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Abstract: The northwest (NW) province of South Africa is a semi-arid area, often disturbed by soil
extremes such as drought and intense temperature. However, many functions possessed by the
rhizosphere microbiome are still required, especially those inhabiting arid and semi-arid soils. This
study involves a metagenomic comparison of the major metabolic attributes of two maize rhizosphere
soils and their surrounding soils. Here, we hypothesized that there is a considerable difference
between the functional diversity of maize rhizosphere and bulk soils and that the rhizosphere soil
has distinct functional traits of agricultural importance. A high-throughput sequencing approach
was used to assess the metabolic profile of rhizosphere soil microbiota of maize collected from the
Gauteng and NW provinces of South Africa. The relative abundance of 13 functional hit categories
was significantly different between the sampling sites. The diversity indices showed a considerable
difference between the rhizosphere and surrounding soils. The difference in the chemical properties
of the sampling sites was responsible for the variation in the microbial functional composition.
Nevertheless, the presence of a high relative abundance of functional categories with unknown
functions in SEED subsystem-2 coupled with the large number of functional hits conferring a
response to soil stressors viz. oxidative stress, heat shock, osmotic stress, and cold shock noticed in
the rhizosphere samples may indicate the presence of novel genes at the sampling sites. Exploring the
plant growth-promoting traits of microorganisms present at these sites could eliminate the constraint
posed by soil stressors on sustainable agriculture.

Keywords: food safety; high-throughput metagenomics; microbial functional distinctiveness;
novel genes; soil stressors; sustainable agriculture

1. Introduction

Rhizosphere microorganisms occupy the area surrounding a plant’s roots and are
influenced by complex activities associated with the host plant, such as root exudates [1].
Root exudates are compounds such as sugars, acids, peptides, amino acids, secondary
metabolites, and organic compounds that influence the chemical and biological activities in
the soil surrounding the plant. Here, a complex microbial interaction occurs, hindering the
growth of the pathogens, abiotic and biotic stress tolerance, and biogeochemical cycling of
nutrients in the plant biosphere [2].

The number of important soil microbiota increases as a result of organic compound
secretion; hence, the richness of this environment instigates a complex interplay among
organisms, resulting in either beneficial, neutral, or harmful effects on the plant. For ex-
ample, the decomposition of plant residue and soil organic matter is a result of beneficial
effects posed by soil microbes. The interaction between soil microbial diversity and the
food web has received much attention over the years due to the large effect it has on food
safety. The soil microbiome influences the environment of plants differently; for instance,
an ecosystem dominated by bacteria is known for attributes such as high nutrient avail-
ability, a neutral to mildly acidic pH, and low organic material content because of high
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biological activities taking place in the environment [3,4]. The activities of bacteria in the
soil mean that the plant’s environment is predisposed to the easy loss of nutrients via
frequent mineralization of organic matter, exhausting soil nutrient reserves. Prokaryotes,
specifically bacteria and archaea, drive the activities of plant ecosystems and are called
ecosystem determinants. Therefore, agricultural sustainability is mainly dependent on or
justified by the activities of these organisms, such as carbon sequestration, biogeochemical
cycling, and pathogen control [4].

The changes in the physical and chemical attributes of rhizosphere soil alter the
productivity of agricultural soils, and as such, soil quality assessment indicators viz.
biological activities and strong plant–soil interactions have been used to predict quality
and functional attributes of plant biosphere [5].

In the northwest (NW) province of South Africa, most (54%) of the land is mainly used
for farming viz. crop production and animal grazing. In addition to the fact that South
Africa is in the sub-Saharan part of Africa—with semi-arid soils—the NW province has a
considerably high provincial soil degradation index, with the croplands affected by water
and wind erosion due to lack of drainage systems [6]. The rate at which the farmlands are
degraded remains constant and severely inhibits crop safety, with the loss of plants and
soil nutrients a serious threat to sustaining crop production. In spite of this, the area still
produces the largest percentage of staple food in South Africa, accounting for more than 30%
of the total maize production in the country [6,7]. Therefore, to maintain the level of maize
production in the NW province and South Africa, sustainable land-use practices are needed.

Previously, culture-based microbial analysis has been adopted for characterizing soil
microbiota. Using phenotypic identification processes to classify microbial diversity inhab-
iting a plant’s rhizosphere is a crude method, and has produced little information about
soil inhabitants and their functions. Nevertheless, most soil microbiota cannot be classified
using traditional culture-based methods because the majority of soil biosphere organisms
are non-culturable; therefore, there is a need for culture-independent techniques [8]. An eco-
genomics sequencing approach (Illumina, Roche 454 etc.) has been useful in this regard,
but there is still a paucity of studies on microbiome of the plant rhizosphere, especially
those grown in arid and semi-arid soils.

