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Abstract: It is important to accurately assess agricultural drought because of its harmful impacts on
the ecosystem and economy. Soil moisture reanalysis datasets provide an important way to assess
agricultural drought. In this study, the ERA5-Land surface and subsurface soil moisture was used to
estimate the soil water deficit index (SWDI) in four southern provinces of China. The ERA5-Land
dataset was evaluated with in situ soil moisture observations from agrometeorological stations.
Agricultural drought was assessed for three climate zones at a weekly scale from 2017 to 2019 and
was compared with the atmospheric water deficit (AWD). It was found that both ERA5-Land soil
moisture and the derived SWDI have relatively high accuracy, and the wet bias in the ERA5-Land
dataset can be reduced by the calculation of the SWDI. The subsurface layer has better performance
than the surface layer in drought monitoring, though they are highly correlated. Different climate
zones demonstrate different drought periods and drought severity, and the temperate climate zone
with no dry season has less droughts. The most severe droughts with the largest spatial extent
occurred in the early winter, especially in 2019. Differences in the SWDI and AWD are mainly shown
in southwestern Yunnan. The results of this study have important reference values for drought risk
management.

Keywords: agricultural drought; ERA5-Land; soil moisture; soil water deficit index (SWDI); atmo-
spheric water deficit (AWD)

1. Introduction

Drought is a frequently occurring natural disaster, which has essential impacts on
agriculture, the ecosystem, and the economy [1,2]. Like many parts in the world, China has
experienced droughts frequently, and has suffered severe crop yield reductions and other
social or economic losses [3,4]. In recent years, the four southern provinces of China (i.e.,
Yunnan, Guangxi, Guangdong, and Hainan, which cover most of the Pearl River Basin),
where about 223 million people reside, suffered from almost annual seasonal droughts
due to blocked, low-level monsoons or weakened water vapors. This region has greater
high-frequency variability than the other regions in China, which might be owing to
the variations in East Asian monsoon precipitation [5]. At the same time, as the global
climate warms, there are more droughts in this region, such as the severe drought in
Southwest China in 2010 and South China in 2011, which had a disastrous impact on the
socio-economic development of these regions [6].
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Drought is usually classified into four categories: meteorological drought, agricultural
drought, hydrological drought, and socio-economic drought [7]. In this study, the main
research object is agricultural drought. Agricultural drought is considered to begin when
soil moisture availability reaches such a low level that it cannot provide enough water to
crops, and thus negatively affects crop yield. Hence, considering the effects of soil moisture
on agricultural production, the availability of soil moisture databases is essential for mon-
itoring and predicting agricultural drought [8]. Generally speaking, the degree of water
stress experienced by crops is closely related to the soil moisture content, so soil moisture
is usually regarded as an important agricultural drought monitoring indicator [6,9]. Estab-
lishing effective and reasonable monitoring indicators to monitor the occurrence, extent,
and severity of agricultural drought is very important for agricultural drought monitoring.

The three major sources of soil moisture data are in situ observations, remote sensing,
and reanalysis data. Conventionally, soil moisture data are derived from observations of
in situ soil moisture networks with different depths and various densities throughout the
world [10]. However, the in situ observations have a sparse and uneven distribution, and
are even unavailable in some remote regions, which leads to a limited spatial and temporal
coverage of soil moisture data [11]. Remote sensing provides good spatial coverage, but
is limited to the surface soil layer and may have low accuracy in urban areas and areas
with dense vegetation. The development of data assimilation technology enables the
production of reanalysis data, which are more representative of observed conditions
with less limitations compared to in situ and remote sensing. Reanalysis data have the
advantages of global coverage, long time series, no gaps in space and time, and containing
subsurface data, which makes them very suitable for the assessment of agricultural drought.
Various reanalysis datasets have been developed. Among them, the ERA5-Land soil
moisture dataset has relatively high accuracy when it is evaluated and compared to other
remote sensing and reanalysis datasets [12], which is why it was chosen in our study.

A variety of indicators have been developed for agricultural drought monitoring [13].
The most widely used agricultural drought indices include the normalized difference vege-
tation index (NDVI) [14], vegetation condition index (VCI) [15,16], soil water deficit index
(SWDI) [17], etc. Since the SWDI has greater biophysical significance than other vegetation
indices, climate variables, and even some soil moisture-based methods, it is considered
to be a promising method for measuring the available soil moisture for the growth of
crops. Many studies have used the SWDI for drought monitoring. Bai et al. evaluated
the performance of the SMAP-derived (soil moisture active passive) SWDI for agricultural
drought in China [18]. Zhu et al. used the SWDI to assess the agricultural drought situation
in the Xiang River Basin, China in 2015–2017 [19]. Martínez-Fernández et al. compared the
SWDI with other climate-based drought indices in Spain from 1978 to 2014, and showed
very promising results [17].

