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Abstract: The adulteration in Chinese chestnuts affects the quality, taste, and brand value. The
objective of this study was to explore the feasibility of the hyperspectral imaging (HSI) technique
to determine the geographical origin of Chinese chestnuts. An HSI system in spectral range of
400–1000 nm was applied to identify a total of 417 Chinese chestnuts from three different geographical
origins. Principal component analysis (PCA) was preliminarily used to investigate the differences of
average spectra of the samples from different geographical origins. A deep-learning-based model (1D-
CNN, one-dimensional convolutional neural network) was developed first, and then the model based
on full spectra and optimal wavelengths were established for various machine learning methods,
including partial least squares-discriminant analysis (PLS-DA) and particle swarm optimization-
support vector machine (PSO-SVM). The optimal results based on full spectra for 1D-CNN, PLS-
DA, and PSO-SVM models were 97.12%, 97.12%, and 95.68%, respectively. Competitive adaptive
reweighted sampling (CARS) and a successive projections algorithm (SPA) were individually utilized
for wavelengths selection, and the results of simplified models generally improved. The contrasting
results demonstrated that the prediction accuracies of SPA-PLS-DA and 1D-CNN both reached
97.12%, but 1D-CNN presented a higher Kappa coefficient value than SPA-PLS-DA. Meanwhile,
the sensitivities and specificities of SPA-PLS-DA and 1D-CNN models were both above 90% for
the samples from each geographical origin. These results indicated that both SPA-PLS-DA and
1D-CNN models combined with HSI have great potential for the geographical origin identification of
Chinese chestnuts.

Keywords: hyperspectral imaging; Chinese chestnuts; origin identification; classification models;
1D-CNN

1. Introduction

The chestnut (Castanea mollissima Blume.), originating from China, has a planting
history of more than 3000 years [1]. Chestnut fruit is rich in nutrients (such as protein, fatty
acids, and carbohydrates), vitamins, and minerals, and is widely planted in Asia, Europe,
and Africa. Moreover, chestnut fruit has a certain medicinal value. It can be developed
as gluten-free food to treat coeliac disease caused by intolerance to peptides derived from
the digestion of the cereal protein gluten [2,3]. The high nutrient and medical value have
resulted in an important chestnut market.

According to the statistics of the Food and Agriculture Organization of the United
Nations (FAO), the planting area and output of Chinese chestnut in China have ranked
first since 2007, of which the output accounts for more than 80% of the world. In 2019, the
Chinese chestnut planting area was 330,000 hectares, and the output reached 1.84 million
tons [4]. Chinese chestnut has been traditionally divided into five groups (Yangtze River
Basin, Northern China, Northwestern China, Southeastern China, and Southwestern
China) [5]. Due to the differences in longitude, latitude, and climate, there are great
differences in the quality, taste, and brand value of the Chinese chestnuts from different
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planting areas. Inevitably, this difference may lead to fraud, such as mislabeling the origin
to cover up the original origin. Therefore, it is significant for both producers and consumers
to effectively identify the geographical origin of Chinese chestnuts.

In general, several techniques have been applied to determine the geographical origin of
chestnuts, such as high-performance liquid chromatography (HPLC) [6], gas chromatography-
mass spectrometer (GC-MS) [7,8], nuclear magnetic resonance (NMR) [9,10], X-ray diffrac-
tion [10,11], etc. However, these techniques are time-consuming, expensive, or destructive.
In addition, these techniques often require professional laboratories, which means that they
are difficult to be apply to large-scale online detection.

In recent years, the computer vision technique has been widely concerned as a rapid
and non-destructive one [12]. However, this technique is only effective in identifying
samples with apparent appearance characteristics, and cannot be used to distinguish
the internal differences of samples. As an internal detection technique, near-infrared
spectroscopy (NIRS) has been widely used to identify the geographical and botanical origin
of agricultural products [13], particularly nuts, e.g., hazelnut [14–16], macadamia nut [17],
walnut [18,19], and pine nut [20]. However, NIRS cannot obtain the information in the
whole sample space due to single-point detection [21].

