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Abstract: The suitability evaluation of agricultural land at the regional scale is of great significance
for protecting land and water resources and building sustainable agricultural systems. Based on
climate, soil, topographical, and surface water resources, land suitability index (LSI) data for maize,
rice, and soybeans are established using an analytical hierarchy process and matter element analysis
(AHP–MEA) model in Jilin Province, China. The results show that there is a significant positive
linear correlation between the LSI and the measured yield, which indicates that the model has an
ideal effect and certain reference and extension significance. The main limiting factors for maize and
soybean planting are pH, total nitrogen (TN), available phosphorus (AP), and soil texture, while
water shortage limits rice planting. Different spatial structure optimization schemes for planting are
established using the LSI and measured yield, along with economic indices. This study shows that the
scheme that integrates policy and cost can make full use of land and water resources and promote the
economic growth of agriculture. After optimization, the planting areas of maize, rice, and soybeans
were 7.22, 2.44, and 0.71 million ha, respectively, representing an increase of 15.71 billion yuan over
the agricultural GDP for the existing planting structure. It is expected that this study will provide a
basis for follow-up studies on crop cultivation suitability.

Keywords: analytic hierarchy process; matter element analysis; remote sensing; suitability; plant-
ing structure

1. Introduction

Land suitability evaluation refers to the degree of appropriateness of land character-
istics to support a specific land use [1]. It is widely used in the suitability evaluation of
agricultural land, which is of great significance to agricultural production and development;
its research is mainly carried out at the land patch and regional scale [2,3]. At the land
patch scale, the potential locations for the most suitable crops can be identified through
evaluation [4]. From the view of the regional scale, agricultural land suitability evaluation
plays an important role in protecting agricultural land and water resources, along with
managing and creating a sustainable agriculture system [5].

Agricultural land suitability evaluation is a complicated process that requires com-
prehensive consideration of the influences of several factors [6,7]. Accordingly, the factors
taken into account are also different in terms of the land patch and regional scales. For
example, in a study of a micro-sized watershed (632 ha) in the central dry zone of Kar-
nataka [8] and a part (5182 ha) of the Fathali plains area in Ardabil Province, Iran [9],
according to the conditions of land use, soil properties, and topography, the study area
was divided into land patches with basically identical properties. The suitability of each
land patch was evaluated via soil characteristics and topographic factors, and reasonable
evaluation results were obtained.

In contrast, more factors need to be considered at the regional scale. Besides soil char-
acteristics and topographical factors, climatic factors should also be taken into account. Cli-
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matic factors have large variability at a regional scale, and different climatic conditions de-
termine land use to a large extent, which is a prerequisite for agricultural production [10,11].
These have been demonstrated in evaluation studies of tobacco areas in Shandong Province
(1.57 million ha), China [12], and maize areas in Kenya (58.44 million ha) [13]. These study
areas include many provinces and cities, as well as a number of different climatic condi-
tions. In these studies, climatic factors have larger weights than soil and topographical
factors, and the studies have shown that abnormal temperature and precipitation have a
greater impact on the length of crop growing seasons, thus reducing crop yields. Therefore,
it is more reasonable to evaluate land suitability by taking climate factors into account.
Nevertheless, these studies are also limited to a certain degree because their evaluations
have been implemented to identify whether the land is suitable for a specific type of crop
growth. It is common to consider a variety of crops at a regional scale [14,15], so it is
practical to evaluate land suitability while considering multiple crops. Within a large area,
topographical information is difficult to obtain by field measurement, and, at the same time,
it is impossible to obtain land use/cover types in a timely and effective manner [16,17].
In a study of land suitability in Central Mexico, remote sensing technology provided
topographical and agricultural land information for evaluation in a timely and accurate
manner [18]. It is necessary to obtain topographical and land use information via remote
sensing technology for land suitability evaluation at a regional scale.

Regarding the selection of appropriate evaluation indicators, it is of great significance
to select appropriate evaluation models and methods to realize reasonable results [19].
Recently, many mathematical models have been applied to evaluate land suitability, such
as multivariate statistical analysis (MSA) [20] and artificial neural networks (ANNs) [21];
however, these mathematical models have limitations. They lack accurate analysis methods
for qualitative factors such as soil texture and drainage, which will omit some differentia-
tion information [22,23]. Moreover, several evaluation methods have been widely used and
developed, including analytic hierarchy process (AHP) methods [24], fuzzy comprehensive
evaluation methods (FCEMs) [25], and others. These methods artificially divide land
suitability into several grades, according to a comprehensive value, in order to identify
degrees of membership between single factors and evaluation ranks [26]. Matter element
analysis (MEA) could greatly expand the range of research to ensure the integrity of infor-
mation [27]. In the study of risk assessment for engagement in sharing economic data of
manufacturing enterprises, each factor is a qualitative indicator. Reasonable evaluation
results have been obtained by MEA [28]. At the same time, MEA obtains degrees of mem-
bership between evaluation factors and evaluation levels through the form of a function,
which will effectively avoid the influence of subjective factors [29]. In the assessment of
ecosystem health by matter element analysis, ecosystem health is not artificially divided
into several grades, and this leads to higher objectivity and accuracy [30]. Accordingly,
MEA has been used in ecological health evaluation [31], urban network risk assessment
planning [32], and energy sustainability evaluation [33]. Consequently, MEA should be
a good choice for land suitability assessment; however, different evaluation factors may
have different effects on the comprehensive evaluation value [34], so the weights of factors
are particularly important for evaluation. AHP models have been applied to determine
the weights of factors in several studies and have produced good results in areas such
as ecological sensitivity evaluation [35], energy site selection evaluation [36], and safety
evaluation [37]. Thus, AHP models could be used in determining the weights of factors in
the process of land suitability evaluation. An integrated MEA and AHP process should be
a reliable method for regional land suitability assessment.

Jilin Province is located in the middle of northeastern China and is known as “the
hometown of black soil”, which is an important commodity for grain production. In
China, Jilin Province represents one-tenth of national grain production and is rich in high-
quality agricultural products such as maize, rice, and soybeans. Taking Jilin Province as an
example, the suitability of maize, rice, and soybean production in Jilin Province is evaluated
here by combining AHP and MEA methods. The resulting model is used together with the
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comprehensive consideration of climatic and soil characteristics and surface water resources
in order to provide a theoretical basis for the sustainable development of agriculture.

