

∑
j=1

pj
i = 1. (6)

For unsupervised training of the network, the reconstruction loss is defined based on
the Chamfer distance (CD) [45]. In fact, the loss is the CD between the structure S and the
input points X, the loss is computed as follows:

Lrec(S, X) = ∑
si∈S

min
xj∈X

∥∥si − xj
∥∥2

2 + ∑
xj∈X

min
si∈S

∥∥si − xj
∥∥2

2. (7)

4. Experiments
4.1. Experimental Results

The operating system of the experiment is Ubuntu16.04, the deep learning framework
used in all experiments is PyTorch1.2, and all experimental results are obtained on NVIDIA
GeForce RTX 2080 super GPU with a video memory of 8 GB. In this section, we use
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four subsections to show the experimental effects of the three models and discuss the
experimental results in detail.

Training a good detector is the basis of our work. In our own dataset, the highest mean
Average Precision (mAP) [47] of YOLOv4 is 0.917. After many experiments, we found that
some tricks can improve the accuracy of the model on our own dataset. Finally, we set the
image size to 512 and epoch = 200 and used mutli-scale training. In this case, we trained
the model with the highest mAP value. The experimental results showed that the attention
mechanism such as Convolutional Block Attention Module (CBAM) [48], Squeeze-and-
Excitation Networks (SENet) [49], and multi-scale training have a great influence on the
experimental results. We also used other tricks to assist in training the model. Figure 4
shows the training details of the comparative experiments, and Table 1 shows all of the
results of the comparative experiments.

Figure 4. Changes in mAP and loss in each group of experimental training.
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Table 1. The results of all comparative experiments.

SENet CBAM Mutil-Scale Size mAP

416 0.877
512 0.788

X 416 0.887
X 416 0.893

X 416 0.876
X X 416 0.849

X X 416 0.859
X 512 0.804

X 512 0.825
X 512 0.917

X X 512 0.841
X X 512 0.862

Bold data represents the best set of experiments.

According to the above experimental results, we can draw the following conclusions:

• The attention mechanism and multi-scale training are helpful to improve mAP value;
when the image size is 416, the mAP value using SENet or CBAM is 0.015 higher than
using multi-scale training. However, when the image size is 512, the mAP value using
multi-scale training is 0.1 higher than using SENet or CBAM.

• When the attention mechanism is used together with multi-scale training, the im-
provement in experimental results is not obvious; especially when the image size is
416, the map value was even reduced. This shows that the combination of multi-scale
training and an attention mechanism requires a larger image size to provide more
information.

• When using CBAM, the mAP value is 0.01 higher than using SENet in all experiments.
Additionally, it can be seen from the training process that the loss decreases more
smoothly when using CBAM. The reason is that CBAM has one more spatial attention
than SENet.

To verify the robustness of our model, we collected some wheat images from the field
and tested them with our models. The results are shown in Figure 5 and show that our
model can detect whether wheat leaves are unfolded in different environments.

Figure 5. The test results of wheat images collected from the field. The crease between the wheat
leaf and the main stem indicates that the wheat leaf has been fully unfolded, and the crease is the
target of detection. The probability in the figure is the confidence score. In the experiment, we set the
threshold to 85%. When the confidence score is higher than 85%, the leaf is considered to be unfolded.
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After the phenotypic information of wheat is detected, the semantic information
is used to generate the corresponding 2D image. The quality of the 2D image directly
determines the quality of the final 3D point cloud. The evaluation index of GAN models
is usually inception score, which gives the score from the two aspects of image clarity
and diversity. The higher the value is, the better the training model is. However, the
disadvantage is that it cannot reflect whether the image is well conditioned on the given text
description, so we added another evaluation index R-precision, which is a complementary
evaluation metric for the text-to-image synthesis task. More details about R-precision are
presented in [5]. In the training stage, we first used the pretrained DAMSM to train the
image and test encoders. Then, the text vector, which is made by a text encoder, and the
vector sampled from gaussian distribution were used to train the generator. The parameter
λ in Equation (3) and DAMSM have great influences on the experimental results. Table 2
shows the experimental results of different λ values and whether DAMSM is used.

Table 2. The inception score and R-precision in different λ values and whether to use DAMSM.

DAMSM λ Inception Score R-Precision

0.1 4.08 ± 0.03 16.47 ± 4.72
X 0.1 4.25 ± 0.04 16.87 ± 5.23

1 4.33 ± 0.02 33.46 ± 4.34
X 1 4.37 ± 0.01 35.72 ± 4.88

5 4.36 ± 0.03 57.62 ± 5.33
X 5 4.39 ± 0.02 58.64 ± 5.28

10 4.38 ± 0.05 62.68 ± 4.26
X 10 4.41 ± 0.03 64.78 ± 5.12

50 4.31 ± 0.02 57.68 ± 4.56
X 50 4.35 ± 0.05 58.94 ± 4.34

Bold data represents the best set of experiments.

When λ = 5 and using DAMSM, we obtained the best model. We also tested our
model by using a series of text descriptions. Figure 6 shows the results.

Figure 6. The test results of the text-to-image model: the model can generate a variety of images
based on the text description.
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Comparing the generated images with the real images, we find that the images
generated by our model pay attention to the details of semantic information, and the
generated image basically conforms to the text description. The quality of the generated
image can fully meet the requirements of the next stage of 3D reconstruction.