The hyperspectral imaging (HSI) is a technique which organically integrates spatial
image information and spectral information [22]. In contrast to NIRS, HSI technique pro-
vides a piece of three-dimensional hypercube information and obtains a wide range of
chemical information from the sample. Therefore, HSI has a more comprehensive interpre-
tation for the whole sample, which is conducive in discriminating different geographical
origins of agricultural products. In this context, HSI has been widely adopted in the field
of agricultural products, including fruits [23], cereals [24–26], meats [27], vegetables [28],
and seafoods [29]. Additionally, the HSI technique was also often used to screen discol-
ored [30,31], immature [32,33], moldy [34], and insect damage samples [35]. In terms of
chestnut, HSI has been applied to distinguish moldy samples [36]. To our knowledge, little
research related to determining the geographical origin of chestnuts using HSI has been
documented so far.

In this study, HSI was combined with partial least squares-discriminant analysis
(PLS-DA), particle swarm optimization-support vector machine (PSO-SVM), and the deep
learning modeling methods based on convolutional neural network (CNN) to distinguish
the geographical origin of Chinese chestnuts. Furthermore, the accuracies and efficiencies of
different modeling algorithms were compared. To improve the robustness of the modeling
results, different preprocessings and wavelength selection methods were also attempted
and compared. Finally, the classification results of the optimal model were chosen to
discriminate the geographical origin of Chinese chestnuts.

2. Materials and Methods
2.1. Sample Preparation

The geographical origins of Chinese chestnut samples in this experiment were Qianxi
(Hebei province, China), Dandong (Liaoning province, China), and Yuxi (Yunnan province,
China). To guarantee the authenticity of samples, chestnuts were purchased directly from
farmers in the three different geographical areas in 2020. In detail, Qianxi chestnuts were
collected from Han Erzhuang village, Qianxi county, Tangshan city (40◦21′ N, 118◦13′ E);
Dandong chestnuts were collected from Taoli village, Dongtang county, Dandong city
(40◦28′ N, 124◦18′ E); and Yuxi chestnuts were collected from Pubei village, Yimen county,
Yuxi city (24◦33′ N, 102◦12′ E). After collection, these chestnut samples were stored at
0–4 ◦C. Before the spectra collection, chestnuts need to be kept at room temperature of
about 24 ◦C for 2 h to achieve temperature balance [37]. The total number of samples
involved in the experiment was 417, including 144 Qianxi samples, 129 Dandong samples,
and 144 Yuxi samples. Then, the calibration set and prediction set were divided based on a
ratio of 2:1, with 278 samples (including 96 Qianxi chestnuts, 86 Dandong chestnuts, and
96 Yuxi chestnuts) used for establishing classification models, and the remaining 139 sam-
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ples (including 48 Qianxi chestnuts, 43 Dandong chestnuts, and 48 Yuxi chestnuts) were
used for external validation of the developed models. In order to select the representative
learning samples, the Kennard–Stone (K–S) algorithm was assayed to divide the sample
sets, which calculated the difference between samples according to the Euclidean distance
between samples and iterated out the most representative samples as the calibration set.
The K–S algorithm was conducted in Matlab 2017b software (The MathWorks Inc., Natick,
MA, USA).

2.2. Hyperspectral Image Acquisition and Correction

The hyperspectral images were obtained by the “GaiaSorter” hyper-spectrometer
produced by Zolix Instruments Co., Ltd. (Beijing, China), working in range of 383.4 nm
to 990.4 nm. The push-broom line-scan hyper-spectrometer was equipped with CCD
(Imperx Inc., Boca Raton, FL, USA), V10 imaging spectrometer (Spectral Imaging Ltd., Qulu,
Finland), 45 W halogen lamp (Osram GmbH, Munich, Germany), electrically controlled
displacement table (100–200 mm/s), and other accessories. In addition, the pixel resolution
of this spectrometer is 0.63 nm, and the number of pixels in full image is 1392 × 1040.
Finally, hyperspectral images collected by SpecView (SpecView Ltd., Uckfield, UK) software
contain 176 channels with a nominal resolution (the best resolution) of 3.2 nm.