Because the functional distinctiveness and application of soil microorganisms is under-
explored, we speculate that there is a considerable difference between the functional
diversity of the maize rhizosphere and bulk soils, and that the rhizosphere soil will host
many important microorganisms of agricultural importance. In this research, we used
shotgun metagenomic sequencing to assess the rhizosphere microbial structure and func-
tions in maize plantations from selected farms in the Gauteng and NW provinces, and to
describe the role of dominant rhizobia in key metabolic functions of maize soil.

2. Materials and Methods
2.1. Description of Study Area and Soil Sampling

Aseptically, 50 g of rhizosphere soil samples [9] were collected in triplicate from
two farms situated in Randfontein (26◦11’52.0” S 27◦33’18.3” E) and Lichtenburg town
(25◦59’40.4” S 26◦31’44.5” E) in the Gauteng and NW provinces. These included Rand-
fontein maize farm (Rs), adjacent bulk sample (Rc), Lichtenburg maize farm (Ls), and ad-
jacent bulk sample (Lc). Randfontein is situated 45 km west of Johannesburg, commonly
referred to as gold mining municipality during the 1800s, while Lichtenburg is 188 km west
of Johannesburg, and a seasonal rainfall for both towns is between April and November
with approximately 365 mm mean annual rainfall. Vegetation in the towns is sparsely
distributed and can be seen in succession due to environmental factors such as erosion [6].
The vegetation is heterogeneously distributed with numerous and relatively distinct plant
communities with different species composition. Genetically modified (GM)-white and
yellow maize seeds were planted in the two towns. After taking the consent of the farm
owners, rhizosphere soils that were tightly bound to the plant roots were collected asep-
tically, while the bulk samples were collected from 10 m (adjacent) from the rhizosphere
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samples [9]. The samples were transported to the Department of Microbiology, Northwest
University Mafikeng campus using a cooler box containing ice-packs and stowed in the
cold room at −20 ◦C for one week before the chemical analysis and DNA extraction.

2.2. Chemical Analysis of Soil

In total, 20 g of the samples were used for chemical analysis. Using the ratio of 1:2.5
(soil-deionized water), the pH of samples was assessed using a pH-meter. Afterward,
at pH 8.5, the phosphorus content of samples was determined by extraction with sodium
bicarbonate (NaHCO3) [10], while the availability of organic matter (OM) and potassium
(K) was determined according to the method of Walkley and Black [11]. To determine
calcium (Ca2+) and magnesium (Mg2+), 1M NH4CH3CO2 (ammonium acetate) was used
to extract soil magnesium and calcium, as well as measure with the aid of 230ATS Atomic
Absorption Spectrophotometer (λ-190-900 nm) [12]. After that, dichromate digestion was
used to calculate the organic carbon [13]. Then, data collected from triplicate readings were
used to find the mean using GraphPad Prism version 5.

2.3. DNA Extraction, Metagenomic Sequencing, and Downstream Analysis

Using the DNeasy Power-Max soil kit (MOBIO Laboratories, Carlsbad, CA, USA),
whole DNA from 5 g soil samples was extracted using the manufacturer’s procedure.
Illumina sequencing was conducted at the Molecular Laboratory MR DNA (Shallowater,
TX, USA) using shotgun whole-genome sequencing. The libraries were prepared using the
Nextera DNA Flex library preparation kit. Moreover, 20–50 ng DNA was used to prepare
the libraries. The samples were simultaneously fragmented and adapter sequences were
added. The concentration of the libraries was finally measured using the Qubit® dsDNA
HS Assay Kit (Life Technologies, Carlsbad, CA, USA) and the average library size was
measured using the Agilent 2100-Bioanalyzer. The libraries were pooled and diluted (to
0.6 nM), then sequenced paired-end for 300-cycles using the NovaSeq system (Illumina).
Reads were annotated using the Metagenomics Rapid Annotations Subsystems Technology
(MG-RAST) server v4.0.3 [14]. After subjecting raw reads to quality control, the BLAST-like
alignment (BLAT) algorithm was employed in annotating sequences [15] against the M5NR
database [16], which provides nonredundant incorporation of various databases. The
soil functional features and rhizobiome classifications were performed using the SEED
subsystem level 1 and 2 (Table S1 and Figure S1) with a maximum alignment length of 15
base pairs, a minimum identity of 60%, and an e-value of 1 × 10−5. Annotated functional
tables extracted from MG-RAST were agglomerated based on functional level and unclas-
sified reads retained for statistical analysis. After the 12 sequences were annotated using
MG-RAST, the mean relative abundances of the triplicate samples from each site (Ls, Rs,
Lc, and Rc) were used for further analysis.