The last part of the work is to reconstruct the 3D point cloud of wheat from the
generated image. The task is so difficult that it needs two stages to complete. Although
the point cloud obtained at the first stage has the shape of the real object, it is still quite
different from the real object. Therefore, the point cloud is used as input to the model
was introduced in Section 3.2.3. To generate point cloud models with more details, we set
the number of structure points to 1024. To evaluate the robustness of the model to input
point clouds with different densities, we used the point-wise average Eucliden distance to
measure the stability of the structure points. Table 3 shows the results of the experiment.

Table 3. Results of average distance with different numbers of sampling points: the smaller the value
of average distance, the more stable the model.

Stage Sample Num Average Distance(%)

Early 256 0.487
Early 512 0.136
Early 1024 0.036

Booting 256 0.544
Booting 512 0.097
Booting 1024 0.022
Mature 256 0.479
Mature 512 0.067
Mature 1024 0.014

The growth stage of wheat can be divided into 11 stages, such as germination, emer-
gence, tillering, etc. The morphological and physiological characteristics of each stage are
different. Here, we can roughly divide them into three growth stages: early growth stage,
middle booting stage, and mature stage. Figure 7 shows the structure points of each stage.

Figure 7. According to the wheat images of different stages, the corresponding 3D point cloud is
reconstructed by the trained model.
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As can be seen from Figure 7, the morphology of wheat has different characteristics at
different growth stages. The generated point cloud model is very similar to the shape of
real wheat, and the key features also conform to the text description. This is because the
reconstructing is completed in two stages, and the feature information of the previous stage
is retained. The results also show that it is feasible to divide the task into two stages. The
3D point cloud model can calculate the phenotypic parameters of wheat leaves through
the coordinates of the points and can construct realistic a virtual model of leaf surfaces.
The realistic virtual model is important for several applications in plant sciences, such as
modelling agrichemical spray droplet movement and spreading on the surface.

4.2. Discussion

From the above experimental results, we can see that our method is feasible and
effective. The quality of the generated image is largely determined by the text description,
so the detailed and accurate text description is particularly important. Using an object
detection algorithm to detect the unfolded probability of wheat leaves, we can judge
the growth stages of wheat. From the text-to-image experiment, it is obvious that the
detection results play an important role in image generation. The image of the training
object detection model is continuously collected in the process of wheat growth, including
the images of each growth stage of wheat. According to the experimental results, YOLOv4
can detect the unfolded probability of wheat leaves and then the growth stage of wheat
can be judged correctly. In the actual research process, this method was able to replace
part of the manual work. In the process of wheat growth, environmental factors and the
transition of growth stages are very subtle changes. After using DAMSM, the generated
image depends more on the description of each word. It is more conducive to generate
images with different details. The values of inception score and R-precision in Table 2 can
reflect that the model we used can generate high-quality images and that the matching
degree between images and text descriptions is high, which makes 3D reconstruction using
semantic information feasible. We used a single image to generate the final point cloud
model in two stages, and the training process is unsupervised. It can be seen from the
generated point cloud and various evaluation indexes that our model can reconstruct a
reliable wheat 3D point cloud model. DM Kempthorne et al. [50] used the 3D scan data
to reconstruct the 3D model of the wheat leaf. Compared with their method, our method
does not need to use an expensive instrument such as the 3D scanner and our method
greatly reduces the calculation time. Jonathon A. Gibbs et al. [51] conducted research on
using voxels to build three-dimensional models of plants, and the 3D model reconstructed
by this method was composed of many small cubes. The shape of wheat is usually not a
regular geometry. Compared to using point cloud to reconstruct 3D structure, the models
built by voxels have lower accuracy and the calculation of phenotypic parameters is also
affected. Taking these factors into consideration, our method has better performance in
practicability and accuracy. It is more suitable for daily breeding research.

5. Conclusions

In this paper, we propose a method to reconstruct wheat 3D point cloud model using
semantic information and verify the feasibility of this method through experiments. A
dataset that contains images of wheat, the text description matching the image, and point
cloud data corresponding to the image is proposed. It is helpful to other researchers. Cur-
rently, we achieved the effect of generating 3D point cloud based on semantic information.
Each point of the 3D point cloud model has a certain coordinate, and the coordinates of
the point can be used to estimate leaf area, to calculate plant height, and to measure leaf
thickness and other phenotypic data. In addition, the point cloud model can be used for
classification and segmentation tasks. It is easy to distinguish which growth stage the wheat
is in by using the point cloud model. If a point cloud model is used for segmentation task,
the points of different colors in the entire 3D point cloud model represent different parts
of the wheat and various phenotypic data of different parts can be calculated separately.
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In actual application, only a data acquisition device and a computer with well-deployed
algorithms are required. All calculation processes are completed automatically. Breeding
researchers only need to perform some simple auxiliary work and to use the data for
further ecophysiological research. Gramineae plants have a host of similar characteristics,
and our method may be used as a heuristic algorithm for other Gramineae plants. We
currently still use the multi-task method to reconstruct the point cloud, and end-to-end
training has not yet been implemented. In the future, we will continue to explore effective
methods to achieve end-to-end training of the whole structure.
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