Many studies have been accomplished to investigate the droughts in the four southern
provinces of China. Liu et al. evaluated the droughts of Guangdong from 1956 to 2018
using the standardized precipitation index (SPI) based on rain gauge data [20]. Zhang et al.
presented a method for regional frequency analysis based on SPI and assessed the droughts
from 1960 to 2005 in the Pearl River Basin based on 42 rain gauging stations [21]. Deng et al.
analyzed the spatial and temporal characteristics of rainfall and drought based on the
precipitation and temperature data of 48 meteorological stations from 1952 to 2012 in
the Pearl River Basin, and showed that the ENSO events have an important influence on
seasonal drought in different parts of this region [22]. Li et al. used soil moisture simulation
of a land surface model to assess drought in China, and found that the annual monthly
drought numbers presented a significant increased trend in the four southern provinces
during 1951 to 2008 [23]. Ma et al. used 10-day-scale soil moisture based on remote sensing
data to assess agricultural drought in Yunnan province and suggested that the frequency
and duration of agricultural drought increased, but the intensity of agricultural drought
decreased over the period from 1978 to 2016 [24]. However, previous studies are mostly
based on meteorological data and only a few studies are conducted using soil moisture-
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based methods in these four southern provinces. In addition, there are no studies that used
soil moisture reanalysis data to assess droughts in the four southern provinces, especially
in recent years. Therefore, our study intends to use the data from three recent years (from
2017 to 2019) to fill this gap and provide promising methods of dealing with and valuable
insights into agricultural droughts.

At present, although there are many studies on the drought situation in the four
southern provinces of China, few studies use a soil moisture reanalysis dataset to assess
agricultural drought, taking the four southern provinces as a whole. In addition, no studies
have used soil moisture site data to evaluate the ERA5-Land data in this area. Moreover,
there is no study using the SWDI to reveal the temporal and spatial characteristics of
agricultural drought in this region in the past three years. Therefore, this study is aimed
at investigating the accuracy of the ERA5-Land soil moisture dataset, its efficiency for
drought monitoring, and, thus, the characteristics of agricultural drought in the four
southern provinces of China using the ERA5-Land_SWDI. The remaining structure of the
paper is organized as follows: the second section introduces the study area, data, methods,
and evaluation indices. The third section provides results and discussions. The last section
contains the conclusions.

2. Materials and Methods
2.1. Study Area

The four southern provinces include Guangdong, Guangxi, Yunnan, and Hainan.
In addition, Hong Kong and Macao are also within the study area, but their areas are
small and thus are not mentioned in the following sections. Covering most of the Pearl
River Basin, the land of the four southern provinces is mostly in the extent of 18–29◦ N,
92–117◦ E. It has a total land area of 846,825 km2. As shown in Figure 1, these four southern
provinces can be divided into tropical, monsoon climate zone; tropical, savannah climate
zone; temperate, no dry season climate zone; temperate, dry winter climate zone; and
cold, dry winter climate zone, according to the Köppen climate classification [25]. In this
research, we showed the results based on three climate zones: the tropical climate zone
(merged by the tropical, monsoon climate zone and the tropical, savannah climate zone);
the temperate, no dry season climate zone; and the temperate, dry winter climate zone.
The cold, dry winter climate zone in northwestern Yunnan is ignored due to its small area.
These four southern provinces are affected by the South Asian and East Asian monsoons,
with an average annual precipitation of 1500–2300 mm and a monthly average temperature
of 6–25 ◦C. Although this area has abundant precipitation, the uneven distribution of
precipitation has led to frequent droughts and floods. Note that the temperature is almost
always above 0 ◦C, so the growing season is year-round for almost all the places in this
study area. This area is populated by about 223 million people and had a gross domestic
product of about 2.9 trillion US dollars in 2020.
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2.2. Data
2.2.1. In Situ Data

We used data from 54 meteorological stations from the China Meteorological Informa-
tion Center, which includes daily precipitation, daily average temperature, and potential
evaporation from 2017 to 2019 (Figure 2a).
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Figure 2. (a) Distribution of meteorological data stations; (b) distribution of soil moisture stations.

The in situ soil moisture data are from agrometeorological stations and were also
provided by the CMA. Due to data availability, only the 2017 in situ soil moisture was used
in this study. Quality control of the data was carried out as follows: (1) the soil moisture
data of the stations at 0, 6, 12, and 18 h were screened from the sites with missing values of
less than 10%, and the data of the four time steps were averaged as the daily value; (2) the
sites with abnormal conditions (constant values, abnormal spike values, and rising values
without precipitation) were eliminated [26,27]. We used the depths of 10 cm and 20 cm as
the surface and the subsurface, respectively. In the end, there were a total of 105 sites left
with about 38,000 observations for each depth (Figure 2b), which is a large sample size
for evaluation.

2.2.2. ERA5-Land Data

The fifth-generation global atmospheric reanalysis data (ERA5) of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) are the latest generation created by
the Copernicus Climate Change Service. In this study, the ERA5-Land, as a part of the
ERA5, was chosen, titled “ERA5-Land hourly data from 1981 to present” [28], which
includes precipitation, potential evaporation, and soil moisture from 2017 to 2019. The
spatial resolution is 0.1◦ by 0.1◦. The first (0–7 cm) and second (7–28 cm) layers of soil
moisture were used as the surface and the subsurface, respectively. For the convenience of
comparison, both the ERA5-Land and in situ soil moisture were converted into the units of
% by volume.