Pielou evenness and Shannon indices were used to determine the alpha diversity.
Using PAST version 3.20 [17], the Kruskal–Wallis test was used to depict the diversity
indices across the sites. Raw sequences used in this study were made available on the
NCBI database with bio-project accession-number PRJNA645371 and PRJNA645385 for all
the samples and controls. Quality-filtered and annotated data are publicly available in MG-
RAST at mgm4898558.3, mgm4898574.3, mgm4898575.3, mgm4898551.3, mgm4898552.3,
and mgm4898555.3 for each replicate.

2.4. Statistical Analysis

The differences between the pedological parameters were determined via a one-way
analysis of variance (ANOVA) with Tukey’s honest significant difference (HSD) test using
the GraphPad Prism (v5.0). p ≤ 0.05 was considered significant. The relative abundance of
microbial functional hits was plotted using the shinyheatmap. Adopting the Bray–Curtis
distance matrix using CANOCO 5 (Micro-computer Power, Ithaca, NY, USA), the mean
relative abundance of functional features was used to plot the principal coordinate analysis
(PCoA) and principal component analysis (PCA) of the samples. Likewise, canonical
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correspondence analysis (CCA) was used to evaluate the correlation between functional
categories, while the evaluated chemical parameters was plotted with the aid of CANOCO 5.
Hence, to evaluate environmental variables that best explain the diversity of soil functional
attributes, CANOCO default settings, adopting forward selection of pedological variables,
and Monte-Carlo permutation test were used.

3. Results
3.1. Chemical Properties of Maize Rhizosphere Soil and Control Samples

The chemical properties of the samples showed that the pH level of the samples
collected from Lichtenburg (Ls–5.62, Lc–5.87) was more acidic than the pH (Rs-6.76, Rc-6.73)
of the samples collected from Randfontein, while the organic C of Rs (1.09) and Rc (0.87)
were significantly higher than the Ls (0.61) and Lc (0.60) samples (p < 0.05). P, N-NO3,
and K contents showed a significant difference (p < 0.05) between rhizosphere samples,
but indifferent compared with their controls. In the case of N-NH4, the values varied
significantly between the samples except Ls and its control (p = 0.04). Soil parameters such
as sulfate, total C, and OM showed no significant difference between the rhizosphere and
the surrounding samples (p > 0.05) (Table 1).

Table 1. Mean values of chemical properties of maize rhizosphere and surrounding soils.

Sample Locations→ Ls Rs Lc Rc p-Value

Ph
ys

ic
oc

he
m

ic
al

pa
ra

m
et

er
s

pH (H2O) 5.62 ± 0.09 a 6.76 ± 0.28 b 5.87 ± 0.22 a 6.73 ± 0.26 b <0.000
P (mgkg−1) 50.98 ± 1.77 a 257.14 ± 35.32 b 65.86 ± 13.71 a 206.54 ± 81.73 b 0.001
K (mgkg−1) 240.00 ± 2.94 a 167.00 ± 11.63 b 243.00 ± 0.82 a 148.50 ± 34.95 b <0.000

Sulfate (mgkg−1) 1.60 ± 1.68 a 2.56 ± 2.66 a 0.44 ± 0.36 a 2.32 ± 2.75 a 0.623
Total C (%) 0.90 ± 0.05 a 1.34 ± 0.24 a 0.90 ± 0.01 a 0.85 ± 0.50 a 0.187
Org C (%) 0.61 ± 0.02 a 1.09 ± 0.09 b 0.60 ± 0.01 a 0.87 ± 0.15 c <0.000
Org M (%) 3.40 ± 0.16 a 3.43 ± 0.39 a 3.25 ± 0.03 a 2.95 ± 0.85 a 0.609

N-NO3(mgkg−1) 16.29 ± 2.25 a 8.52 ± 2.68 b 16.24 ± 0.59 a 7.38 ± 2.46 b 0.001
N-NH4 (mgkg−1) 3.61 ± 0.29 a,b 2.91 ± 1.12 a 2.42 ± 0.19 a 4.75 ± 1.21 b 0.044

Each value is expressed as mean ± standard deviation of chemical properties deduced from the maize rhizosphere (Ls and Rs) and bulk
(Lc and Rc) soils. All statistical analyses, including mean values and analysis of variance (ANOVA) were done using GraphPad Prism
(v5.0). Mean bearing different superscripts <a,b> within each row indicate significant differences at p ≤ 0.05. p values given across the rows
were used to compare chemical properties of the sampling sites.

