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Abstract: Rice bacterial leaf streak (BLS) is a serious disease in rice leaves and can seriously affect the
quality and quantity of rice growth. Automatic estimation of disease severity is a crucial requirement
in agricultural production. To address this, a new method (termed BLSNet) was proposed for rice and
BLS leaf lesion recognition and segmentation based on a UNet network in semantic segmentation.
An attention mechanism and multi-scale extraction integration were used in BLSNet to improve the
accuracy of lesion segmentation. We compared the performance of the proposed network with that
of DeepLabv3+ and UNet as benchmark models used in semantic segmentation. It was found that
the proposed BLSNet model demonstrated higher segmentation and class accuracy. A preliminary
investigation of BLS disease severity estimation was carried out based on our BLS segmentation
results, and it was found that the proposed BLSNet method has strong potential to be a reliable
automatic estimator of BLS disease severity.

Keywords: rice bacterial leaf streak; leaf disease recognition; lesion segmentation; semantic segmen-
tation; deep learning; convolutional neural network; disease severity estimation

1. Introduction

Rice (Oryza sativa L.) is one of the three main crops in Asia and is widely planted.
Due to the complex characteristics of rice growing in relatively hot and humid conditions,
it is vulnerable to diseases. Rice bacterial leaf streak (BLS) is one of the most serious
diseases affecting rice production, occurring early in the growth cycle, spreading quickly
and causing severe damage [1]. The timely monitoring and prediction of the occurrence
and development of BLS is of great significance to maintain rice production. The leaves are
usually damaged by BLS and the traditional disease severity estimation of BLS depends
on the lesion area as a proportion of the total leaf area. The estimation of leaf damage is
largely dependent on the level of experience of agronomists and farmers, which is labor
intensive and time consuming, and the estimations are often subjective and unreliable [2].

In the early studies of plant disease recognition, feature descriptors were designed to
extract internal features from pictures obtained in the laboratory or the agricultural pro-
duction environment using edge detection, color space transform, feature space transform
theories, etc. [3–5]. These features were usually classified using a support vector machine
(SVM) and linear discrimination, among others. For example, a prototype system for rice
plant disease was proposed by Prajapati et al. [6], in which the background was removed
and SVM was used to classify the types of diseases according to color, shape, and texture
features of the digital pictures of infected rice. In another example, four types of local
descriptors were compared in soybean leaf disease recognition and the effectiveness of

Agriculture 2021, 11, 420. https://doi.org/10.3390/agriculture11050420 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-4342-6293
https://orcid.org/0000-0001-9376-1148
https://orcid.org/0000-0003-2267-9205
https://doi.org/10.3390/agriculture11050420
https://doi.org/10.3390/agriculture11050420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11050420
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11050420?type=check_update&version=1


Agriculture 2021, 11, 420 2 of 18

the proposed local descriptors, combined with the bag of visual words approach, were
evaluated using classic 10-fold cross-validation and correct classification rate metric [7].

Deep learning methods have been applied successfully in image recognition [8] and
semantic segmentation [9]. This technology has been used recently by Sethy et al. for plant
disease recognition [10–12]. In addition, Lu et al. used a convolutional neural network
(CNN) algorithm to identify 10 common rice disease types from 500 natural images of
diseased and healthy rice leaves and stems [13]. There are some well-known proposed
networks that have been investigated and show good potential and performance for plant
disease recognition, e.g., MoblieNet and self-structured artificial neural network models,
which were used to classify citrus disease images captured using smartphones [14]. Saleem
et al. compared the classification performance of 19 CNN models applied in Plant Village
Dataset, including AlexNet and OverFeat, the best CNN model was selected and the
performance of the model was improved further by various deep learning optimizers,
and the results showed that Xception combined with the Adam optimizer achieved the
highest accuracy [15]. Kabir et al. implemented numerous popular CNN architectures
and found that the Xception and DenseNet models performed better in multi-label plant
disease classification [16].