2.3. Methods

The in situ soil moisture data from CMA were used as a reference dataset to evaluate
the performance of the surface and subsurface ERA5-Land soil moisture. After the evalua-
tion, the weekly SWDI was calculated to assess the drought condition of the four southern
provinces. Additionally, the AWD calculated from meteorological data and the SWDI
derived from the ERA5-Land (ERA5-Land_SWDI) were then compared to understand the
relationship between the atmospheric drought and the agricultural drought.

2.3.1. Soil Water Deficit Index (SWDI)

The SWDI has shown a good performance in defining drought levels and severity [29].
For example, Zhu et al. used the SWDI calculated from soil moisture activate passive
mission to evaluate the agricultural drought in the Xiang River Basin (China), and showed
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that the SWDI had a very good agreement with the AWD and can adequately capture the
drought dynamics [19]. The surface and subsurface SWDI are calculated as follows:

SWDI =
(

θ − θFC
θAWC

)
× 10 (1)

θAWC = θFC − θWP (2)

where θ is the time series of ERA5-Land soil moisture or in situ soil moisture, and θFC,
θWP, and θAWC represent the field capacity, wilting point, and available water capacity,
respectively. There are several ways to define θFC and θWP. In this research, we selected the
5th and 95th soil moisture of the time series to denote θWP and θFC [29].

The daily SWDI was computed based on the time series of every grid of the ERA5-
Land dataset and every station of the in situ data. Then, the daily SWDI was transferred
to a weekly SWDI, and the SWDI was analyzed on a weekly timescale because it is the
timescale used in the irrigation schedule [30]. According to Martinez-Fernandez et al. [31],
five drought categories are defined according to the SWDI values: no drought (>0), mild
(0~−2), moderate (−2~−5), severe (−5~−10), and extreme (<−10). Note that the water
deficit is absolute with an SWDI lower than −10 for extreme drought, which means that
there is no available water for crops [12].

2.3.2. Percentage of Drought Weeks (PDW)

A drought week is defined when severe or extreme drought occurs with a weekly
SWDI value lower than −5 [10]. The percentage of drought weeks (PDW) can represent
the drought duration of the four southern provinces. The PDW is calculated as:

PDW =
D
W

× 100% (3)

where D is the number of drought weeks and W is the total number of study weeks in a
year, which was 52 in this study.

2.3.3. Atmospheric Water Deficit Index (AWD)

The AWD is the difference between precipitation and potential evapotranspiration.
The AWD is proven to be suitable for reflecting the drought condition related to meteo-
rological parameters [30], and it can also reflect the soil water storage conditions to some
extent [17]. The AWD was calculated on a weekly scale:

AWDi = Pi − ETi (4)

where i represents a week of the study period, and Pi and ETi are the sum of precipitation
and the sum of potential evapotranspiration of week i, respectively. The values of these two
parameters were taken from the ERA5-Land, both with a unit of mm. AWD values lower
than 0 indicate droughts, and AWD values lower than −50 mm indicate extreme droughts.

2.3.4. Evaluation Indices

The Pearson correlation coefficient (R), bias, and root mean square error (RMSE) were
calculated to evaluate the applicability and accuracy of the ERA5-Land soil moisture and
the performance of the ERA5-Land_SWDI on drought monitoring. The three indices are
defined as follows:

R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi − Y)2

(5)

bias = ∑n
i=1(Yi − Xi)

∑n
i=1 Xi

(6)
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RMSE =

√
∑n

i=1 (Yi − Xi)
2

n
(7)

where n is the sample size, Xi and Yi are the in situ dataset and ERA5-Land dataset,
respectively, and X and Y are the mean value of these two datasets, respectively.

3. Results and Discussion
3.1. Statistical Characteristics of Soil Moisture

Table 1 provides the statistical characteristics of the surface and subsurface soil mois-
ture of the in situ and ERA5-Land data in the three climatic zones in 2017. For the minimum
soil moisture, the lowest value appeared in the tropical climate zone for the in situ data,
but appeared in the temperate, no dry season climate zone for the ERA5-Land. For the
maximum soil moisture, the highest value appeared in the temperate, dry winter climate
zone for the in situ data, but appeared in the temperate, no dry season climate zone for the
ERA5-Land. Moreover, the ERA5-Land had lower maximum values and higher minimum
values than the in situ data. The difference in the minimum and maximum values between
the two datasets indicates that the ERA5-Land may have some limitations in representing
extreme events. At the same time, the standard deviation of the temperate, no dry season
climate zone was much smaller than the other two climate zones, especially for the in
situ data, which indicates that the annual variation of soil moisture in the tropical climate
zone and the temperate, dry winter climate zone is larger. This is related to the precip-
itation changes, evapotranspiration, and land surface conditions in these three climate
zones. However, the ERA5-Land had larger standard deviations than the in situ data for
all climate zone, especially for the temperate, no dry season climate zone, whose standard
deviation was 1.5 and 1.8 times that of the in situ data for the surface and subsurface
layer, respectively.