3.2. Sequence Information and Processing Output

The output file showing the mean of raw sequences and the quality-filtered informa-
tion of met genomics data using MG-RAST is compiled in Table 2.

3.3. Functional Attributes Associated with the Rhizosphere Samples and Their Controls

This research adopted the main functional hit categories from SEED subsystem level 1
gene annotation (MG-RAST) and further explained with annotations derived from SEED
subsystem level 2. The major functional hits derived from level 1 annotation were 28,
with only 13 showing significant difference (p ≤ 0.05) between the rhizosphere and the
surrounding soil samples. The significantly different categories include amino acid deriva-
tives (AAD), clustering-based subsystems (CBS), DNA metabolism (DNA-M), fatty acids,
lipids and isoprenoids (FALI), the metabolism of aromatic compounds (MAC), miscella-
neous (Mis), nitrogen metabolism (NM), nucleosides and nucleotides (NN), photosynthesis
(Photo), protein metabolism (Prot-M), respiration (Res), secondary metabolism (Sec-M), and
stress response (SR). While others such as carbohydrate metabolism (C), cofactors, vitamins,
prosthetic groups and pigments (CVPGP), membrane transport (MT), cell wall capsule
(CWC), RNA metabolism (RNA-M), virulence, disease and defense (VDD), phosphorus
metabolism (PM), motility and chemotaxis (MC), sulfur metabolism (SM), regulation and
cell signaling (RCS), cell division and cell cycle (CDCC), phages, prophages, transposable
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elements and plasmids (PPTEP), iron acquisition and metabolism (IAM), dormancy and
sporulation (DS), and potassium metabolism (Pot-M) were not significantly different at
p ≥ 0.05 (Figure 1 and Table S1). The most prominent hits in the rhizosphere and bulk
samples were C, CBS, AAD, Prot-M, Mis, CVPGP, DNA-M, and Res, while SR and VDD of
the samples (Ls-3.06, 3.03; Rs-3.10, 2.95) were observed to be far higher than the controls
(Lc-2.50, 2.58; Rc-2.93, 2.80) at p ≤ 0.05. The graphical distribution of functional categories
across all samples was structured using principal component analysis (PCA). PCA revealed
that activities were higher in Ls (Res, MC, C, MAC, RCS, SM, CVPGP, etc.) compared to Lc
(CWC, Mis). While in the other samples, both Rs (SR, MT, Pot-M, DS, IAM, FALI, Sec-M,
and AAD) and Rc (CDCC, Prot-M, RNA-M, PM, DNA-M, NN, CBS, and NM) showed
high functional hits considering the vectors (Figure 2).

Table 2. Raw sequence and quality-filtered data based on metagenomics rapid annotations using subsystems technology.

Sample Sites Ls Rs Lc Rc

Uploaded Information
bp Count 2,863,587,272 2,237,924,006 2,269,959,337 2,113,440,642

Sequences Count 19,276,118 14,928,201 14,988,818 14,053,905
Mean sequence length (bp) 149 ± 51 150 ± 48 152 ± 47 151 ± 48

Mean G + C content (%) 64 ± 11 65 ± 11 65 ± 10 65 ± 11
Post Quality Control Information

bp count 2,687,455,368 2,115,280,833 2,147,410,521 1,994,176,095
Sequence count 17,596,177 13,823,192 13,925,537 13,006,005

Mean sequence length (bp) 153 ± 47 154 ± 45 154 ± 44 154 ± 45
Mean G + C content (%) 65 ± 9 65 ± 9 65 ± 9 65 ± 9

Processed Sequences
Predicted protein features 15,344,917 12,427,664 12,428,891 11,695,150
Predicted rRNA features 35,945 31,594 27,292 27,927

Aligned Sequences
Identified protein features 5,959,395 4,732,504 4,654,996 4,507,871
Identified rRNA features 8225 7129 6347 7240