2. Materials and Methods

Jilin Province is located between 121◦38′–131◦19′ E and 40◦52′–46◦18′ N (Figure 1).
Its total area is 187,400 km2, accounting for 2% of the total land area of China. There are
obvious differences in landforms, with the western foothills of Dahei Mountain as the
boundary in the central part; the Changbai Mountain, with a high altitude and low hills
below 500 m above sea level in the east; and the vast hinterland of Songliao Plain in the
west. There are over 2000 rivers in Jilin Province, and they belong to five major river
systems, namely, Songhua River, Liaohe River, Tumen River, Yalu River, and Suifen River.
The average density of the river network is 0.19 km/km2, and the river network density
is higher in the eastern mountainous area and lower in the western plains region. The
average amounts of water per hectare of cultivated land in the province are lower than
the national average. The soil types are complex and diverse, and the distributions have
obvious meridional differentiation in Jilin Province. The natural fertility of the soil is high
and is dominated by loam, sand, silty clay, silt loam, and clay. From west to east, the soil is
regularly distributed in the eastern mountains and shows obvious vertical zonality. There
are obvious seasonal changes and regional differences in temperature, precipitation, and
temperature in Jilin Province. The average temperature is below −11 ◦C in winter and is
above 23 ◦C in summer. The average perennial sunshine length ranges between 2259 and
3016 h. The average annual precipitation is 400–600 mm, 80% of which is concentrated
in summer, with the most abundant rainfall in the east of the province. Jilin Province is
rich in natural resources and fertile soil and is especially conducive to the growth of maize,
rice, and soybeans. Among them, under the influence of water resources, rice is mainly
planted in five river basins, soybeans are mainly grown in the central and eastern parts of
Jilin Province, and maize is planted throughout the whole province.

Figure 1. Location of the study area and sample points.

2.1. Identification of Evaluation Factors

There are many factors that affect the planting and growth of crops, but it is impossible
to consider all of them [16]. According to the crop growth conditions and the actual
situation in the study area, the following factors were selected to evaluate the suitability of
land dedicated to maize, rice, and soybean production. Based on Food and Agriculture
Organization of the United Nations (FAO) Suitability Level 1 and other research [38–45],
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land suitability for different crops was divided into four levels: high suitability (S1),
moderate suitability (S2), marginal suitability (S3), and unsuitability (N) (Table 1).

Table 1. Factor ratings of land suitability for maize, rice, and soybean cultivation.

Characteristic
Classification

Feature
Category

Suitability Class References

S1 S2 S3 N

Rating scale 100–85 85–60 60–40 40–0 [38] (p. 237)

Topography (T)

Slope (%)

Maize ≤4 4–8 8–16 >16 [39]

Soybean ≤5 5–8 8–16 >16 [40] (p. 196)

Rice ≤3 3–8 8–15 >15 [41]

Physical soil
characteristics (S)

Texture 1

Maize C, L, SiL, SiC, LS CL, SC, SL - S [42]

Soybean L, CL, SiL SC, SL C, SiC, LS S [39]

Rice SC, C, SiC, CL L, SiL SL, LS S [41]

Drainage
Maize well imperfect poor, excessive - [39]

Soybean well, imperfect poor, excessive - - [39]

Rice well imperfect poor, excessive - [41]

Soil fertility
characteristics (F)

pH (H2O)

Maize 5.8–7.8 5.5–5.8, 7.8–8.2 5.2–5.5, 8.2–8.5 ≤5.2, >8.5 [40] (p. 196)

Soybean 5.5–7.5 5.4–5.5, 7.5–7.8 5.2–5.4, 7.8–8.2 ≤5.2, >8.2 [40] (p. 196)

Rice 5.5–8.2 5.0–5.5, 8.2–8.5 4.5–5.0, 8.5–9.0 ≤4.5, >9.0 [42]

Organic carbon (OC, %)

Maize >1.2 0.8–1.2 0.5–0.8 ≤0.5 [40] (p. 196)

Soybean >1 0.5–1.0 0.25–0.5 ≤0.25 [40] (p. 196)

Rice >1.2 1.2–0.8 ≤0.8 - [41]

Total nitrogen (TN, %)

Maize >0.15 0.15–0.1 0.1–0.08 ≤0.08 [43,44] (p. 230)

Soybean >0.5 0.5–0.2 0.2–0.1 ≤0.1 [43,44] (p. 230)

Rice >0.2 0.2–0.1 ≤0.1 - [43,44] (p. 230)

Available phosphorus
(AP, mg/kg)

Maize >14 14–10 10–6.5 ≤6.5 [40] (p. 196)

Soybean >13 13–9 9–6 ≤6 [40] (p. 196)

Rice >40 40–20 20–15 ≤15 [41]

Available potassium
(AK, mg/kg)

Maize >220 220–155 155–100 ≤100 [40] (p. 196)

Soybean >160 160–110 110–75 ≤75 [40] (p. 196)

Rice >200 200–100 ≤100 - [41]

Climate characteristics (C)

Mean annual
temperature (◦C) 2

Maize 24–30 20–24, 30–32 15–20, 32–35 ≤15, >35 [38] (p. 237)

Soybean 22–28 28–30, 22–20 30–32, 20–18 ≤18, >32 [43,44](p. 230)

Rice 24–30 22–24, 30–32 18–22, 32–35 ≤18, >35 [38] (p. 237)

Mean annual rainfall
(mm/year) 2

Maize >800 800–700 700–600 ≤600 [38] (p. 237)

Soybean >800 800–600 ≤600 - [39]

Rice >800 800–700 700–600 ≤600 [39]

Location condition (L)

Distance to water
bodies (km) 3 All the crops ≤1 1–2 2–3 >3 [45]

1 Soil texture: C—clay; CL—clay loam; L—loam; LS—loamy sand; SC—sandy clay; SL—sandy loam; SiC—silty clay; SiL—silt loam;
S—sand. 2 Mean annual temperature: average precipitation in the growing season from 2009 to 2018. 3 Distance to water bodies: the
minimum distance from the center of mass of each village to the river.
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2.1.1. Topography

Topography is closely related to the normal development of soil. The thickness of the
soil layer decreases with the increase of the slope angle and increases with the decrease of
the slope angle [46]. At the same time, soil erosion tends to occur in areas with steep slopes,
which aggravates the loss of soil nutrients. On the other hand, slopes also have a direct
impact on agricultural production and management, and larger slopes limit mechanized
production [12]. Therefore, slopes have a direct impact on soil thickness, soil nutrients, and
agricultural productivity and further affect land suitability of crop growth. The eastern part
of Jilin Province is mountainous, and the western part is made up of plains. The landforms
undulate, and the planting conditions of crops are greatly affected by the given slope.