Different agricultural environments have different characteristics, based on which
Karlekar et al. proposed a two-stage soybean disease classification method named SoyNet.
The background of images in SoyNet was excluded from the whole picture and then CNN
was used to classify the soybean disease image [17]. Aiming to improve the accuracy of
crop diseases classification, Nanehkaran et al. first segmented crop disease symptoms by
color hue, saturation, and brightness, and then used CNN to classify disease types [18].
Sethy et al. used a transfer learning strategy and SVM to classify rice leaf diseases from
the features extracted by eleven types of CNN models, and their results showed that
the deep features plus SVM method outperformed the transfer strategy method [10].
Marino et al. introduced the unsupervised adversarial learning method into potato defect
detection to overcome the shortcoming of accuracy deterioration caused by new labels.
Their results showed that the domain self-adaption method can improve classification
accuracy significantly [19].

Few studies have been carried out to date in the field of disease severity estimation.
Typical examples of these include the study by Kalpana et al., in which the rice disease
severity degree was predicted by using the fuzzy verdict method [20]. PD2 SE-Net was
proposed to assist plant disease and severity automatic estimation based on CNN, inspired
by the ResNet and ShuffleNet-V2 [21]. Esgario et al. designed a multi-task CNN method
for the stress type classification of coffee leaves [22]. Prabhakar et al. used the ResNet-
101 pre-trained in the Plant Village dataset to determine healthy, mild, middle, and serious
disease severities for tomato early blight investigation [23]. These studies mostly built
models directly to determine crop disease type and the level of severity. Even though these
models were successful, they have certain shortcomings in fine quantitative evaluation
and precise assessment, e.g., if the criteria changed, the model needs re-training due to the
fact that directly building the relationship between disease severity and samples and direct
model is lack of interpretation.

To solve the problems mentioned above, semantic segmentation theory has been ap-
plied in the study of agricultural disease severity estimation and other relevant agricultural
applications. The primary task of semantic segmentation is to assign proper labels to
every pixel in pictures so that it can acquire the disease lesion zone percentage required for
disease severity estimation. The rice panicle segmentation approach based on the simple
linear iterative super-pixel region generating (SLIS) technique was proposed by Xiong
et al. The proposed method was robust to the field environment, degree of capture, crop
growth factor, and other variables when compared with HSeg and other segmentation
algorithms [24]. For different types of plants disease severity investigations, Kerkech
et al. used a fully convolutional network (FCN) to fuse information to achieve pixel-wise
segmentation for shadow, ground, healthy and diseased vine via registering visible and
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near infrared vine imageries acquired by an unmanned aerial vehicle (UAV) [25]. Wang
et al. used the VGG16 model and an encoder–decoder structure to segment diseased leaf
spots in corn, and this overcame the influence of complex backgrounds and solved the
labor-intensive problem of feature extraction template design [26]. Tusubira et al. evaluated
Cassava brown streak (CBS) loss according to the segmented pixels number of necrotized
and non-necrotized cells based on CBS lesion segmentation results [27]. In the area of
weed identification, Abdalla et al. segmented images taken in the field and efficiently
distinguished crops from weed species [28].