Figure 1. The major metabolic hits in maize rhizosphere soils and their bulk samples. The z-score (scale bar) represents
the color saturation gradient based on the relative abundance of functional hits in subsystem level 1 (MG-RAST) of three
replicates deduced from the maize rhizosphere (Ls and Rs) and bulk (Lc and Rc) soils. All statistical analyses, including
mean values and analysis of variance (ANOVA) were done using GraphPad Prism (v5.0) as shown in Table S1.
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different colors. Ls-1–3 (replicates of rhizosphere samples collected from Lichtenburg maize farm), 
Rs-1–3 (replicates of rhizosphere samples collected from Randfontein maize farm), Lc-1–3 (replicates 
of bulk soil samples collected from Lichtenburg maize farm), and Rc-1–3 (replicates of bulk soil 
samples collected from Randfontein maize farm). The length of vectors shows the strength of the 
influence of metabolic processes (e.g., Stress response-SR, fatty acids, lipids, and isoprenoids-FALI 
and iron acquisition, and metabolism-IAM had the most influence on Rs-1–3; respiration (Res), sulfur 
metabolism (SM), and metabolism of aromatic compounds (MAC) had the most influence on Ls-1–3; 
miscellaneous (mis), cell wall and capsule (CWC), and cell division and cell cycle (CDCC) were most 
effective on Lc-1–3 while protein metabolism (Prot-M), DNA-metabolism (DNA-M), and nitrogen 
metabolism (NM) had most influence on Rc-1–3). Axis 1 and 2 explained 58.41 and 37.74% variation, 
respectively. 

 

Figure 2. Principal component analysis (PCA) of the functional hits (subsystem 1) of maize rhizosphere and the surrounding
soil. Replicate samples from the sampling sites were denoted using different colors. Ls-1–3 (replicates of rhizosphere
samples collected from Lichtenburg maize farm), Rs-1–3 (replicates of rhizosphere samples collected from Randfontein
maize farm), Lc-1–3 (replicates of bulk soil samples collected from Lichtenburg maize farm), and Rc-1–3 (replicates of bulk
soil samples collected from Randfontein maize farm). The length of vectors shows the strength of the influence of metabolic
processes (e.g., Stress response-SR, fatty acids, lipids, and isoprenoids-FALI and iron acquisition, and metabolism-IAM had
the most influence on Rs-1–3; respiration (Res), sulfur metabolism (SM), and metabolism of aromatic compounds (MAC)
had the most influence on Ls-1–3; miscellaneous (mis), cell wall and capsule (CWC), and cell division and cell cycle (CDCC)
were most effective on Lc-1–3 while protein metabolism (Prot-M), DNA-metabolism (DNA-M), and nitrogen metabolism
(NM) had most influence on Rc-1–3). Axis 1 and 2 explained 58.41 and 37.74% variation, respectively.

The SEED functional hits level 2 gene annotation showed that the most abundant
category across all samples was the unknown functional category. The relative abundance
across the samples was Ls (20.66%) and Rs (20.65%) in the maize rhizosphere soils and
Lc (20.75%) and Rc (20.90%) in the surrounding samples (Figure 3a,b). The unknown
functional category differs across the samples at p-value = 0.03. The relative abundance
of functional categories such as oxidative stress, heat shock, and osmotic stress of rhizo-
sphere samples was significantly higher than their controls. In the case of cold shock,
the rhizosphere soils were 5 times higher than the surrounding samples. Besides, a highly
significant difference (p < 0.0001) was noticed when comparing functional hits (oxidative
stress, heat shock, osmotic stress and cold shock) of the rhizosphere soil samples to their
controls (Table S2).
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Figure 3. (a,b) Mean relative abundance of functional hits in subsystem level 2. Data represent mean relative abundance
and standard deviation (T) of functional hits (SEED subsystem 2) of three replicates deduced from maize rhizosphere (Ls
and Rs) and bulk (Lc and Rc) soils. All statistical analyses, including mean values and analysis of variance (ANOVA)
were done using GraphPad Prism (v5.0) as shown in Table S2. Most importantly, functional features attributed to stress
responses (oxidative, heat, osmotic, and cold shock responses) were conspicuously higher (p < 0.05) in the rhizosphere
samples compared to the surrounding soils.
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3.4. Alpha and Beta Diversity of Assessed Functional Hits across Soil Samples

The α and β diversity of assessed functional hits using SEED subsystem (level 1)
showed that metabolic functions within the rhizosphere of maize and surrounding soils
(i.e., replicates) were not significantly different (p > 0.05) (Figure 4). Within each sample,
the Kruskal–Wallis test showed that there was no significant difference in functional
categories of each sample and their corresponding controls (i.e., the replicates) at p = 0.99
and 0.94. Furthermore, principal coordinate analysis (PCoA) was used to visualize the
similarities and dissimilarities of the relative abundance of functional annotations between
samples (Figure 4). The analysis of similarity (ANOSIM) revealed that p = 0.01 and R = 0.58.
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Figure 4. Similarity measure to compare functional categories obtained from sample sites using
Principal Coordinate Analysis (PCoA). Using the Kruskal–Wallis one-way analysis of variance,
Shannon and Pielou evenness indices (Alpha diversity) showed no significant difference within the
replicates of each sample (p = 0.99; 0.94). Beta diversity using Analysis of Similarity (ANOSIM) depicts
differences between the sampling sites (p = 0.01; R = 0.58). The result showed no significant difference
within the functional attributes of the replicates in each sample, while Beta diversity revealed a
wide difference between the samples and their controls at p < 0.05. Ls-1–3 (replicates of rhizosphere
samples collected from Lichtenburg maize farm), Rs-1–3 (replicates of rhizosphere samples collected
from Randfontein maize farm), Lc-1–3 (replicates of bulk samples collected from Lichtenburg maize
farm), and Rc-1–3 (replicates of bulk samples collected from Randfontein maize farm).