2.1.2. Physical Soil Characteristics

The soil texture affects the growth of crops to a great extent and plays an important
role in the transport and regulation of water and air in soil, thus fundamentally affecting
the suitability of soil for plant root growth [47]. There is a great relationship between soil
drainage capacity and soil texture. The soil with a better drainage capacity will lead to a
rapid loss of water and nutrients in the soil, resulting in insufficient water and nutrient
supply. The retention of excess water in the soil will block the flow of air, resulting in
insufficient oxygen supply in roots and the retention of carbon dioxide, thus affecting the
growth of crops [48]. The soil types are diverse in Jilin Province, and there are large gaps
in soil texture and drainage capacity between different regions; however, the influences
of some factors on the suitability of cropland are within the range of high suitability. The
depth of soil is more than 100 cm, and the CaCO3 proportion is less than 10% in the study
area, which is within the high suitability ranges for different crops, and, as such, these
factors are not considered here.

2.1.3. Soil Fertility Characteristics

pH plays a major role in soil nutrient availability, crop growth, and productivity [49].
Besides this, pH affects many physical, chemical, and biological reactions, either directly
or indirectly, in the soil, and the optimal pH ranges for different crops have significant
differences [16]. In the study area, the pH ranges from 4.84 to 7.57, with a mean pH of 6.0.

Organic carbon (OC) represents the amount of organic matter in the soil. OC is an
ideal source of nutrients for crops, as well as providing essential nutrients and energy
for microorganisms [50]. Its content in the soil varies according to altitude, slope, and
rainfall [16]. With high altitude locations, steep slopes, and high rainfall, the content of OC
is relatively low. The average OC content is 1.61% in the study area, which belongs to the
highly suitable category.

Nitrogen (N), phosphorus (P), and potassium (K) are essential elements in the process
of crop growth [51]. Nitrogen is necessary for plant growth and plays an important role
in the development and growth of leaves and stems [51]. Phosphorus plays an important
role in root growth, flowering, and fruiting. In addition, crop growth will require more
phosphorus in acidic or alkaline soils [16]. Potassium plays an important role in crop
photosynthesis, disease resistance, and fruit growth [16]. Therefore, it is necessary to take
NPK as an influencing factor of cropland suitability. In this study, total nitrogen, available
phosphorus, and available potassium are used as indices of the soil NPK content.

2.1.4. Climate Characteristics

The climate plays a very important role in agricultural production, and its influence is
mainly reflected in terms of heat, moisture, and sunshine. In terms of heat, the average
temperature in the crop growth season determines the growing period and ripening of
crops [13]. The amount of precipitation affects crop growth and yields [10]. Sunshine has
an important effect on crop yields and quality [52]. The study area is located near 43◦ N,
and the illumination condition is within the highly suitable category for crop growth, while
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the ranges of temperature and rainfall are relatively large. Temperature and rainfall are
taken as influencing factors in the climate characteristics in this study.

2.1.5. Location Condition

Water sources prominently affect agricultural cultivation, and the distance from a
water source is also a factor that affects the quality of agricultural land, especially for rice
cultivation, which requires more water [46]. The closer to the water source, the higher the
degree of suitability of agricultural land. In the eastern part of the study area, there are
many rivers and abundant water sources, while in the western part, there are few rivers
and the large planting areas are distant from water sources. As such, the influence of a
water source on the suitability of crop planting cannot be ignored.

2.2. Samples and Preparation of Data

The land use information was obtained from remote sensing image data for the study
area in 2018, and GPS was used to conduct uniform sampling and record basic information
about various crops. There were 1066 sampling points for maize, 248 sampling points for
rice, and 183 sampling points for soybeans (Figure 1). Based on the Google Earth Engine
(GEE) [53] cloud platform, a random forest classifier was used to classify the Sentinel-1 and
Sentinel-2 fused images in the research area.

The topographic data in this study were generated via ASTER GDEM digital elevation
model (DEM) data generation, with 30 × 30 m resolution (http://www.gscloud.cn/,
accessed on 17 June 2020), and the physical soil attribute data were gathered from the
World Soil Database. The ArcGIS 10.2 software package was used to resample the two sets
of data into grid data of a 10 × 10 m size. Soil fertility is recognized on the basis of samples
collected from the fields before planting crops in 2018, and there were 207 soil samples with
a surface layer of 20 cm (Figure 1 and Table 2). Laboratory tests were conducted by the
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. Climate
data were obtained from 27 weather stations in the research field (China Meteorological
Data Network (http://data.cma.cn, accessed on 14 July 2020)), along with average annual
precipitation and average annual temperature data for the 2009–2018 growing season (May–
September). Then, the soil fertility and climate data were converted into grid data with a
resolution of 10 × 10 m via Kriging interpolation with the geostatistical analyst module
in ArcGIS 10.2. Finally, the existing cultivated land was used to cover up the resampling
and interpolation results, and the land suitability evaluation data set in the study area was
then obtained (Figure 2). The economic data were gathered from the National Agricultural
Product Cost and Benefit Data Collection 2019 by the Price Department of the National
Development and Reform Commission.

Table 2. Overall means, standard deviations, and ranges of soil properties and nutrients in samples.

Property pH (H2O) OC (%) TN (%) AP k (mg/kg) AK (mg/kg)

Mean 6.12 1.59 0.14 35.44 103.17

SD 0.87 0.77 0.07 33.06 112.57

Minimum value 4.09 0.37 0.03 2.025 27.87

Maximum value 7.99 5.57 0.56 259.90 1550.82

2.3. Methods

Land suitability assessment is a method of land evaluation. In this paper, AHP, MEA,
and RS technology are used to measure the suitability degree of land for maize, rice, and
soybeans. The specific process is shown in Figure 3 and described as follows:

http://www.gscloud.cn/
http://data.cma.cn
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Figure 2. Interpolation map for the parameters influencing land suitability evaluation. (a) Slope; (b)
pH; (c) OC; (d) TN; (e) AP; (f) AK; (g) mean annual rainfall; (h) mean annual temperature.