Before the hyperspectral images acquisition, the original image (R) needs to be cali-
brated in black and white to reduce the dark current of the CCD camera and the influence
of environmental factors. White calibration images (W) were obtained by taking a spectral
image of white Teflon (Gilden Photonics Ltd., Glasgow, UK) with a reflectivity close to
100%, and black calibration images (B) were obtained by taking a hyperspectral image with
all light sources turned off and an opaque black lens cap completely closed. After two
calibration graphs were collected, the correction image (C) was calculated according to the
following formula:

C =
R − B
W − B

× 100% (1)

2.3. Region of Interest (ROI) Identification

The original hyperspectral image contains information of both chestnuts and back-
ground. ROI was used to remove the background to extract spectral data of only the pure
chestnut samples. ENVI Vision 5.3 software (Research Systems Inc., Boulder, CO, USA)
was used to extract the data in our study, and the detailed steps are shown in Figure 1.
The original data of hyperspectral images were three-dimensional, with 700 pixels in the X
direction, 1000 pixels in the Y direction and 176 bands in the Z direction (383.4–990.4 nm).
A total of eight chestnut samples were included in one hyperspectral image. Firstly, the
image was resized into eight individual chestnut subsets. Secondly, images with the highest
and lowest reflectance at two characteristic bands (band 141 and band 21) were chosen.
Then, a grayscale image was prepared by subtracting the image at band 21 from that at
band 141. Next, a binary image was generated by setting a threshold value of 0.1 on the
grayscale image. The threshold value was preliminarily determined by gray histogram,
and then the gray value of chestnut body, edge and background was checked by quick
data to find a more accurate threshold in ENVI software. After the above steps, the pixels
with values greater than 0.1 were covered in red. After that, the red region was further
operated by expansion and corrosion (open operation) to remove burrs and background
noise. Finally, the resulting region was used as an ROI, to be further applied to build a
mask.

The experimental object of this paper was the chestnut, so the extracted ROI was the
cube region composed of the pixels where the chestnut was located, and then the average
spectrum of all pixels in the ROI region was obtained. Meanwhile, all average spectra were
stored as a data matrix (X). In this paper, there were 417 samples and 176 spectral variables,
so the stored data was in the form of a 417 × 176 matrix, where the row vector displayed
the sample numbers and the column vector indicated spectral variables. In addition, the
labels of origin (Y) were distinguished by 0, 1, and 2, and the data form was 417 × 1.
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Figure 1. The extraction process of ROI.

2.4. Chemometric Methods
2.4.1. Principal Component Analysis

Unsupervised principal component analysis (PCA) is a multivariate statistical method
for reducing the dimensionality of multiple variables, avoiding the problems of multi-
collinearity or handling potential co-linearity. The main ideal of PCA is to decompose raw
spectra into brand new orthogonal variables by maximizing the sample variance. These
new orthogonal variables are termed principal components (PCs). Typically, the first few
PCs that account for most relevant information will be singled out. Then, the first few PCs
were characterized by the wavelength variation and the corresponding factor coefficient.

For the average spectra, PCA was first utilized to explore the possible trends or clusters
between training samples in a score scatter plot. For the hyperspectral image, the principal
component score of each pixel was pseudo-colored to visualize the differences between
samples [38,39]. In our study, data analyses by PCA were performed using Matlab and PC
transformation was calculated by ENVI.

2.4.2. Data Preprocessings

Spectral data preprocessing before modeling is usually used to remove redundant
data and noise, and further improve the robustness and accuracy. In this paper, five
common preprocessing methods were utilized to preprocess the raw spectral data, such
as standard normal variate (SNV), SNV-detrend, first and second derivatives, and also
normalization. SNV was applied to correct multiplicative noise and variations in additive
baseline drift caused by uneven sample distribution or different particle size [40,41]. Of
note, detrending method was often conducted to further correct the scattering effect
of spectra following SNV [42]. Normalization was performed to facilitate comparison
and weighting between different spectral variables. Derivatives (1der and 2der) were
implemented to eliminate baseline offsets based on a 5-point Savitzky–Golay algorithm
within quadratic function convolution [43]. All the above data preprocessing algorithms
were implemented in Unscramble X10.4 (CAMO Software, Oslo, Norway).
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2.4.3. Feature Selection

Two different feature selection strategies of competitive adaptive reweighted sam-
pling (CARS) and successful projects algorithm (SPA) were considered in our work. SPA
is a forward selection algorithm designed for spectral feature selection [44]. It can ex-
tract the band with the least redundancy from the raw spectra to mitigate the effects of
spectral collinearity.