Table 1. Statistical characteristics of the surface and subsurface soil moisture (% by volume) of different climate zones.

Layer Climate Data Minimum Maximum Mean Median Standard
Deviation

Number of
Observations

(grids)

Surface

Tropical In situ 3.65 59.83 29.25 27.8 5.02 14
ERA5-Land 13.01 50.95 37.94 38.97 6.01 14

Temperate, no
dry season

In situ 12.27 52.17 30.12 29.90 3.42 42
ERA5-Land 6.12 51.68 40.48 41.96 5.23 124

Temperate, dry
winter

In situ 6.38 71.02 27.68 26.78 5.31 49
ERA5-Land 7.49 51.63 38.69 40.70 6.48 193

Subsurface

Tropical In situ 5.27 57.80 32.01 31.52 4.36 14
ERA5-Land 14.84 50.65 37.94 38.7 5.75 14

Temperate, no
dry season

In situ 13.9 53.53 32.08 31.55 2.65 42
ERA5-Land 8.5 51.49 40.66 41.92 4.81 124

Temperate, dry
winter

In situ 7.15 67.62 31.29 31.95 4.55 49
ERA5-Land 16.32 51.16 39.57 40.68 5.36 193

The range of the surface and subsurface in situ soil moisture average value was about
27–33% in the three climate zones, while the corresponding range of the ERA5-Land was
about 37–40%, which is about 9% higher than that of the in situ data. The overestimation
of the ERA5-Land will have a certain impact on the later calculation of the SWDI, that
is, the surface SWDI will be underestimated. However, this deviation can be eliminated
by formulas (1) and (2) to some extent (see Section 3.3), indicating that the surface and
subsurface soil moisture values in the ERA5-Land can be properly used for agricultural
drought analysis in the four southern provinces. The surface is drier than the subsurface
because the surface is more susceptible to external environmental conditions such as solar
radiation and surface evaporation, which lead to less water.
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3.2. Evaluation of ERA5-Land Soil Moisture and ERA5-Land_SWDI

To verify the accuracy of the ERA5-Land database in the four southern provinces
of China, this study used the surface and subsurface in situ soil moisture from the CMA
and the corresponding derived weekly SWDI from 1 January 2017 to 31 December 2017
for evaluation.

Generally, the ERA5-Land soil moisture coincides well with the in situ data according
to the three evaluation indices (Figure 3). The values of RMSE are mostly between 8% and
20%. The values of R are relatively high (mostly between 0.5 and 0.8), all passing the 99%
significance test. Moreover, the average R of the surface and subsurface were 0.68 and 0.73
for the three climate zones, respectively, which are close to the results of Beck et al. [12] and
Muñoz-Sabate et al. [28]. Beck et al. evaluated 18 satellite- and model-based soil moisture
products based on observations mainly from Europe and the U.S.A. and showed that
ERA5-Land is one of the best with an average R of 0.72. Muñoz-Sabate et al. evaluate the
ERA5-Land soil moisture using data from over 800 in situ sensors from the International
Soil Moisture Network and showed an average R around 0.65. In accordance with the
RMSE, the subsurface has a higher R value than the surface for all the climate zones because
the surface soil moisture is more affected by meteorological conditions. The bias values are
positive (i.e., wet bias) in most cases for all climate zones, and the bias in the subsurface
is smaller. Among the three climate zones, the tropical climate zone has a lower average
RMSE and bias than the other two, especially for the subsurface. However, the tropical
climate zone also has a slightly lower R.
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between the ERA5-Land and in situ data in the three climate zones and the whole study area.

The SWDI calculated by the ERA5-Land dataset was evaluated on a weekly basis
(Figure 4). The RMSE values are mostly between 2 and 3.5 in the three climate zones, which
are relatively small compared to the range of the SWDI. In addition, the RMSE of the SWDI
in the subsurface is much lower than that in the surface, while the RMSE values of soil
moisture are quite similar in these two layers. The R values of the SWDI are mostly between
0.4 and 0.8, which are close to those of soil moisture. The bias values are mostly between
−0.2 and 0.1, which are significantly smaller than those of soil moisture. In addition,
the median bias of the subsurface is around zero. This may owe to the standardization
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in Equation (1) for the calculation of SWDI. Among the three climate zones, generally,
the temperate, dry winter climate zone has the best performance according to the three
statistics. This is different from the evaluation of soil moisture, which indicates that the
performance of the SWDI is not necessarily in accordance with that of soil moisture. Note
that it will be valuable to evaluate the uncertainty estimation of ERA5-Land using methods,
such as those by Jedlicka et al. [32].
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The evaluation of soil moisture and the weekly SWDI shows that ERA5-Land has
satisfactory performance in the assessment of agricultural drought in the four southern
provinces of China. According to the results in Figures 3 and 4, soil moisture and the SWDI
of the subsurface can more accurately reflect agricultural drought than those of the surface
(lower RMSE, lower bias, and higher R).