2.3.1. Matter Element Analysis (MEA)

The basic procedure of MEA for a land suitability index (LSI) can be summarized via
the following steps:

Step 1: Determination of the matter element to be evaluated.
In matter element theory, each matter element combination is composed of objects

(N), characteristics (c), and values (v) to form a research system. Objects (N), characteristics
(c), and values (v) are the three elements of a matter element. In this study, the assessment
of land suitability (N) has several characteristics and can be depicted by n indicators
(c1, c2, · · · , cn) and corresponding values (v1, v2, · · · , vn). The MEA of land suitability
evaluation can then be expressed as follows:



Agriculture 2021, 11, 370 8 of 23

R = (N, c, v) =

∣∣∣∣∣∣∣∣∣N
c1 v1
c2 v2
...

cn

...
vn

∣∣∣∣∣∣∣∣∣, (1)

where R is the n-dimensional matter element of land suitability for agriculture (simplified
as R = (N, C, X)), N is the minimum spatial unit of land suitability, c is the indicator to
evaluate land suitability for different crops, and v is the value of each indicator.

Figure 3. Schematic overview of land suitability assessment procedures.

Step 2: Determine the classical domain and the joint domain.
In the suitability analysis of different crop areas, different factors use different grade

indices to describe their suitability to crops. The classical domain (Rj) refers to the range of
values for indicator i at grade j. Then, the classical domain matrix can be given as follows:

Rj =
(

Nj, ci, vji
)
=

∣∣∣∣∣∣∣∣∣Nj

c1 vj1
c2 vj2
...

cn

...
vjn

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣N

c1
(
aj1, bj1

)
c2

(
aj2, bj2

)
...

cn

...(
ajn, bjn

)
∣∣∣∣∣∣∣∣∣, (2)
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where Nj is the land suitability of different crops belonging to grade j; c1, c2, · · · , cn are
n different indicators of Nj; and vj1, vj2, · · · , vjn are the value ranges for each ci of Nj, of
which aij and bij are the upper and lower limits for each ci of Nj, respectively.

The segment domain (Rp) is an aggregation of classical domains (Rj), and it can be
defined as the range of values of indicator i at all grades. This means that the influence
degree of different cropland suitability factors is included in this range and the end value
at both ends. Hence, the segment domain matrix can be given as follows:

Rp =
(

p, ci, vpi
)
=

∣∣∣∣∣∣∣∣∣p
c1 vp1
c2 vp2
...

cn

...
vpn

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣p

c1
(
ap1, bp1

)
c2

(
ap2, bp2

)
...

cn

...(
apn, bpn

)
∣∣∣∣∣∣∣∣∣, (3)

where p is the land suitability of different crops at all grades; vp1, vp2, · · · , vpn are the value
ranges for c1, c2, · · · , cn; and bpi represents the minimum and maximum values for the
range of each ci, respectively.

Step 3: Normalization of measured criteria.
There are many ways to standardize data. In this study, the scope of the segment

domain is approximately between 1 and 100. Therefore, the efficiency coefficient method
may be used to normalize the defined standard values, the equations for which are given
as follows:
where when xij is a positive effective criterion:

S(xij)
= Smin +

xij −min(xij)

max(xij)
−min(xij)

× (Smax − Smin), (4)

where when xij is a negative effective criterion:

S(xij)
= Smin +

max(xij)
− xij

max(xij)
−min(xij)

× (Smax − Smin), (5)

where Smax and Smin are the maximum and minimum standardized values of a specific
grade, where xij denotes the characteristic value of index i for evaluation unit j, and max(xij)

and min(xij)
are the measured values of the maximum and minimum of all the matter

elements for the same grade, respectively.
Step 4: Calculation of correlation functions between each criterion and suitability class.
Based on the classical and segmented domains, correlation functions are established to

quantify the land suitability degree of each index i to each grade j. The correlation degrees
for all matter elements were calculated with the following functions:

Kj(vi)
=


−ρ(vi ,vji)
|vji| , vi ∈ vji

ρ(vi ,vji)
ρ(vi ,vpi)−ρ(vi ,vji)

, vi /∈ vji

, (6)

where Kj(vi)
indicates the correlation degree between criterion j and class I; vi, vji and vpi

represent the value of the matter element measured, range of the classical domain, and
range of the segment domain, respectively; ρ

(
vi, vji

)
and ρ

(
vi, vpi

)
represent the distance

of the evaluated matter element of indicator i to the classical domain and the segment
domain. The distance can be calculated by the following equation:

ρ
(
vi, vpi

)
=

∣∣∣∣vi −
1
2
(
aji + bji

)∣∣∣∣− 1
2
(
bji − aji

)
, (7)
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ρ
(
vi, vpi

)
=

∣∣∣∣vi −
1
2
(
api + bpi

)∣∣∣∣− 1
2
(
bpi − api

)
, (8)

where aji and bji represent the values of the minimum and maximum in the classical
domain, respectively, and api and bpi represent the values of the minimum and maximum
in the segment domain, respectively, for criterion i.

Step 5: Calculate the synthetic correlation degree and determine the matter level.
The calculation of the synthetic correlation degree Kj(Nk) between each matter element

and suitability class needs to be carried out according to the correlation degree (Kj(vi)
) and

weight (wi) of each factor. The calculation method generally follows the weighted sum
method, which can be expressed as follows:

Kj(Nk) =
n

∑
i=1

wik j(xi), (9)

where Kj(Nk) is the synthetic relational degree; k j(xi) is the single correlation degree; and
k j(xi) is the weight of each indicator. If Kjk = max

(
Kj(Nk)

)
, (j = 1, 2, · · · , n), then matter

element Nk belongs to land suitability grade j.
Step 6: Land suitability index (LSI) calculation.
LSI data were computed in a manner similar to that of linear combination mod-

els [54,55]. The data can be gained after normalization using Equations (10) and (11):

x(jk) =
xjk −min(xjk)

max(xjk)
−min(xjk)

, (10)

LSI(xjk)
= Smin + Sint·x(xjk)

, (11)

where LSI(xjk)
is a land suitability index with a result between 0–100, where larger values

indicate a higher suitability; max(xjk)
and min(xjk)

are the maximum and minimum values
of the synthetic relation degree for the same grade, respectively; Smin is the minimum
standardized values of a specific grade; and Sint is the average of the minimum and
maximum indices of the land suitability classes (see Table 1).