In general, the development of agricultural disease recognition and severity estimation
undergoes two stages, i.e., the manual crafted features-based machine learning method
and the deep learning-based method, both of which can be summarized as a classification
problem. The former methods can be regarded as shallow classifiers, and the latter methods
can be considered as deep classifiers according to the complex degree of the proposed
models. After the data acquisition stage, e.g., by color cameras, mobile devices, and
multispectral or hyperspectral imaging devices. The former methods need pre-processing,
segmentation, feature extraction and classification modules [29]. A systematic summary
about classical classification methods used in the first study stage of disease recognition
and severity estimation was also given in this literature review. The performance of this
type of method largely depends on the degree of feature extraction. Deep learning-based
methods rises with the hardware computing power, which do not rely on manual feature
extraction and have excellent generalization ability [30], having been applied in many
types of crops disease recognition studies [31–33]. Wang et al. used apple black rots data
from PlantVillage dataset; the data were further labeled into different disease levels by
agronomist experts. The performance of disease classification accuracy of VGG16, VGG19,
Inception-V3 and ResNet50 models were compared and found that VGG-16 combined
with the transfer learning strategy achieved 90.4% accuracy on the test samples [34]. Verma
et al. used tomato data from PlantVillage Dataset and label three stages (early, middle and
end) for tomato late blight severity estimation study. Two types model design methods,
i.e., transfer learning-based and feature extraction-based, were compared, and it was
demonstrated that AlexNet achieved the best accuracy in both methods [35]. Although
great progress has been made in the study of disease classification, existing research about
agricultural disease classification mainly directly compared the performance of networks
in the area of computer vision. Meanwhile, the number of disease levels used in the
studies were small, possibly causing the proposed methods to estimate disease severity
roughly and restrict the practical applications of the model. For further research on the
fine classification of disease severity, Lin et.al used the semantic segmentation of deep
learning to quantify the degree of cucumber powdery mildew through outperformed
k-means, random forest and the GBDT method in 20 test samples [36]. For the specific rice
disease recognition task, Shrivastava used a pre-trained convolutional neural network as
feature extractor and support vector machine as a classifier, then classified four types of
rice diseases taken in actual fields; the encouraging results showed that it can be used in the
early warning of disease occurrence [37]. Chen et. al combined squeeze-and-excitation (SE
block) with MobileNet to propose a model of rice diseases classification, which achieved
99.33% classification accuracy [38]. Das et. al firstly segmented the rice disease zone, then
CNN was used to extract features and the dimension reduction method was used to reduce
redundant features; finally, various classifiers were used to classify rice disease types [39].
Sethy et al. proposed a model for detecting rice false smut based on the Faster R-CNN object
detection method [40]. Among studies of rice disease, most of them concern whether rice
disease occurs or classifying multiply types of rice diseases; however, the number of studies
about disease lesion segmentation and fine assessment of rice BLS severity estimation is
still few, and the background of the analyzed images was usually simple. There is an urgent
demand to design a better severity estimation model and improve the robustness of the
proposed model for efficient plant protection. With the improvement of the performance
of models, some research pays attention to the lightweight model of disease recognition,
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which can be deployed in a mobile device. Elhasouny et al. proposed an effective and
lightweight mobile application to classify and diagnose ten types of common tomato plant
diseases [41].

The studies mentioned above concerning semantic segmentation applications in agri-
culture have made a beneficial step forward in high accuracy uses of the method. However,
to the best of our knowledge, the research on rice BLS lesion segmentation and disease
severity estimation is still limited, which is of great significance to the crop protection of
rice and the increase in rice yield.

Based on the above discussion, in this study, a new model named BLSNet for rice
BLS lesion recognition and segmentation is proposed. The main contribution of this paper
can be stated as follows: (1) this is the first step for the evaluation of the capacity of deep
learning semantic segmentation for rice BLS lesion segmentation; (2) it fills the research
gap of rice BLS lesion segmentation and fine disease severity estimation. The lesion
area value can be drawn for BLS disease severity assessment based on the segmentation
results. The model was trained and validated using real images captured in the production
environment to ensure real application utility in the future. Preliminary studies suggest
that the proposed method is effective in estimating rice BLS severity.

2. Materials and Methods
2.1. Data Collection

Data were collected in the fields around Shanji, Xuzhou, JiangSu Province, China
(117◦34′22” N, 34◦13′58” E, 30 m above sea level), on 18–19 September 2020 at 10:00–
16:00 under different sun light intensities and capture angles. A portable digital camera
(D850, Nikon Inc., Tokyo, Japan) was used to capture RGB pictures of paddy rice. Most of
the collected lesion images were at the growth stage and ranged from small water-spot-like
short spots to vertical long stripes. The initial size of the images was 8256 × 5504 pixels
(Figure 1a). Due to the fact that the initial size of one image was large, data were first
cropped by the central area determined by the actual size of the 1 × 1 m white box shown
in the images (Figure 1b). Then, after randomly cropping the central area, the final size of
the images used to train and validate BLSNet was 256 × 256 pixels. The dataset consisted
of 109 images, which were labeled as BLS lesion, rice leaves, and three background classes
using LabelMe software [42]. Figure 2 shows the data labels.
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Figure 1. Images showing (a) initial sample data and (b) cropped sample data determined by the
1 × 1 m white box.

To avoid model overfitting, data augmentation methods were used through random
vertical and horizon flip, contrast stretch, brightness stretch, sharpness stretch, salt and
pepper noise, Gaussian noise, random rotation (rotation angle = 0–360◦), random resize
(resize factor = 0.1–1.0), and random blur. These data enhancements were performed using
open source OpenCV [43], and Python Image Library (PIL) [44]. A total of 1199 images were
acquired using the above data augmentation techniques, ~80% of which were randomly
selected as a training dataset, with the remaining ~20% used for model validation.
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Figure 2. Image types and their corresponding labels, (a), (b) and (c), give three examples of
the samples used for training and validation (red, green, and black stand for BLS lesion, leaves,
background, respectively).