3.5. Impact of Environmental Factors on Rhizobiome Functional Categories

The correlation between the analyzed soil chemical parameters and the relative abun-
dances within rhizobiome functional categories was studied using the canonical corre-
spondence analysis (CCA). Using forward selection of environmental variables, the pa-
rameters such as N-NO3, sulfate, and pH were significantly selected using the CCA-based
test (Figure 5 and Table 3). These variables are the environmental factors that best de-
scribe the differences in the soil functional categories. The CCA results revealed that
the functional features are dependent on the chemical properties of the soil with CCA
permutation = 0.0004. Metabolism of aromatic compounds (MAC), cofactors, vitamins
prosthetic groups and pigments (CVPGP), virulence, disease and defense (VDD), motility
and chemotaxis (MC), and sulfur metabolism (SM) positively correlated with N-NO3 and
negatively correlated with pH and sulfate. The vector length of pH positively correlated
with protein metabolism (Prot-M), DNA-metabolism (DNA-M), nitrogen metabolism (NM),
and secondary metabolism (Sec-M), while other metabolism viz. potassium metabolism
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(Pot-M), dormancy and sporulation (DS), fatty acids, lipids and isoprenoids (FALI), stress
response (SR), and iron acquisition and metabolism (IAM) positively correlated with sulfate
and negatively with N-NO3 and pH as shown in Figure 5.
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Figure 5. Canonical correspondence analysis (CCA) showing the relationship between major soil
chemical parameters and functional categories of the samples. Based on the CANOCO adviser,
N-NO3, sulfate and pH were selected as major factors influencing soil functional hit categories.
The contribution of each variable has been explained in Table 3.

Table 3. The disparity in functional hit categories within samples best explained using a forward
preference of environmental variables.

Environmental Variable Contribution% Pseudo-F p

N-NO3 45.5 1.7 0.65
Sulfate 46.4 5.7 0.53

pH 8.1 <0.1 1.00
Keys: N-NO3, sulfate and pH—most important environmental variables selected using CANOCO that determines
the contribution of each variable to the variation in the functional attributes of the sampling sites. N-NO3
contributed 45.5% variation, sulfate contributed 46.4% variation, while pH contributed 8.1% variation in the
functional attributes of the sampling sites.

4. Discussion

Eco-genomics gives a full description of plant-rhizobiome interaction adopting system-
level modeling integration. Here, we compared the diverse functional attributes of maize
rhizosphere communities with the bulk soils and to verify the influence of soil chemical
variables on soil functional features. Environmental variables induce a change in microbial
functional traits in the soil. In this analysis, the chemical properties of the samples showed
a spatial heterogeneity in most of the used parameters except sulfate, total carbon, and
organic matter that were without any significant difference (p ≤ 0.05) between the samples
and their controls. Each chemical characteristic orchestrates differences in microbial func-
tional diversity in a plant’s soil [18]. The pH of samples Ls (5.62) and Lc (5.87) was below
the normal range (6–7.2) that indicates the balance in the available soil nutrients. However,
the pH of the samples Rs (6.76) and Rc (6.73) were within the normal range for measuring
the relative H+ and OH− concentration of plant’s soil [19]. Soil pH ensures the availability
of important soil nutrients such as Cu, Zn, Mn, and Fe. The higher the pH, the lower the
soil micronutrient solubility and vice versa. Nevertheless, in both extremes, an imbalance
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in ionic strength may reduce plant’s growth. Other measured edaphic factors viz. N-NO3
(7–16), K (128–240), and N-NH4 (2.42–4.75) in the study were within the considerable range
required for the growth of plants except for phosphorus, which had low values for Ls
(50.98) and Lc (65.86) (Table 1). The values deduced from this analysis were similar to the
findings of Salam and Obayori [20]. Low nutrient levels in the soil can be attributed to high
microbial activities, especially plant soils with high organic matter [21].