Step 7: Accuracy assessment.
To estimate the accuracy of the model, in this study, LSI was divided into four grades

according to the FAO’s suitability assessment criteria. By comparing LSI values for different
crop areas with the measured yields, the accuracy of the results can be determined by the
determination coefficient (R2) between the LSI and the measured yield to determine the
rationality of the current allocation for different crop areas.

2.3.2. Analytical Hierarchy Process (AHP)

An AHP method is used to determine suitability index weights and categories of
suitability index values, which can thus transform qualitative data judged by experts into
quantitative data [56,57]. The specific steps of the AHP are given as follows:

Step 1: Establish the judgment matrices.
In the criterion layer and the factor layer, respectively, the comparison discriminant

matrix is constructed by a pairwise comparison method:

A =
(
aij
)

n×n, (12)

where A is the discriminant matrix and aij the quantized value of the importance of factor i
relative to factor j, aji = 1/aij, ij = 1, 2, · · · , n. This quantized value requires consultation
with several experts and value assignment according to an importance scale, from 1 to 9.
Refer to Saaty’s work [56] for the selection of the scale and significance of the judgment
matrix (Table 3).
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Table 3. Rating scales for pairwise AHP comparisons.

Intensity of Importance Description

1 Equal importance

3 Weak importance of one over another

5 Essential or strong importance

7 Very strong or demonstrated importance

9 Extreme importance

2, 4, 6, 8 Intermediate values between the two adjacent judgments

Reciprocals Values for inverse comparison

Step 2: Calculate the eigenvectors and eigenvalue of the judgment matrix.
Calculation of the maximum eigenvalue root and eigenvalue vector is compared after

the creation of matrix A. The eigenvectors wi (i.e., weights of the factors) and eigenvalue
λmax can be calculated based on Equations (13) and (14), respectively:

wi =

n
√

∏n
j=1 aij

∑n
i=1

n
√

∏n
i=1 aij

, (13)

λmax =
1
n
·

n

∑
i=1

(AW)i
wi

, (14)

where i and j denote the number of rank and column of A, respectively.
Step 3: Consistency test.
Two consistency indicators (CI and CR) were used to test the consistency of the

judgment matrix (see Equations (15) and (16)). If the number of index is <3, then wi is
accepted when CI < 0.1, and if the number of index is ≥3, then both CI and CR should
pass the test.

CI =
λmax − n

n− 1
, (15)

CR =
CI
RI

, (16)

where the value of RI can be referred to in Table 4, which is adapted from the study
conducted by Lamya Neissi [57].

Table 4. Random index (RI) values.

n 1 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

2.3.3. Classification Method of the Remote Sensing Data

At present, the emergence of different sensors provides a variety of data sources, and
many methods of land use classification based on optical images have been proposed,
including traditional supervised classification and unsupervised classification methods,
as well as some new classification methods that have appeared in recent years, such as
artificial neural network methods, fuzzy mathematics methods, decision tree methods, and
random forest methods. These classification methods have greatly improved the accuracy
of remote sensing classification results. Random forest methods feature strong antinoise,
antiabnormal value, and high classification accuracy characteristics [54]. At the same time,
these methods can process a large amount of data and do not easily support transition
fitting [55]. Based on the above advantages, a random forest classifier was adopted to
classify the cultivated land in this study.
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In this study, the Sentinel-2 images selected four 10-m resolution bands of B2 (Blue),
B3 (Green), B4 (Red), and B8 (NIR) as spectral features for the random forest classifier. We
chose the interferometric wide swath (IW) imaging mode for Sentinel-1 images so as to
ensure the same resolution. In order to classify crops more accurately, this research adopted
two steps to classify crops.

Step 1: Divide cultivated land and noncultivated land. A random selection of 70% sam-
ples from 5 types of land objects, including woodland, water body, town, grassland, and
arable land, was used as the training sample of random forest classifier; the number of
classification features was set as the square root of the total number of variables. The total
number of trees generated by random forest was continuously tested to find out the total
number of trees with the best classification results; the remaining 30% samples were used
to evaluate the accuracy of the generated classification results.

Step 2: The cultivated land area was extracted from the classification results of the
first step, and the classification method of maize, rice, and soybeans was the same as that
of the first step.

2.3.4. Method of Planting Structure Optimization

According to the actual average yields of different crops in different suitability grades,
the planting structures of crops were analyzed in the study area such that the production in
the study area could be maximized and, thus, the optimal data for the planting structure in
the study area could be obtained. The final unit yield value is given based on the statistical
data of Jilin Province from the Price Department of National Development and Reform
Commission. The final unit yield values of different crops were obtained by subtracting
production costs and labor costs from the total output value and production subsidies, and
then the net profit per unit yields for different crops were obtained. The specific formula
for the process is given as follows:

Yend = Zyield·Xprice + Xsubsidy −
(
Xcop + Xcoh

)
, (17)

Ynp =
Yend
Zyield

, (18)

where Yend (yuan/ha) is the final production value per hectare; Ynp (yuan/kg) is the net
profit per unit of output; Zyield (kg/ha) is the average yield per hectare; Xprice (yuan/kg) is
the unit price of different crops in Jilin Province in 2018; Xsubsidy (yuan/ha) is the price of a
producer subsidy, which is the provincial average; and Xcop and Xcoh (yuan/ha) represent
the production and labor costs, respectively.

3. Results
3.1. The Mapping of Different Crops

Traditional methods are limited in agricultural monitoring due to their poor accuracy
and low efficiency, while remote sensing data have been widely used in agricultural pro-
duction because of their characteristic wide ranges, high time resolution, and large amounts
of information. In this study, with the support of the GEE cloud platform, different ground
objects were classified first, and then different cultivated land were classified, which greatly
improved classification accuracy. The classification was satisfactory (Table 5 and Figure 4),
and the overall classification accuracy for different cropland areas was 95.33%. The research
shows that the combination of optical and radar images can not only support full use of
the spectral information in an optical image but also make full use of the characteristics
of the change of the backscattering coefficient for a radar image, and the classification
result is consequently better than that generated by a single data source. The random
forest classifier can obtain land use classification results with high precision and effectively
identify distributions of different crops, which provides technical support for agricultural
mapping via remote sensing.
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Table 5. (a) Classification accuracy evaluation table for different feature types; (b) Classification
accuracy evaluation table for maize, rice, and soybeans.