3.3. The Relationship between the Surface and Subsurface Weekly ERA5-Land_SWDI

The SWDI in the surface can reflect the changes in agricultural drought affected by
meteorological factors, such as precipitation, evaporation, and temperature. For example,
Zhu et al. used the surface SWDI index to assess agricultural drought in the Xiang River
Basin, China [19]. However, the SWDI in the subsurface can better reflect the effective water
storage required for plant growth. For example, Pablos et al. used root zone soil moisture
to assess agricultural drought [33]. Therefore, it is necessary to consider both the surface
and subsurface for the analysis of agricultural drought. Before analyzing the agricultural
drought in the four southern provinces, we firstly analyzed the relationship between the
surface and subsurface weekly SWDI by both climate zones and some selected sites.

Figure 5 shows the distribution of the weekly ERA5-Land_SWDI in the surface and
subsurface during 2017–2019. The weekly SWDI of the temperate, no dry season climate
zone was higher than those of the other two climate zones (mainly above −5), while the
values below −5 (i.e., severe and extreme droughts) mainly occurred in the tropical and
the temperate, dry winter climate zones, and extreme droughts (<−10) mainly occurred in
the subsurface in the temperate, dry winter climate zone. The range of the weekly SWDI
in the surface and subsurface were similar, except that the subsurface SWDI had a much
larger range than the surface in the temperate, dry winter climate zone. In addition, the
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subsurface SWDI was much lower than the surface in the temperate, dry winter climate
zone. This is because the 5th soil moisture data of the time series calculated as the θWP in
Equation (2) for the subsurface was relatively larger in the temperate, dry winter climate
zone which led to the lower SWDI. Figure 6 shows that the correlation coefficients of the
weekly SWDI at the surface and subsurface layers were over 0.9 in most areas, indicating
that, overall, the weekly SWDI at the surface and subsurface layers had roughly the same
temporal variation.

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 5. The distribution of the weekly SWDI in the surface and subsurface during 2017–2019. 

 

Figure 6. The distribution of Pearson correlation coefficient between the surface and subsurface 

weekly SWDI during 2017–2019. 

According to the distribution of stations in the three climate zones, two stations in 

each climate zone (Figure 6) were selected to analyze the relationship between the surface 

and subsurface weekly SWDI indices. It can be seen from Figure 7 that the surface and 

subsurface weekly SWDI of the 6 sites were very close and had roughly the same trend of 

variation, though there were more fluctuations in the surface. 

In summary, the surface weekly SWDI was quite close to the subsurface according to 

the analysis by climate zones and sites. In addition, according to the evaluation in Section 

3.2 (Figures 3 and 4), the subsurface SWDI can more accurately reflect the agricultural 

drought. Moreover, the subsurface stores more water than the surface. Therefore, in the 

following, the subsurface weekly SWDI was used to analyze the drought conditions in the 

four southern provinces, which can not only reflect the change of meteorological elements 

Figure 5. The distribution of the weekly SWDI in the surface and subsurface during 2017–2019.

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 5. The distribution of the weekly SWDI in the surface and subsurface during 2017–2019. 

 

Figure 6. The distribution of Pearson correlation coefficient between the surface and subsurface 

weekly SWDI during 2017–2019. 

According to the distribution of stations in the three climate zones, two stations in 

each climate zone (Figure 6) were selected to analyze the relationship between the surface 

and subsurface weekly SWDI indices. It can be seen from Figure 7 that the surface and 

subsurface weekly SWDI of the 6 sites were very close and had roughly the same trend of 

variation, though there were more fluctuations in the surface. 

In summary, the surface weekly SWDI was quite close to the subsurface according to 

the analysis by climate zones and sites. In addition, according to the evaluation in Section 

3.2 (Figures 3 and 4), the subsurface SWDI can more accurately reflect the agricultural 

drought. Moreover, the subsurface stores more water than the surface. Therefore, in the 

following, the subsurface weekly SWDI was used to analyze the drought conditions in the 

four southern provinces, which can not only reflect the change of meteorological elements 
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weekly SWDI during 2017–2019.

According to the distribution of stations in the three climate zones, two stations in
each climate zone (Figure 6) were selected to analyze the relationship between the surface
and subsurface weekly SWDI indices. It can be seen from Figure 7 that the surface and
subsurface weekly SWDI of the 6 sites were very close and had roughly the same trend of
variation, though there were more fluctuations in the surface.
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In summary, the surface weekly SWDI was quite close to the subsurface according
to the analysis by climate zones and sites. In addition, according to the evaluation in
Section 3.2 (Figures 3 and 4), the subsurface SWDI can more accurately reflect the agricul-
tural drought. Moreover, the subsurface stores more water than the surface. Therefore, in
the following, the subsurface weekly SWDI was used to analyze the drought conditions
in the four southern provinces, which can not only reflect the change of meteorological
elements but also show the change of the water storage required for plant growth.