The rhizobiome functional genes determine important plant physiological processes.
These hits are salient in revealing the soil microbiome structures and what they contribute
to the proximal environment. The metabolic pathways have been arranged by the SEED
into a hierarchical structure in which the genes performing a specific task are organized into
subsystems [22]. The subsystems are comprised of all metabolic functions (anabolic and
catabolic) at the highest organizational level, while at the lowest level, the subsystems are
in specific pathways. The metagenomic sequence functional categories (α-diversity) of our
studies showed that both rhizosphere soils and their controls attained its theoretical limit
of 2.81, which reveals that most subsystem hits were identified in all analyzed samples [22].
As expected, only Lichtenburg (Lc) control had lower functional diversity, i.e., miscella-
neous and metabolism required for cell wall capsule. To support the view that the plant
rhizosphere is nutrient-rich than bulk soil, a study by García-Salamanca et al. [23] showed
a significantly higher level of β-glucosidase, alkaline phosphatase, and dehydrogenase
activities in the cells of rhizosphere bacteria compared with those isolated from bulk soil.
This is because plants alter microbial diversity within the rhizosphere to create a healthy
microenvironment for sprouting [24]. Surprisingly, the other control sample collected from
Randfontein (Rc) had a significant number of functional hits co-equal to other rhizosphere
soils. Because microorganisms inhabiting a plant-free Lc-site are numerous, it is expected
to witness a sizable reduction in the functional attributes of the community [23].

Diversity indices are most of the time determined by the richness and evenness, i.e.,
the relative abundance of metabolic processes involved in a sample. In this analysis,
Figure 4 shows the metagenome’s evenness was low (0.94), which implies that only a few
metabolisms were dominant in the sampling sites. Invariably, the differences in presiding
metabolism imply that the metagenome harbor distinct functional profiles [22].

To verify our hypothesis that each sampling site harbors distinct metabolic profiles,
principal component analysis (PCA) was conducted (Figure 2). PCA showed the influence
of each metabolic hit on the sampling sites, as indicated by the direction of vectors on the
rhizosphere samples and their controls, which explains the distinctiveness of the metabolic
profile within the sampling sites. The vector arrows revealed which metabolism best
determines the microbial distribution and influence activities within the sampling site.
Metabolic functions viz. plant hormones are responsible for the elongation of roots and cell
division in plants. Improvement of the aforementioned microbial functioning enhances
plant physiological properties such as root elongation that facilitates easy access to water
and nutrients in the soil [25].

Additionally, a comprehensive view of Figure 2 and Table S1 shows that functional hits,
such as secondary metabolism, amino acid derivatives, fatty acids, lipids and isoprenoids,
and nitrogen metabolism placed Rs-maize rhizobiome apart from microbiome found in the
rhizosphere of Ls, Lc, and Rc. The high abundance of highlighted metabolic hits in the Rs
site revealed that the microbiome associated with the site helps in nutrient acquisition and
stress reduction. This assertion is supported by the abundance of microbial classes such
as Deltaproteobacteria, Gammaproteobacteria, Bacilli, and Planctomycetacia in the rhizo-
sphere samples (Figure S1). Several studies have reported the tremendous contributions
of these microorganisms to the improvement of plant growth [26–28]. The metabolic hits
involved in Ls site include carbohydrate metabolism, sulfur metabolism, virulence, dis-
ease and defense, metabolism of aromatic compounds and motility, and chemotaxis. This
inference can also be attributed to the abundance of important plant growth-promoting
organisms such as Acidobacteria, Sordariomycetes, Unclassified Thaumarchaeota, Leo-
tiomycetes, and Betaproteobacteria mined from Ls-site (Figure S1). In the control samples,
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metabolic hits, such as cell division and cell cycle, nitrogen metabolism, nucleosides and
nucleotides, photosynthesis, DNA metabolism, miscellaneous, and respiration were ac-
tively involved in Rc and Lc sites. The output of this study is synonymous with the finding
of Chukwuneme et al. [29] on the functional diversity of maize rhizosphere and bulk
soils collected from an intensively cultivated and former grassland in some provinces in
South Africa.

The soil microbiota metabolic categories showed no significant difference (p > 0.05)
within the sampling area (i.e., the replicates) (Figure 4). The diversity indices of the
samples showed that the functional attributes of various fields were within the same
range [22,29]. More so, the combined principal coordinate analysis (PCoA—100%) between
rhizosphere soils and the controls described community variation (Figure 4) coupled with
clear separations (R = 0.58) among samples. The differences were confirmed using analysis
of similarity (ANOSIM) with a p-value = 0.01. The clear separation between the sites
showed that each sample has distinct metabolic profile as shown by Dinsdale et al. [22] on
comparative metagenomics assessment of functional potentials associated with nine biomes.
Apart from the highlighted functions similar to both rhizosphere and bulk samples, the
rhizosphere samples (Ls and Rs) had functional attributes viz. DNA metabolism, fatty acids,
lipids and isoprenoids, photosynthesis, respiration, and stress response in common with
p ≥ 0.05. Understanding plant soil metabolic processes are important for easy conservation
and manipulation of agroecosystem [30].