2.2. Disease Severity Label

The disease severity label determination was based on the BLS lesion and the propor-
tion of the BLS lesion of the total leaf area was used in the process. Level 0 included
leaves with no lesion; level 1 with below 10% lesion; level 2 = 11–25% lesion; level
3 = 26–45% lesion; level 4 = 46–65%; level 5 = >65% accordingly. Due to the data col-
lection time constraints, BLS was in the intermediate or more serious disease severity
classes, so the sample sizes of levels 1 and 2 were relatively small.

For this study, as the trained data were randomly partitioned from the initial data, the
proportion of the lesion in the total leaves of each sample was used to investigate disease severity.
Table 1 shows the disease severity data distribution in the training and validation datasets.

Table 1. Disease severity data distribution.

Disease Severity Level Training Validation

1 34 11
2 109 18
3 351 79
4 280 78
5 194 45

Total 968 231

2.3. Model Architecture

CNN blocks are usually used in semantic segmentation models because CNN can
extract and exploit local contextual features. The attention mechanism and multi-scale
features methods can discriminate parts and make full use of local and global information,
improving the efficiency and accuracy of the model training process. Therefore, both
the attention mechanism and multi-features were used in BLSNet for rice BLS lesion
segmentation in our research.

Based on the encoder–decoder architecture used in UNet [45], our BLSNet was de-
signed to have five stages or blocks; namely, a down-sample stage, up-sample stage,
skip connection with an attention block(SE block), atrous spatial pyramid pooling (ASPP)
block [46], and multi-scale spatial channel attention block (MSC block). Figure 3 presents
the overall network model architecture.
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Figure 3. Overall architecture of BLSNet. Conv stride = 2 represents the down-sample block with
convolution operation of kernel size of 3 and stride size of 2. Conv + MaxPool stands for the
down-sample block composed of convolution operation of kernel size of 3, followed by a maximum
pooling of kernel size of 2. DeConv + ResBlock stands for the up-sample block, i.e., DeConv is
convolutional transposed operation of kernel size 3, ResBlock uses residual connection. The detailed
implementation process is described in the following sections.

Similar to the architecture of UNet, BLSNet was divided into three parts: left, middle,
and right. Feature extraction and semantic feature extraction were achieved in the left
part. Four down-sample blocks were included in the feature extraction process, while
skip connection with attention machine was used in the middle part. According to the
level of feature complexity, two types of attention blocks, i.e., SE block and MSC block,
were used in BLSNet. Shallow, simple, and edge features were obtained in the 1st, 2nd,
and 3rd down-sample block. The simple channel attention block was used to process the
shallow, simple, and edge features. High level semantic features were extracted during
the 4th down-sample block and combined with the ASPP and MSC blocks. The right part
of the BLSNet was the decoded part, in which different level and scale information flows
were combined, and picture size was recovered to the original size of 256 × 256 pixels
gradually from bottom to top. Convolution blocks used in the whole model were composed
of combined operations of convolution, normalization, and activation to improve training
performance.

2.3.1. Down-Sample Stage

The down-sample stage was composed of four down-sample blocks, after which the
output size was half of the input size, meaning the final features were one sixteenth of
the original size. In the first down-sample phase, a convolution of kernel size 3 and stride
2 was adopted to avoid the edge information being ignored for the purpose of maximum
pooling adoption in the UNet. In the second, third, and fourth down-sample phases, a
convolution of kernel size 1 was used to integrate information, and a maximum pooling
operation of stride 2 was used to down-sample and extract salient features. During the
down-sample block procedure, an increasing amount of contextual information was drawn
as the number of down-samples increased.