Competitive adaptive reweighted sampling (CARS) is a feature selection algorithm
based on the absolute regression coefficients (RC) of partial least squares regression
(PLSR) [45]. The principle of CARS is identifying wavelengths with large RC by adaptive
reweighted sampling (ARS) method and exponential attenuation function (EDF), and
then select a series of variable subsets with minimum root mean square error of cross-
validation (RMSECV).

2.4.4. Modeling Methods

Partial least squares (PLS) algorithm was initially used in multivariate statistical
regression problems. Baker [46] pointed out for the first time that PLS can also be used
for classification purposes, in which case it is called partial least squares discriminant
analysis (PLS-DA). Different from linear discriminant analysis (LDA), PLS-DA can process
irreversible matrices. PLS-DA can select potential spectral variables so as to find the optimal
balance between under-fitting and over-fitting. In this paper, the variables corresponding
to the minimum prediction error obtained by the 10-fold cross-validation method were
regarded as latent variables (LVs) and the searching range of the number of LVs was set to
0 to 19.

The real label of PLS-DA is a one-hot matrix composed of 0 and 1, but the predicted
label is not a perfect binary matrix and its regression value is between 0 and 1. There-
fore, classification is required by setting reasonable thresholds or based on probability
density functions [47]. The PLS-DA algorithm was developed using Matlab coupled with
Classification toolbox 5.4 (The MathWorks Inc., Natick, MA, USA).

Deep learning algorithms are widely used in feature extraction and classification
problems. Convolutional neural network (CNN) is the most commonly used deep learning
algorithm. Patel et al. [48] used an autoencoder as preprocessing and then combined with
CNN. Sellami et al. [49] fused the spectral and spatial features obtained in parallel into
the multi-view depth autoencoder, and then proposed a semi-supervised GCN to classify
hyperspectral image. The classification of hyperspectral image in remote sensing with a
low number of labeled training samples, i.e., unsupervised autoencoder or semi-supervised
GCN, was generally used for feature extraction and image classification. Since all dates are
marked, this paper intends to construct a CNN for hyperspectral.

A 1D-CNN architecture was designed for this study. The structure of the 1D-CNN
and the flowchart of operation as shown in Figure 2. In detail, 1D-CNN includes 13 layers,
including input layer-convolution layer C1 and C2, Pooling layer S3-convolution layer C4
and C5, Pooling layer S6-convolution layer C7 and C8, Pooling layer S9-Fully connected
layer F10 and F11, and output. Compared with traditional CNN, a flattened layer was
developed in fully connected layer F10 to avoid the multi-dimensional output feature that
cannot be directly connected to the full connection layer F11. Table 1 shows the different
classification accuracies of 1D-CNN with decreasing layers. It is clear that the 13 layers
architecture performed best.
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Figure 2. Flow chart of 1D-CNN.

Table 1. The classification accuracies of 1D-CNN with different layers.

Deleted Layer
Accuracy (%)

Calibration Set Cross-Validation Set Prediction Set

None 97.84 91.38 92.81

C7, C8, S9 94.96 92.12 89.92

C4, C5, S6, C7, C8, S9 64.03 60.48 56.83

Since the network cannot recognize labels of type 0, 1, and 2, category labels need to
be converted into one-hot encoding to store the n-bit state in the form of 0,1 in the n-bit
register. Based on the initial size of the input dimension, we used a smaller convolution
kernel and a deeper network [50]. Different from traditional CNN, the input of 1D-CNN
was one-dimensional, and, accordingly, its convolution layer and pooling layer were also
one-dimensional. A one-dimensional convolution layer (Conv1D) with a size of 3 × 1 and
a stride size of 1 was used to extract features. A one-dimensional pooling layer with a 3 × 1
kernel size was added after convolution to retain the main features as much as possible.
The pooling operation adopted the maximum pooling method. Valid padding was used for
convolution and pooling operations. After valid padding, the output size was calculated
as below:

output size =
input size − kernel size + 1

stride
(2)