3.4. Drought Estimation in the Four Southern Provinces

In general, our analysis shows similar temporal and spatial characteristics, but with
some annual changes from 2017 to 2019. However, our analysis was not intended to reveal
the long-term characteristics of agricultural drought, as the three-year period is too short.

3.4.1. Temporal Analysis of the ERA5-Land_SWDI

At the temporal scale, the weekly time series of the ERA5-Land_SWDI from 2017 to
2019 are presented in Figure 8a,c,e for the three climate zones. The weekly time series of
the SWDI was mainly between 0 to −10, and there were only a few very low values (<−10).
In general, each climate zone had a similar seasonal trend during the three-year period.

In the tropical climate zone (Figure 8a), the value of the weekly SWDI index ranged
from severe to extreme drought (January–April), and then apparently increased to mild
and moderate drought (May–September). After September, the drought became moderate
and severe (October–December). The variation tendency of the weekly SWDI was mainly
related to the concentration of precipitation in this area from May to November, and
the higher evapotranspiration increased the drought risk from October to November
(Figure 8b). The variation tendency was quite similar in the three years. The most severe
drought (SWDI < −8) mainly occurred in March–April (continuous drought) from 2017 to
2019 and December in 2019.

In the temperate, no dry season climate zone (Figure 8c), the weekly SWDI indicated
mild and moderate drought (January–September), and then moderate and severe drought
(October–December), except for short droughts that happened in the 6th, 14th, and 20th
weeks of 2018. The possible reason for this trend may be the high precipitation and low
evapotranspiration between January and September and the high evapotranspiration and
low precipitation from October to December (Figure 8d). The major difference between the
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three years happened between October and December, when the SWDI was much lower
in 2019, and a short extreme drought happened in the 44th week of 2017. In addition, the
SWDI between March and May was lower in 2018 than in 2017 and 2019.
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row, c,d), and the temperate, dry winter climate zone (bottom row, e,f) from 2017 to 2019.

In the temperate, dry winter climate zone (Figure 8f), the weekly SWDI ranged from
moderate and severe drought (January to May) to mild drought (June to September), and
then rapidly decreased to moderate and severe drought (October to December), but there
were no extreme droughts. The probable reason for this trend is that precipitation was
mainly concentrated between June and September, while other months had higher potential
evapotranspiration in this area (Figure 8f). In the three years, the main difference in drought
conditions appeared from February to April, when a severe, long-lasting drought happened
in 2018. In addition, the SWDI between October and December was lower in 2019 than in
2017 and 2018.

In summary, different climate zones had different drought periods and drought
severities, mainly due to their differences in precipitation and evapotranspiration. The
temperate, no dry season climate zone had a shorter drought period than the other two
climate zones, especially from January to May. The most severe droughts (i.e., the lowest
SWDI values) mainly occurred from early winter to the next spring in the tropical climate
zone; late autumn and early winter in the temperate, no dry season climate zone; and from
winter to the next early spring in the temperate, dry winter climate zone during 2017 to
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2019. The three climate zones’ changing trends of agricultural droughts, as assessed by the
SWDI, are consistent with the analysis of the distribution characteristics of precipitation
and drought in the Pearl River Basin by Deng et al. [22]. Their research showed that the
drought patterns are not only related to the decreasing trends in rainfall, but also to changes
in the daily rainfall concentration, monthly rainfall heterogeneity, and rainfall seasonality.
Our results suggest that, in addition to precipitation, agricultural drought is also largely
affected by evapotranspiration.

3.4.2. Spatial Analysis of the ERA5-Land_SWDI

The spatial distributions of the SWDI in the 14th, 28th, 40th, and 50th weeks from 2017
to 2019 in this area were selected for comparison (Figure 9). The reasons for this selection
are that some typical droughts happened in these weeks (Figure 8), and they are considered
to be representative of the droughts in the four seasons, corresponding to middle spring,
middle summer, middle autumn, and early winter.
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As shown in Figure 9, in the 14th week, drought in 2018 was apparently more severe
than in 2017 and 2019, especially for Hainan and the southern coast of Guangdong and
Guangxi. The change on the coast of Guangdong in the temperate, dry winter climate
zone was from moderate drought (2017) to extreme drought (2018), and then relieved to a
mild drought (2019). Yunnan, also in the temperate, dry winter climate zone, had severe
drought in all three years, except for a mild and moderate drought that happened in the
western parts in 2017. The overall pattern in the temperate, no dry season climate zone
changed from moderate drought (2017), to severe drought (2018), to mild drought (2019).
Among them, the southern part of Guangxi experienced extreme drought in 2018. As for
the tropical climate zone (Hainan), severe drought happened in 2018 and extreme drought
happened in 2017 and 2019.

In the 28th week, most areas had high SWDI values, and there were only mild droughts
occurring in most parts of Guangxi in 2018 and Hainan in 2019. This spatial distribution
corresponded to the trend of the SWDI in Figure 8a,c,e.

In the 40th week, major droughts happened in Guangxi, Guangdong, and Hainan,
with an increasing severity from 2017 to 2019. It is notable that the northwest of Guangxi
suffered extreme drought in 2019.