2.3.2. Skip Connection Stage with Attention Block

As is shown in Figure 4 [47], in the skip connection stage, feature maps obtained from
the 1st, 2nd, and 3rd down-sample stages were processed with the squeeze and excitation
attention blocks (SEBlock). The size of feature maps extracted in the 4th down-sample
stage containing rich semantic information was 1/16 of the initial input image that contains
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rich semantic information, so the MSCBlock was utilized to process the 4th down-sample
stage features.
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The SEBlock was composed of three branches: the upper branch generated the weight
of every channel, i.e., the channel weights were extracted through the convolutional block
and global pooling, followed by a convolution block comprising of two 1 × 1 operations of
convolution. The sigmoid activation function was then used to scale channel weights to a
range of 0 to 1. The output features of the SEBlock were the summary of the initial features
dotted with the channel weight and the original features.

The MSCBlock consisted of the ASPP block and a spatial channel attention machine.
Figure 5 shows the information flow process of the MSCBlock, in which the higher

semantic features are first filtered with ASPP to integrate multi-scale features and are then
separately fed into the two branches (i.e., the position attention module (PAM) and channel
attention module (CAM)). Figure 6 shows the structure of PAM and Figure 7 presents
the diagram of CAM. Through both PAM and CAM branches, the position-enhanced
and channel-enhanced features were then added, and a convolutional block with 1 × 1
convolutional operation was used to reduce channel numbers and refine the semantic
contextual content to acquire the final high-level semantic features.

In the PAM branch, the features extracted by ASPP were first processed with the
convolutional block, after which three 1 × 1 convolutional branches were used in the
position attention module (PAM) to process the features and generate key feature map B,
query feature map C, and value feature map D. The shape of feature maps B and C was
then altered and dotted to generate spatial feature relation matrix E. Feature map D was
reshaped to operate with E and generate enhanced position feature maps. The outputs of
the PAM were the summary of enhanced position feature map and original features.
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Similar to the design of the PAM branch, after the convolutional block three
1× 1 convolutional branches were used in the channel attention module (Figure 7) to generate
value feature maps B, query feature maps C and key feature maps D. Channel correlation
feature maps E were obtained by C and D. Specifically, the shapes of C and D were first
altered and matrix multiplication was performed. The final enhanced position feature maps
were acquired using matrix multiplication of E with feature maps B. The outputs of the CAM
were the summary of the enhanced position feature map and original features.

The ASPP block (Figure 8) consisted of five branches, four of which were two-
dimensional dilation convolutions with a kernel size of 3, and dilation rates of 1, 3, 6,
and 9, respectively; the last branch utilized average pooling to obtain global semantic
information.
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2.3.3. Up-Sample Stage

As the size of the final feature map was 1/16 of the initial feature map, to recover the
same size of the input images, an up-sample operation for the feature maps was required.
The up-sample stage of the proposed network had four up-sample blocks, with the 1st,
2nd, 3rd, and 4th up-sample stages corresponding to the respective down-sample stages.
During the up-sample stage, from bottom to top, a deconvolution of stride 2 was first used
to double the size of the highest-level feature maps generated from the MSCBlock. Then,
in the 3rd, 2nd, and 1st up-sample blocks, features enhanced by a skip connection stage
were concatenated with up-sampled features. Then, a residual operator composed of a
convolution of kernel size 3 and kernel size 1 was used to process the concatenated features
to prevent the network performance from degradation. After four up-sample operations,
the size of the feature map was the same as the input image. A convolution of kernel
size 1 was used to make the final channel size the same as the category numbers to be
distinguished. Each pixel label was assigned by the indices of the maximum values among
the possibilities in the three channels.

2.4. Experimental Process

Our model was implemented in the PyTorch deep learning framework. The model
was trained using 16 GB of memory powered by a Tesla V100 Graphics Processing Unit
(GPU) under Ubuntu18.04 LTS system environment. The number of batch sizes for training
and validating was set to 32, according to the capacity of the GPU and the size of sample
images. A “Loss” value was computed according to the multi classes cross entropy loss
function, calculated in Equation (1), where yn indicates the class label, ŷ represents the
predicted class label, and K represents the number of total categories. The parameters of
the proposed model were updated using backward gradient propagation algorithm.

Loss = − 1
K

K

∑
n=1

[ynlogŷ] (1)

The model was trained for a maximum of 300 epochs, and the performance on the
validation dataset was recorded after every two training epochs. Adam optimizer was
chosen as the network optimizer. The initial learning rate was set to 0.001, and the poly
learning rate strategy was used to update the learning rate dynamically. For parameter
initialization, the parameters of the convolutional layer were initialized using the Kaiming
initialization method, while other parameters were set using the default values provided
in the PyTorch framework.