The Softmax function was used as the activation function of the full connection layer
to judge the sample label by comparing the probability. The Softmax function was used
rather than the Euclidean Radial Basis Function adopted in LeNet-5, because Softmax can
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be well applied to multi-classification problems and has better probability distribution
characteristics. A Tanh activation function was chosen instead of Relu because Relu
considers eigenvalues less than zero as zero, which will lose some original information
of samples and increase the sparsity of the network [51]. A categorical-cross entropy loss
function integrated with an adaptive moment estimation (Adam) optimizer was employed
to improve training [52]. The parameters alpha, beta_1, beta_2, and epsilon of Adam
optimizer were set to 0.001, 0.9, 0.999, and 1 × 10−8 by default, respectively. Table 2 shows
more details.

Table 2. Detailed parameters of each layer.

Layer Type Feature Map Kernel Size Stride Padding Size Activation
Function

In Input 1 . . . . . . . . . 176 × 1 × 1 . . .

Conv1 Convolution 16 3 × 1 1 0 174 × 1 × 16 . . .

Conv2 Convolution 16 3 × 1 1 0 172 × 1 × 16 tanh

S3 Max pooling 16 3 × 1 1 0 57 × 1 × 16 . . .

Conv 4 Convolution 64 3 × 1 1 0 55 × 1 × 64 . . .

Conv 5 Convolution 64 3 × 1 1 0 53 × 1 × 64 tanh

S6 Max pooling 64 3 × 1 1 0 17 × 1 × 64 . . .

Conv 7 Convolution 64 3 × 1 1 0 15 × 1 × 64 . . .

Conv 8 Convolution 64 3 × 1 1 0 13 × 1 × 64 tanh

S9 Max pooling 64 3 × 1 1 0 4 × 1 × 64 . . .

FC10 Flatten . . . . . . . . . . . . 256 × 1 . . .

FC11 Fully
connected . . . . . . . . . . . . 3 × 1 softmax

Out Output . . . . . . . . . . . . 3 × 1 . . .

The performance of classification with different batch sizes are listed in Table 3.
Meanwhile, due to the small amount of data in this paper, it was reasonable to set the batch
size at 1. Finally, the batch size was set as 1 and epochs was set as 100.

Table 3. The classification accuracies of 1D-CNN with different batch sizes.

Batch Size
Accuracy (%)

Calibration Set Cross-Validation Set Prediction Set

1 97.84 91.38 92.81

8 95.68 91.04 89.93

16 99.64 86.63 88.49

32 92.81 82.76 82.73

The model was based on the tensorflow-cpu version of keras function, within the
Python 3.7 integrated Numpy, Pandas, Pyplot, Sckit-learn.

Supervised Support vector machine (SVM) is a classical learning algorithm in machine
learning, which can be well applied to binary or nonlinear classification problems [53]. In
nonlinear classification, SVM finds the maximum hyperplane by mapping the samples to a
higher dimensional space. The kernel function is the key to higher dimensional mapping.
The Radial basis function (RBF) was widely adopted as a kernel function in the spectral
analysis [54]. In addition, the RBF has two regularization parameters, i.e., c (the penalty
coefficient) and g (the kernel parameter). Further, the selection of appropriate parameter
values is essential to the model performance. In former research, the particle swarm
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optimization (PSO) procedure has been well used in SVM parameter selection [55,56].
In this study, we chose the RBF as kernel function and the PSO to search the optional
parameter. The searching range of c and g were set to 2−8 to 28. Both PSO and SVM were
implemented using the SVM toolbox written in MATLAB software.

2.4.5. Models Assessment

The prediction performance of the classification model was evaluated based on the
information of the confusion matrix, which contains parameters such as true positive (TP,
positive chestnuts identified as positive), true negative (TN, negative chestnuts identified
as negative), false negative (FN, misclassified positive chestnuts), and false positive (FP,
misclassified negative chestnuts) [57].