The predominant functional categories depend on the soil microbiome activities. Our
result showed high functional categories in rhizosphere samples (Figures 1 and 2). This is
highly expected because soils with little or no plants harbor more microbes (Figure S1) [23,31].
Meanwhile, the high microbial colonization is a result of the bioavailability of carbon, which
serves as the major growth factor required by soil microorganisms [18]. South Africa is a
semi-arid area with inconsistent climate conditions leading to low soil fertility and plant
productivity [32]. A tremendously high unknown functional category gene coupled with
conspicuously high abundances noticed in stress response (oxidative stress, heat shock,
osmotic stress and cold stress) (Tables S2 and S3) of rhizosphere soils compared to bulk
samples showed that our sampling areas are hotspots for bio-technologically important
microorganisms.

We also speculated that the soil pedological properties also drive microbiome functional
diversity. To test this hypothesis, a canonical correspondence analysis (CCA) (Figure 5) was
used to expatiate on the possible correlation between the two parameters. Here, CCA showed
that the metagenome functions depend on the soil’s chemical properties. On axis 1, the vector
length of N-NO3 positively correlated with the metabolism of aromatic compounds, cofactors,
vitamins, prosthetic groups and pigments, virulence, disease and defense mechanism, motility
and chemotaxis, and sulfur metabolism. The vector length of sulfate (axis 2) correlated with
potassium metabolism, stress responses, dormancy and sporulation, secondary metabolism,
fatty acids, lipids and isoprenoid, and metabolism involved during iron acquisition. Simulta-
neously, other functions were positively affected by the pH of the soil. The inference deduced
from that correspondence analysis showed that both N-NO3 and sulfate were the best pre-
dictors of the sample’s metagenome functional categories by contributing 45.5% and 46.4%
variations, respectively (Table 3 and Figure 5). It has been confirmed that environmental fac-
tors, most particularly those related to chemical properties, drive soil microbiota diversity and
structure [33,34]. It is also reported that the indirect influence of pedological soil properties on
soil microbiome metabolic activities is unquantifiable [35].

5. Conclusions

To sum up, this study successfully compared the functional features of maize rhi-
zosphere and bulk soils rhizobiome and likewise identified soil edaphic factors as an
important predictor of soil functioning. The metagenome study showed that maize rhi-
zosphere and surrounding samples harbored similar microbiome functional categories.
The relative abundance of 13 functional hit categories was significantly different between
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sampling sites. The α-diversity of the functional hits showed no significant difference
within the samples, while β-diversity indicated that assessed functional categories differed
between the sampling area. We also showed that the pedological parameters such as
N-NO3 and sulfate highly influenced the relative abundance of metagenome functional
categories in the sampling sites. Besides, the presence of a high relative abundance of
functional categories with unknown functions in SEED subsystem level 2 coupled with the
enormous functional hits conferring response to soil stressors (oxidative stress, heat shock,
osmotic stress, and cold shock) noticed in the rhizosphere samples compared to their
controls could highlight the presence of novel genes in our sampling sites. Our study also
suggests a need to explore plant growth-promoting traits of microorganisms present in the
sites. The discovery of novel organisms (bioinoculants) capable of reducing the menace
posed by soil stressors could serve as an alternative to the use of chemical fertilizers and
improve the economic value of agricultural products in arid and semi-arid soils. Below are
summarized highlights:

• Differences in the functional attributes were observed in the metagenomics study of
maize rhizosphere and bulk soil.

• The presence of enormous functions conferring response to soil stressors in the rhizo-
sphere samples could highlight the presence of novel organisms with biotechnological
importance.

• Environmental variables viz. N-NO3, sulfate, and pH had great impact on soil rhizo-
biome functioning.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077
-0472/11/2/118/s1, Figure S1: Heatmap of microbial class in maize rhizosphere soils and their
surrounding soil samples. The z-score (scale bar) represents the relative abundance of each class,
Table S1: Mean percentage of major functional hits in rhizosphere soil of maize and its surrounding
soils, Table S2: Mean per-centage of major functional hits in rhizosphere soil of maize and its
surrounding soils, Table S3. Mean abundance of major pathways and enzymes involved in the
metagenome stress response.
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