The BLSNet was compared with UNet and DeepLabv3+ based on segmentation
accuracy, pixel accuracy, BLS lesion segmentation accuracy, rice segmentation accuracy,
background segmentation accuracy, and the mean interaction over union (mIoU). The
mIoU was the ratio of the intersection area and the total area between the input label mask
and the predicted result mask, calculated using Equation (2). The mIoU reflects the quality
of the segmentation on a scale of 0 to 1, where 1 means the predicted result was exactly the
same as the label, which is the ideal situation for semantic segmentation. In Equation (2), k
represents the total number of categories, which in this case was set to 3, and pij represents
the number of categories i predicted as category j.

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pij − pii
(2)

Pixel accuracy (PA) represents the proportion of all the correctly predicted pixels to
the total pixels, as is shown in Equation (3). k indicates the number of classes, and pii
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represents the corrected predicted pixels, pij represents the number of categories i predicted
as category j.

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(3)

Class accuracy (CA) was usually used to measure the accuracy of each category
prediction results and was computed using Equation (4):

CA =
pii

∑k
j=0 pij

(4)

3. Results
3.1. Training Results

Figure 9 shows the training accuracy curves from the mIoU and different category
segmentations. All the criteria for the BLSNet model were the highest at the beginning,
and the number of epochs required to achieve the convergence of BLSNet was the smallest.
BLSNet showed an overall upward trend in the training and validation process, proving
the stability of the method. By contrast, in the training process of UNet, two obvious
oscillations were observed that reflect the fluctuation of UNet, which is not acceptable in
practical applications.
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accuracy of BLS of three models.



Agriculture 2021, 11, 420 11 of 18

3.2. Validation Results

In the training process, the performance of the trained models used in the validation
dataset was recoded every two epochs. From Figure 10, it can be seen that compared with
the UNet and DeepLabV3+ methods, the change of BLSNet was smallest, indicating the
stability and transfer capacity of this method.
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The mIoU and CA values from the three models are listed in Table 2 for comparison.
BLSNet performed better than UNet and DeepLabV3+ in terms of mIoU, and the segmen-
tation accuracy of the BLS disease lesion, rice leaves and background outperformed the
next best method by 4%, 4%, 2%, and 1% in terms of accuracy, respectively.

Table 2. Accuracy comparison of the proposed BLSNet model with UNet and DeepLabV3+.

Indicators UNet DeepLabV3+ BLSNet

mIoU 0.912 0.895 0.956
Background 0.983 0.975 0.994

BLS 0.944 0.944 0.982
Rice 0.959 0.938 0.980

The bold in each row in the table is the highest accuracy achieved by model.

4. Discussion
4.1. Ablation Study on Attention Block

Ablation studies were performed to investigate the effectiveness of each attention
block used in the skip connection stage. In this experiment, the first, second, third, and
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fourth attention blocks in the skip connection were removed separately, and the first,
second, and third attention blocks were removed together. For mIoU, the segmentation
accuracy of the background, rice, and BLS were compared independently (Table 3), and
we found that the performance of segmentation by applying ablation models was mostly
worse than the highest accuracy achieved in BLSNet, demonstrating the effectiveness of
the attention mechanism in the segmentation process.

Table 3. Accuracy comparison in ablation study when removing attention blocks.

Indicator BLSNet Without1 Without2 Without3 Without4 Without1–3

mIoU 0.956 0.949 0.952 0.951 0.935 0.957
Background 0.982 0.979 0.982 0.978 0.957 0.980

BLS 0.982 0.979 0.982 0.978 0.957 0.980
Rice 0.980 0.974 0.980 0.976 0.968 0.980

Without1 stands for the ablation BLSNet model which removed the first attention block in the skip connection
stage, without2 stands for removing the second attention block in BLSNet, without3,4,1–3 represent for removing
the third, the fourth, the first to the third attention block. The bold in each row in the table is the accuracy achieved
by the BLSNet model and the highest accuracy achieved by ablation model.