In the 50th week, extreme drought occurred in the temperate, no dry climate zone in
2019, while severe drought occurred in most parts of this climate zone in 2017 and in the
east part of this climate zone in 2018. The spatial pattern of droughts was similar among
the three years in the temperate, dry winter climate zone, dominated by severe droughts.
As for the tropical climate zone, severe droughts happened in most parts of this region in
2017 and 2019, and the drought was not serious in 2018.

In conclusion, from 2017 to 2019, the 50th week witnessed the most severe droughts
with the largest spatial extent, while the 28th week had the least droughts. Agricultural
droughts in the temperate, no dry season climate zone in the 50th week in 2019 were the
most severe with the largest extent. Extreme droughts also happened in Hainan and on the
coasts of Guangxi and Guangdong in the 14th week of 2018, and in the northeast of Guangxi
in the 40th week of 2019. It can be seen that the agricultural drought severity varies within
the same climate zone. The possible reason is that the Köppen climate zones are divided
depending mainly on the temperature and precipitation [25]. However, for agricultural
drought, in addition to temperature and precipitation, it is also affected by other factors
such as surface evapotranspiration, surface vegetation conditions, atmospheric circulation,
and topography. For instance, Liu et al. suggested that western Guangdong and the
coastal regions, particularly the Pearl River Delta region, have a higher risk of drought [11].
Western Guangdong is dominated by limestone, and serious leakage leading to low soil
water storage is caused by the widespread karst caves and underground rivers. In addition,
Du et al. also showed that the formation of orographic or convective rain is difficult in
western Guangdong because the dominant topographies are plains and terraced terrain,
which leads to the stagnation of water [34]. This is another reason for the higher drought
risk in western Guangdong.

3.4.3. Temporal Analysis of the PDW

The PDW is divided into four categories: (1) 0–20% (i.e., representing less than
10 weeks of drought events); (2) 20–40%; (3) 40–60%; (4) 60–100% (i.e., representing more
than 31 weeks of drought events). A higher percentage of grids that were located in the
intervals of 40%– 60% and 60%– 100% indicated a higher percentage of drought events [10].
The PDW in the four intervals were quantified in the four southern provinces. It can be
seen from Figure 10 that the percentages of grids in the four intervals varied among the
three years. Most of the PDW values were between 20% and 60%. That is, the number
of dry weeks in these three years was about 10–31 weeks. Generally, the PWD values of
the subsurface were higher than those of the surface, as there are more values between
40% and 60%, indicating more droughts according to the subsurface. At the same time,
the variation tendency of the PDWs was similar for the surface and subsurface in these
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three years. Figure 10 shows that the percentage of 20–40% was firstly decreasing, and then
rising from 2017 to 2019. However, the percentage of 40–60% showed the opposite trend.
Since most of the PDWs were in the interval of 20% to 60%, attention should be paid to
drought monitoring in the four southern provinces in the coming years.
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Figure 10. Changes of the Percentage of Drought Weeks (PDW) at the surface (a) and subsurface (b) in four southern
provinces of China from 2017 to 2019.

3.4.4. Spatial Analysis of the PDW

Figure 11 illustrates the spatial change in the PDW from 2017 to 2019. Figure 11
illustrates that PDWs followed an increasing trend and then a decreasing trend in the
temperate, no dry season climate zone, and the coastal areas in the temperate, dry winter
climate zone for both the surface and subsurface. However, western and central Yunnan in
the temperate, dry winter and Hainan in the tropical climate zone showed an increasing
trend in these three years. In eastern Yunnan and western Guangxi (that is, the upper
reaches of the Pearl River Basin), the percentage of dry weeks showed a gradual decrease
during these three years. This result is in contrast to the findings of Deng et al. [22], who
claimed that the Pearl River Basin’s drought conditions have intensified from 1959 to 2012,
especially in the Pearl River Basin’s upper reaches. However, Wang et al. showed that
there were decreasing trends in both drought frequency and duration in the Pearl River
Basin’s upper reaches from 1950 to 2006 [5]. As our study period is only three years, the
long-term trend cannot be identified well, but the decreasing trend in these three years
is clear. In general, it can be concluded from the distribution of the PDW that Yunnan in
the temperate, dry winter climate zone and Hainan in the tropical climate zone have the
highest PDW, followed by the coastal areas in the temperate, dry winter climate zone and
the temperate, no dry season climate zone. Among the four provinces, Guangxi had the
lowest PDW.