(a)

Grassland Town Cultivated Land Forest Land Water Body

User’s
accuracy (%) 80.00 87.50 99.24 100.00 100.00

Producer’s
accuracy (%) 88.89 92.11 97.76 100.00 100.00

Accuracy of general classification = 97.21% and kappa = 0.95

(b)

Rice Maize Soybean User’s Accuracy (%)

Rice 0 166 1 99.40

Maize 35 3 0 95.59

Soybean 1 7 14 63.64

Accuracy of general classification = 95.33% and kappa = 0.90

Figure 4. Existing maps of maize, rice, and soybeans.

3.2. Implementation of Land Suitability Assessment

Since the selected indicators were not equally important for the growth of maize, rice,
and soybeans, with the help of experts, calculated conformance ratios can be a good way
to assign weights to criteria with an AHP model. This method systematically integrates
heterogeneous data and measures any inconsistencies in the evaluation [58], which effec-
tively solves the problem of reasonable weight distribution for the influencing factors. Our
results show consistency ratio values for maize, rice, and soybeans of 0.0326, 0.0483, and
0.0487, respectively, which fall below the threshold value of 0.1 [58], indicating a high level
of consistency. Hence, the obtained weights of the criteria were acceptable.
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The land suitability evaluation of maize, rice, and soybeans has been realized in
Jilin Province via MEA (Figure 5), namely, in terms of high suitability (S1), moderate
suitability (S2), marginal suitability (S3), and unsuitability (N). MEA is based on extension
mathematics and fuzzy mathematics and quantifies qualitative and quantitative factors
through membership degrees to ensure the integrity of information. MEA effectively
avoids the influence of subjectivity in the membership function calculation [59]. From
the perspective of space, the highly, moderately, and marginally suitable areas of rice
are mainly distributed near rivers. In these areas, water sources are sufficient, which is
beneficial to rice cultivation. Highly suitable areas of maize and soybean cultivation are
mainly distributed in the central plains and the eastern mountainous area of Jilin Province.
Moderately suitable areas of maize cultivation are scattered throughout Jilin Province, while
moderately suitable areas of soybean cultivation are mainly distributed in the western
part of Jilin Province. As for the areas with marginal suitability and unsuitability, maize
areas are mainly distributed in the western region of Jilin Province, while soybean areas
are distributed in the central and eastern regions. In order to evaluate the accuracy of
the model, the LSI data were analyzed with the measured yields of the three crops via
linear regression analysis (Figure 6). The results show that the result of the AHP–MEA
has high precision. For the evaluation of the data, it was determined that for the yield of
maize, R2 = 0.626, for the yield of soybean, R2 = 0.772, and for the yield of rice, R2 = 0.688.
The areas of the three crops, with different suitability grades, varied greatly, as shown in
Figure 7.

Figure 5. Suitability evaluation map of different agricultural land areas in Jilin Province. (a) Land suitability assessment
map for maize; (b) land suitability assessment map for rice; (c) land suitability assessment map for soybeans. S1: highly
suitable, S2: moderately suitable, S3: marginally suitable, N: unsuitable.



Agriculture 2021, 11, 370 15 of 23

Figure 6. Linear regression between land suitability index and yield data (kg/ha).

Figure 7. The areas of the three crops in different grades after optimization (ha). S1: highly suitable,
S2: moderately suitable, S3: marginally suitable, N: unsuitable.

3.3. Suitability Analysis Results

Through the analysis of each influencing factor (Figure 2) and the suitability results for
different croplands (Figure 4), it was found that topographic and soil fertility factors have
relatively small degrees of influence, while climatic conditions, water resources, and soil
texture are the main factors affecting the planting structure in this region. The influence of
each factor is relatively accurate in terms of the result for agricultural planting suitability.

3.3.1. Climatic Suitability

In terms of climatic conditions, the temperature is suitable for the growth of crops
in Jilin Province, although not to a high degree of suitability for crop growth but close to
it. The average temperature in the midwestern area of the region is significantly higher
than in the east, and there is no land that is unsuitable for growing crops. Regarding
this criterion, precipitation becomes the main factor limiting the growth of crops, and
insufficient and uneven precipitation is typical in this region. From the southeast to the
northwest, the precipitation gradually decreases, and the precipitation is also obviously
insufficient in the northeast, where 55.68% of areas feature less than 600 mm/year of
precipitation; inhospitable areas for maize and rice cultivation are mainly distributed in
this range, although the low precipitation has little effect on soybean growth [39]. As a
result, either soybean or agriculture with water-saving irrigation is suitable for the area.

3.3.2. Topographic Suitability

Topographic suitability is mainly determined by the effect of the ground slope in terms
of crop planting; however, this study is based on the analysis of existing cultivated land,
and the terrain is relatively flat, so there are few areas unsuitable for growing crops. Only
3.90% of the area in the province is unsuitable for planting maize and soybeans, and 5.19%
of the area is unsuitable for planting rice, located at the Dahei Mountains in the center of
Jilin Province and the Changbai Mountains in the southeast. Combined with the influences
of other factors, maize and soybeans are also highly or moderately suitable for cultivation,
but rice has greater suitability in the region. Water resources are a major constraint on rice
cultivation, and 23.55% of the area is within 3 km of a water system. In order to save water
resources, rice can be planted in flat areas close to water resources [39]. Thus, an ecological
balance can be maintained, and sustainable agricultural development can be realized.
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3.3.3. Soil Nutrient Suitability