The performance of the ablation BLSNet and the initial BLSNet model in terms of the
mIoU was evaluated. The lowest accuracy was obtained in the model without the fourth
attention block, and a possible reason for this is that the fourth attention block was mainly
effective in dealing with high-level semantic features containing rich semantic contextual and
spatial information. This attention block was also useful in dealing with distinguishable features
for further segmentation. This finding is beneficial to the further development of the model
architectural design for agricultural diseases segmentation; that is, it can pay more attention on
a full utilization of high level semantic and contextual features.

The second attention block did not significantly improve the performance of the
BLSnet model. A possible reason for this is that the channel number of the output features
of the second down-sample block was 128, which has already distinguished the interme-
diate features reasonably well from the low-level of edge features and the high-level of
semantic features.

Comparing the accuracy of different classes achieved by the ablation studies listed
in Table 3, it can be seen that the background accuracy was not obviously influenced
by removing attention blocks. A possible reason for this is that the background occu-
pies a relatively large area in an image, so the attention blocks did not work efficiently.
The accuracy of the BLS segmentation and rice segmentation is apparently decreased by
about 3% when the attention blocks were not included, especially the fourth attention
block. This verifies the effectiveness of using the MSC block to distinguish high-level
semantic features.

4.2. Prediction Results Comparison

To investigate the segmentation performance of the BLSNet, UNet, and DeepLabV3+
models, the images and results of their segmentation are presented in Figure 11. In
Figure 11, the first-row sample under dark light conditions was processed using the flip
augmentation operation. The segmentation effects of the first-row sample suggest that the
performance of all models was similar. The performance of the BLSNet segmentation was
relatively consistent and tended to be complete. The second-row sample was augmented
by an image rotation operation, and it is clear that some of the leaves’ segments are missing
in comparison with those in the UNet and DeepLabv3+ models. Again, the segmentation
performed by BLSNet tended to be complete, indicating its ability to perform well even
when sample rotation occurs. This characteristic is desirable for disease segmentation in the
natural agricultural production environment. The third-row sample is enhanced by a scale
transformer and the detailed features of lesion segmentation from the BLSNet model were
better than those produced by UNet and DeepLabV3+. This suggests that BLSNet is better
suited for the adaptation of scale changes of images. In the fourth row of Figure 10, it can
be seen that the detailed edges of BLS can be segmented well by the BLSNet model, which
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is consistent with the conclusion obtained in the lesion ablation studies, i.e., attention
blocks can significantly improve detailed segmentation. In the fifth row of Figure 10,
panicles were misclassified as BLS by the BLSNet model. A possible reason for this is
that the characteristics of the panicle were similar to the color characteristics of the BLS
disease spots, so the network may not be able to discriminate between the fine differences
of disease spots and panicles, which ultimately leads to misclassifications.
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segmentation result; (d) DeepLabV3+ segmentation result; and (e) BLSNet segmentation result. Each
row lists a representative sample, corresponding rice, BLS, and background label, the segmentation
result of UNet, DeepLabv3+, and BLSNet.

4.3. Comparison of Model Prediction Time

To compare the prediction time of different models, the saved parameter files of UNet,
DeepLabV3+, and the proposed BLSNet were used to load the trained models for the
segmentation of validation dataset images. The segmentation time of each image in the
validation dataset was calculated by averaging the prediction time of all images. Table 4
shows that the prediction time for BLSNet was slightly longer than UNet, shorter than
DeepLabV3+, but the segmentation accuracy achieved by the BLSNet was the highest. This
suggests that the BLSNet is well-suited for real-time BLS lesion segmentation.

Table 4. Model prediction time comparison.

Model UNet DeepLabV3+ BLSNet

Prediction Time (s) 0.020 0.028 0.021

4.4. Disease Severity Estimation Comparison

Precise areas of the disease lesion that are needed for the investigation of disease
severity can be extracted based on the segmentation results. The trained models were
used to segment the validation dataset, and the percentage of the BLS diseased lesion area
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in a sample was then recorded to obtain the disease severity in each image according to
the criteria outlined in Section 2.2. To compare the effectiveness of BLSNet, UNet, and
DeepLabV3+ in determining different levels of BLS disease severity, confusion matrices
were used, as shown in Figures 12–14. The classification accuracy of different levels of
disease severity is shown in Table 5. In confusion matrices, the number in each row
represents the number of the predicted category corresponding to the true category. It can
be seen that for level 2 damage severity, UNet achieved the highest accuracy, while the
best results of disease severity level determination were achieved by BLSNet for the other
four levels. As for the overall classification accuracy, BLSNet was higher than UNet and
DeepLabV3+.
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Table 5. Disease severity level estimation accuracy comparison.