3.5. Comparison between the ERA5-Land_SWDI and the AWD

Meteorological drought is the fundamental cause of agricultural drought, and it is
also a prerequisite for agricultural drought. Agricultural drought is the response to the
continued meteorological drought in agriculture. There are many meteorological factors
causing agricultural drought. Niu et al. found that ENSO or the Indian Ocean dipole
had a relationship with the occurrence of extreme hydrological events in the Pearl River
Basin [35]. Zhao et al. pointed out that the southern oscillation index and Pacific decadal
oscillation were significant factors for precipitation [36]. Fang et al. indicated that sunspot
activity had strong relevance in the Pearl River Basin [37,38].
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The purpose of this study was not to find out the meteorological factors that caused
agricultural drought from 2017 to 2019, but to explore the relationship between agricultural
drought and meteorological drought. The AWD was chosen to analyze this relationship.
On the one hand, the AWD widely uses atmospheric data to reflect drought. On the other
hand, the AWD can better capture drought dynamics related to the variation of soil water
storage [39]. At the same time, changes in soil moisture at the surface and subsurface are
closely related to changes in atmospheric moisture. For both the surface or subsurface
(Figure 12, not shown for the surface as it is very similar to the subsurface), the correlation
coefficients of Guangxi, Guangdong, and Hainan were above 0.25, and the correlation
coefficients of Hainan and the coastal areas of Guangdong and Guangxi were above 0.5.
The possible reason for the relatively high correlation is that these areas are close to the sea
and relatively humid, so precipitation and evapotranspiration are the controlling factors
affecting the changes in soil moisture. However, southwestern Yunnan had relatively small
correlation coefficients, and some even showed negative correlations. A possible reason is
that the surface water in mountainous regions was limited due to the high potential for
infiltration because of complex topography [40]. In addition, studies have shown that soil
and underlying bedrock, vegetation, and land use may also have important influences
on soil moisture dynamics [41]. Thus, the precipitation and evapotranspiration are not
the main controlling factors affecting the change in soil moisture, but the land surface
conditions [42]. Opposite to this result, Bai et al. [18] showed a high correlation between
the AWD and the SWDI based on the remote sensing data (SMAP) in Yunnan. This may
due to the difference in the remote sensing data and the reanalysis data and may need
further studies.

In general, the SWDI coincides well with the changes in meteorological conditions,
except for areas with more complex topography. The differences between the SWDI
and the AWD indicate that agricultural droughts are related not only to meteorological
conditions, but also land surface conditions. Thus, it is more proper to use the SWDI to
assess agricultural droughts as it directly represents the water storage deficiency.
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4. Conclusions

In this study, the accuracy of the surface and subsurface soil moisture from the ERA5-
Land database was evaluated with in situ soil moisture data from the CMA. In addition,
the potential applications of the ERA5-Land database for drought monitoring in the four
southern provinces were investigated with a specific agricultural drought index (SWDI). A
temporal and spatial analysis was conducted by comparing the ERA5-Land_SWDI and the
AWD based on meteorological variables. These two indices were compared from 2017 to
2019. The main conclusions are as follows:

1. There is an overestimation in the ERA5-Land soil moisture compared to the in situ
data, but this bias can be reduced by the calculation of the SWDI to some extent, and
thus agricultural droughts can be more accurately assessed.

2. Both the ERA5-Land soil moisture and the derived weekly SWDI have relatively high
accuracy, and the subsurface layer can more accurately reflect agricultural drought
than the surface layer.

3. There is a high correlation between the surface and subsurface ERA5-Land_SWDI.
4. Each of the three climate zones had a similar seasonal trend in the SWDI during

2017–2019. However, different climate zones had different drought periods and
drought severities, mainly due to their differences in precipitation and evapotran-
spiration, and less agricultural droughts happened in the temperate, no dry season
climate zone.

5. Among the four selected representative weeks from different seasons, the 50th week
(the early winter) witnessed the most severe droughts with the largest spatial extent,
while the 28th week (middle summer) had the least droughts. Agricultural droughts
in the temperate, no dry season climate zone in the 50th week in 2019 were the most
severe with the largest extent. Extreme droughts also happened in Hainan and on the
coast of Guangxi and Guangdong in the 14th week of 2018, and in the northeast of
Guangxi in the 40th week of 2019.

6. According to the PDW, Yunnan in the temperate, dry winter climate zone and Hainan
in the tropical climate zone have a longer drought period than other areas in the four
southern provinces of China.

7. Except for southwestern Yunnan, where land surface conditions may be the control-
ling factors of agricultural drought, the SWDI and the meteorological drought index
AWD have a relatively high correlation. However, the SWDI is more suitable for
agricultural assessment as it directly reflects the water storage deficiency.



Agriculture 2021, 11, 411 17 of 19

The above promising findings portend that the ERA5-Land_SWDI will be a promising
tool for monitoring drought with a high spatial and temporal resolution in the four southern
provinces in the future. However, a vast amount of works are needed to achieve this
goal. First, the analysis period needs to be extended so that the long-term trends and
characteristics of agricultural droughts can be assessed, including frequency, number of
events, duration, and severity [43]. Second, the comparison of different soil moisture
datasets, including remote sensing data and other reanalysis data, can be performed to
address the uncertainty in the drought assessment [44]. Third, other drought indexes
such as the standard precipitation index and the crop moisture index may need to be
compared to explore more aspects of drought [20]. Fourth, the effect of different methods
of estimating the wilting points and field capacity may need further investigation [17]. Last
but not least, as land surface conditions have important influences on agricultural drought,
factors such as land use, landform, topography, soil properties, and vegetation should be
considered [41].
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