Soil fertility factors include pH, OC, TN, and AP; AK, pH, and OC have great effects
on crop planting within the optimized farmland. Most of the maize, rice, and soybean
areas are in a pH suitability zone, where they take up 70.15%, 82.71%, and 81.82% of
the total cultivated land, respectively. These areas are mainly distributed in the central
and western regions of Jilin Province, where the cultivated soil is weakly alkaline, along
with sparse areas in the east. The OC content is especially suitable for planting crops in
cultivated soil, and the content in the region is above 0.5%. The highly suitable areas are
distributed in the central plains and the mountainous areas in the east, and the climate
and pH conditions are suitable for the development of diverse soil microorganisms in this
region [60,61], with proportions of 69.18%, 69.18%, and 83.35%, respectively. Moderate
and marginal suitability areas are mainly distributed in the southwestern plains region
of the province. The contents of TN, AP, and AK are all higher there, where only 9.18%
and 22.60% of areas are not suitable for maize and soybean planting due to the TN level;
all areas are suitable for rice. Only 4.61% and 1.97% of the AP areas are unsuitable for
maize and soybean cultivation; however, 35.33% of the area is currently unsuitable for rice
cultivation. Regarding AK, maize is in great demand, and 52.29% of the area is currently
unsuitable for maize cultivation. Only 8.41% is suitable for soybeans, and rice is completely
suitable. The currently unsuitable areas are all distributed in the western plains region of
Jilin Province, but there are relatively high levels in other areas. Through analysis, it was
found that soil fertility has relatively little influence on agricultural planting and growth
in Jilin Province. Although the contents of TN, AP, and AK are low in some areas, the
contents of OC are relatively high, which is beneficial to the growth of crops.

3.3.4. Soil Type Suitability

Soil texture plays an important role in planting structure. The main reason for this is
that different crops have different growth requirements [12]. The proportions of soil texture
for maize, rice, and soybeans in the total cultivated land area were 90.60%, 8.22%, and
84.17%, respectively. The effect of drainage capacity on the planting of the three crops is
small, and the proportions of highly suitable areas in the cultivated land area are large and
the differences are small. This indicates that soil texture is one of the main limiting factors
for crop cultivation in the area. Drainage capacity has little influence on the planting of
the three crops, and the proportions of highly suitable areas in the cultivated land area
are large and the differences are small. This indicates that soil texture is one of the major
limiting factors for crop cultivation in the region.

4. Discussion
4.1. Comparison and Discussion on Land Suitability Evaluation Methods

In order to evaluate the performance of the AHP–MEA model, it was compared with
an AHP-alone model. The coefficient of determination (R2) between the land suitability
index data and the yields of maize, rice, and soybeans were calculated using the AHP
model (Figure 8). Compared with the results of the AHP–MEA model, the results showed
that the accuracy of the rice land suitability evaluation results obtained by the AHP model
was higher (R2 = 0.670), but the accuracy was also slightly lower than that of the AHP–
MEA model. The accuracy of maize (R2 = 0.311) and soybean (R2 = 0.262) land suitability
evaluations was much lower than that of the AHP–MEA model. Therefore, the land
suitability evaluation featured higher accuracy when using the AHP–MEA model. The
results show that the AHP-MEA model is effective for evaluating land suitability. In the
evaluation process, evaluation factors such as the climate, soil, and slope need to be taken
into account simultaneously, and the influences of these factors on land suitability are not
equal [62]. In this study, the weights of influencing factors were allocated well with the
AHP–MEA model, indicating that the AHP model can systematically integrate different
data and that it is a very effective method for determining weights, which is widely used
in various studies [12,19,24,35]. At the same time, it is shown that MEA based on extension
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mathematics can classify a problem as compatible or incompatible, integrate qualitative and
quantitative information, and quantify a problem by the degree of correlation. Compared
with the traditional land suitability evaluation method, the AHP–MEA evaluation results
are more objective and accurate, and regional scale analysis of each land unit can be carried
out to find the influence of each evaluation factor on the suitability of different crops.
Finally, the method is easy to understand and can be calculated using basic software such
as MATLAB or Python, which is much simpler than other methods.

Figure 8. Linear regression between LSI data for the AHP model along with yield (kg/ha).

4.2. Analysis of Spatial Planting Structure
4.2.1. Discussion of Different Planting Structures

There are large differences in the yields and prices of maize, rice, and soybeans. It is
necessary to optimize the land use of the three crops such that the agricultural production
value of Jilin Province can reach a maximum. According to the estimation of the actual
yields of maize, rice, and soybeans, the actual yields were divided into four grades based
on the LSI data, and the average yields for crops in each grade were used to represent
the yields of that grade (Table 6). According to the data for maize, rice, and soybeans in
Jilin Province in 2019, as published by the Price Department of National Development
and Reform Commission (Table 7), the spatial planting structures of the three crops are
analyzed here.

Table 6. The average yields of maize, rice, and soybeans vary in suitability (kg/ha).

Highly Suitable Moderately
Suitable

Marginally
Suitable Unsuitable

Maize 7362.61 5763.58 4920.97 4103.14

Rice 5991.32 4017.22 3156.21 1706.57

Soybean 2050.20 1424.93 1007.22 522.53

Table 7. Economic statistics for major crops in Jilin Province in 2019.

Yield
(kg/ha)

Unit Price
(yuan/kg)

Producer Subsidy
(yuan/ha)

Production Cost
(yuan/ha)

Artificial Cost
(yuan/ha)

Maize 7594.31 1.61 1544.99 3472.33 5123.37

Rice 8185.91 2.94 1871.99 3134.83 7190.96

Soybean 2151.14 3.36 4000.48 2009.69 4168.33

Through the analysis of different spatial planting structures (Table 8 and Figure 9), it
was found that with Spatial Planting Structure 1, which only considered crop yield and
price, the output would rise by 3.27 billion yuan compared with the existing planting
structure. There are no suitable planting areas for soybeans, and the main reason for this is
that the soybean yields are far lower than maize and rice, the production costs are high,
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and the entailing field management is complex. China has introduced a grain subsidy
policy to boost farmer incomes and encourage the growth of soybeans. This is a policy
that, along with farmer profit maximization, has led to more farmers choosing to grow
soybeans. Therefore, Spatial Planting Structure 2, which takes producer subsidies and costs
into account, can reflect the wishes of farmers and the increase in the agricultural output
value of the region better, reaching 12.44 billion yuan more than the total output value for
Spatial Planting Structure 1. Through the comparative analysis of Planting Structure 1 and
Planting Structure 2, it can be found that Jilin Province, a province in the “golden maize
belt”, is suitable for maize cultivation in most areas, and the yields of maize would be
high. Rice is mainly distributed in the vicinity of rivers and lakes, but the area for Planting
Structure 2 is 1.35 million ha larger than that of Planting Structure 1, and the increased area
is mainly distributed in the vicinity of rivers and lakes. In this way, water resources can
be fully utilized [63]. With Planting Structure 2, soybeans are mainly distributed in the
western part of Jilin Province, which is adjacent to Inner Mongolia. The region features
strong wind and sand deposition in spring, resulting in serious soil desertification and poor
fertility. There are also a few areas suitable for soybean planting in the eastern mountainous
area of Jilin Province. Ground slope is the main factor limiting the planting of maize in
these areas. A study has shown that areas with a larger slope are more suitable for soybean
cultivation [16]. In these regions, maize yields are far lower than in other regions, and
the output value is lower than that of soybeans after food subsidies. Therefore, soybean
cultivation is more suitable in these regions, which is conducive to the increase of the total
output value of grain in Jilin Province. At the same time, planting different crops can
realize the rational utilization of land resources and water resources, which is conducive to
the sustainable development of agriculture.