Severity Level BLSNet UNet DeepLabV3+

1 0.91 0.91 0.91
2 0.89 1.00 0.89
3 0.92 0.85 0.87
4 0.95 0.91 0.91
5 0.95 0.89 0.93

Average accuracy 0.94 0.89 0.90

The bold in each row in the table is the highest accuracy achieved by model.

To improve our understanding of the causes for such a phenomenon, misclassification
problems were further analyzed. A total of 14 samples were misclassified by BLSNet,
among which the disease severity of 11 samples was underestimated. This underestimation
problem is likely due to the fact that lesion segmentation zones tended to be clustered due
to the attention mechanism. This led to the estimated area of disease infection being smaller
than the actual area. Twenty-three samples were misclassified by the DeepLabV3+ model
correspondingly. The possible reason for this misclassification was that the receptive fields
of ASPP used in DeepLabV3+ were large and lacked sufficient attention blocks, increasing
the difficulty of efficiently detecting BLS lesion zones. It is clear that the performance
of different levels of disease classification differed in the UNet model: the accuracy of
classification for levels 2 and 3 were 1 and 0.85, respectively, demonstrating that UNet
was not always able to determine BLS disease severity well at certain levels. The results
obtained from the disease severity investigation suggest that the proposed BLSNet model
could be used in practical applications to automatically determine BLS disease severity
with a high level of accuracy.

Although higher classification accuracy was achieved by the BLSNet in BLS severity
estimation overall, the accuracy of level 1 and 2 determination was lower than that of levels
3–5. The capability to identify low level BLS disease severity was limited, i.e., segmenting
small lesion zones needs to be improved in BLSNet. The performance of the proposed
model can be improved through the amount of data used, by using a higher volume of
different level BLS disease severity data. A priori knowledge of plant protection and other
relevant agriculture information, as well as full usages of computer vision, could help with
the design and implementation of an effective severity estimation process. In addition,
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automatic labeling, semi-supervised training, and assisted labeling methods could be used
to improve the speed of agricultural sample processing, helping to overcome the workload
problem of manual semantic labeling.

5. Conclusions

This paper proposed BLSNet for rice BLS lesion segmentation and disease sever-
ity estimation based on the semantic segmentation technique and attention mechanism
and multi-scale methods. The BLSNet was trained by images taken in the actual fields.
The accuracy of segmentation of the BLSNet was the highest compared with benchmark
DeepLabV3+ and UNet model. In the case of level 5 disease severity, the accuracy of
classification of the proposed model was higher in level 4, demonstrating the effectiveness
of disease severity estimation of the proposed models.

The highlight of this paper is the application of the semantic segmentation of the
deep learning method into the rice BLS segmentation and severity estimation. To our
knowledge, this is the first work to take advantage of the pixel-wise classification of
semantic segmentation to obtain fine rice BLS lesion areas, which are used for disease
severity determination. The result of comparative experiments proved the introduction
of the attention mechanism and multi-scale features aggregation can improve disease
classification accuracy; the finding of the work provides references for the deep learning
architecture design of other relevant plant disease classification.

It is worth noting that there are still some limitations in this method. The accuracy
of low level disease degree estimation needs improving. Due to the restriction of data
collection time and experimental site, only one type, i.e., BLS rice disease segmentation
and severity estimation, was studied. In the future study of lesion segmentation and
disease severity level estimation, an advanced segmentation model can be developed for
more types of plants, more types of diseases and more levels of disease severity. Multiple
types of data sources can also be considered, e.g., multispectral and hyperspectral data of
which spectral characteristics can be used to show the growth state of crops, and aerial
imagery which be used for effective plant diseases monitoring in the large scale. In theory,
the accuracy of the model can be improved by increasing the amount of data; the data
crowdsourcing method can be used to label adequate crop disease samples. In terms of
the size of the model, work can also be carried out to reduce the parameter amount of the
model and the proposed lightweight model for mobile and IoT devices in the actual field.
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