Table 8. Statistics for different planting structures.

Maize Area
(ha)

Rice Area
(ha)

Soybean Area
(ha)

Gross Output Value
(Billion yuan)

Existing planting
structure 9,178,684.51 925,850.50 274,246.52 136.49

Planting
Structure 1 1 9,292,614.17 1,086,167.36 0 139.76

Planting
Structure 2 2 7,224,593.55 2,438,834.96 715,353.02 152.20

1 Planting Structure 1: the planting structure that only takes into account crop yields and prices. 2 Planting
Structure 2: the planting structure that takes into account crop yield, price, producer subsidies, and costs.

Figure 9. The planting structure optimization map of Jilin province: (a) Planting Structure 1; (b) Plant-
ing Structure 2.
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4.2.2. Adjustment of the Existing Planting Structure

Through the comparison and analysis of the existing planting spatial structure and the
optimal planting spatial structure (Planting Structure 2) in Jilin Province, it can be found
that there is some irrationality in the planting structure of cultivated land in Jilin province
at present. As seen in Figure 10, in areas rich in water resources, more maize is planted in
the central and western parts of Jilin Province, and more soybeans are planted in the eastern
part. These studies show that rice should be planted in areas rich in water resources, which
is conducive to the full utilization of water resources. In the southwest of Jilin Province,
there is relatively little precipitation, relatively insufficient water resources, and poor soil
quality; the region is adjacent to Inner Mongolia. Soil desertification is not conducive to
the growth of maize, but it is suitable for the cultivation of soybeans. In practice, it has
also been found that the quality of maize grown in this area is poor. Therefore, it would
be ideal to cultivate soybeans in this area. At present, large areas of rice are planted in
the northwest of Jilin Province; however, due to the lack of water resources, irrigation
water mainly comes from groundwater, which is not conducive to the sustainable use of
agriculture and resources. Therefore, the region needs to reduce the planting of rice in
these areas. Although the planting areas changed greatly before and after optimization
(Table 9), the utilization of resources is more reasonable, and the agricultural output value
also improves greatly. The output value after optimization increased by 15.71 billion yuan
compared with that before optimization. Therefore, based on the suitability for different
crops, the rational utilization of land and water resources is realized here, and the planting
space structure is optimized in order to provide a reliable basis for increasing agricultural
production and income in the region.

Figure 10. Comparison map of existing cultivated land and optimized areas.

Table 9. Area changes of maize, rice, and soybeans before and after optimization (ha).

Existing Soybean Soybean Rice Rice Maize Maize

Planting
structure 2 Rice Maize Soybean Maize Soybean Rice

Area of
change 95,779.54 169,115.87 73,016.23 543,603.97 632,985.68 2,033,825.12
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In this paper, based on the natural conditions of crop growth, the crop planting struc-
ture is optimized in Jilin Province, and the results are good. Not only have optimal planting
areas for different crops been determined, but a theoretical basis for the development of the
agricultural economy in Jilin Province has also been provided. However, there are some
deficiencies in this paper. As a major factor in agricultural production, river discharge has
not been taken into account here. In Jilin Province, the crop planting season (the period
with the highest water demand) is the dry season for rivers. Meanwhile, this paper also
lacks the influence of population density on the planting and production of different crops,
as the planting and management of rice require a high level of human resources. Therefore,
these reasons make it more suitable to grow rice in large quantities near rivers. In future
studies, more practical and social factors regarding crop suitability need to be considered.

5. Conclusions

The factors affecting land suitability are complex and varied, and the aspects of each
factor are also different. Remote sensing provides a fast and reliable method for rapid
and reliable factor acquisition. A multifactor land suitability evaluation method that can
provide theoretical support for the rational utilization of land and water resources and
the sustainable development of agriculture has been studied here. The AHP–MEA model
studied in this paper can overcome the indeterminacy and subjectivity inherent in other
methods and models. The feasibility of the model has been proven by analyzing the
suitability of land use for maize, rice, and soybean cultivation in the study area, which
confirmed that the model presented here is a reliable method for solving similar problems.

The results for the suitability evaluation of maize, rice, and soybeans showed that
5% and less than 1% of cultivated land is unsuitable for maize and soybean cultivation,
respectively, and the main limiting factors here were the pH, TN, AP, and soil texture.
However, fertilization can eliminate these limitations and increase cultivation suitability for
various crops. The average annual precipitation in the study area is 400–600 mm, surface
water resources are scarce, and there are significant seasonal and regional differences,
which are the main reasons for the limitation of rice cultivation.

Based on the agricultural economic data for the study area, the spatial planting
structure optimization research shows that the planting structure has some irrationality
in the study area. Soybeans should be planted in the western part of the study area with
poor soil quality, rice should be planted in the area with rich surface water resources,
and a large amount of maize should be planted in the rest of the areas. The areas for
different crops changed greatly before and after optimization: the area for maize cultivation
decreased by 1.95 million ha, and that of rice and soybeans increased by 1.51 million ha
and 0.44 million ha, respectively. The optimized planting structure was more reasonable,
and gross agricultural product increased by 15.71 billion yuan. The structure provides a
reliable basis for the rational utilization of land and water resources and the sustainable
development of agriculture in this study area, consequently providing a theoretical basis
for the optimization of spatial planting structures in other areas.
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