Generally, models were evaluated by accuracy, which represents the ratio of the
number of correctly classified samples in each dataset to the total number of samples. The
corresponding calculation formula is as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Sensitivity and specificity were used to evaluate the models for further comparison of
classification results [58]. Sensitivity and specificity are calculated as follows:

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

The Kappa coefficient is generally computed to analyze the agreement in test set [59].
There are four categories about Kappa: simple Kappa, linear weighted Kappa, quadratic
weighted Kappa, and weighted Kappa; among them, simple Kappa can be used to measure
the classification accuracy as follows:

Pe =
∑i SRi × SCi

(∑ AE)2 (6)

Kappa =
Po − Pe

1 − Pe
(7)

where Po is accuracy, SRi is the sum of the elements in row i, SCi is the sum of the elements
in column i, and AE is the sum of all elements in the confusion matrix. All model evaluation
coefficients were carried out in SPSS v21.0 (Statistical Product and Service Solutions, IBM
Corporation, Armonk, NY, USA).

3. Results and Discussion
3.1. Overview of the Spectra

Figure 3 shows the mean spectra with their standard deviations (SDs) from three
geographical origins in spectral range of 380–1000 nm. The reflectance in the range of
400–1000 nm is similar with the spectra displayed in Li et al. [60]. In the visible band, the
reflectance was affected by red-brown color and chemical composition for chestnuts. In
the near-infrared band, the reflectance increased rapidly, which means low absorption
and more information. Due to the similar chemical composition, structure, and color
presentation, the overall absorption characteristics of chestnuts from different geographical
origins were similar. As shown in Figure 3, the spectral regions of the spectra overlapped
severely. Thus, it is still difficult to distinguish origins by directly observing the spectra,
and further stoichiometric analysis is required.
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Figure 3. Average reflectance spectra with standard deviation (SD) of three different origins of
chestnuts.

3.2. PCA Score Plot

Principal component analysis (PCA) is known as an effective unsupervised clustering
analysis method. In PCA processing, the maximum variance among samples is set as
the objective function, and then the feature vectors representing all the samples will be
obtained. After that, the samples will be projected to the new feature vector for the
preliminary judgment of origin identification [61]. Figure 4a visualizes the first three PC
scores of 417 chestnut clusters into three-dimensional scatter plots. Specifically, the first and
second principal components (PC1 and PC2) explain a total of 96% variance of the samples.
Although the third principal component (PC3) only explained 3.27%, the addition of PC3
can intuitively see the spatial distribution of samples in three different groups. Samples
from three different origins were drawn by three ellipses in different colors to display the
distribution more intuitively. As shown in Figure 4a, three ellipses cover different regions,
but a large part overlap. More specifically, samples from Qianxi and Yuxi overlapped
seriously, and the scattered points of Dandong samples were relatively concentrated, while
the samples from Qianxi and Yuxi were relatively scattered. The loading lines of the
first two PCs are shown in Figure 4b. The curves in this figure show the contribution of
176 spectral feature points to PC1 and PC2. In the PC2 loading line, 930 nm contributes
significantly to PC2 which corresponds to the third overtone of C-H stretching vibration
in the aliphatic methylene group [62]. Moreover, the wavelength of 970 nm corresponds
to the second overtone of O-H stretching vibration of water [63], but it was influenced
by the C-H bonds of lipids at 930 nm [64]. The PC2 curve shows a valley around 720 nm,
which corresponds to the fifth overtone of C-H stretching vibration. In conclusion, original
spectra have a certain potential in the identification of Chinese chestnut origin. However,
further data processing is still needed to improve the accuracy of classification due to the
high overlap of spectral regions.
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Figure 4. Spectral PCA for Chinese chestnuts with different varieties. (a) The first three PC score plots, and (b) the first two
PC loading lines. PCA, principal component analysis, and PC, principal component.

Considering that Figures 3 and 4 were both based on the average spectral mapping of
Chinese chestnuts, the spectral information at hyperspectral pixels was not fully utilized.
On the contrary, PC score images depict the pixel-wise PC scores [65]. As PC1 and PC2
explain a total of 96% variance, only the first two PC score images were plotted. It can be
seen from the color bar in Figure 5 that different PC scores correspond to different colors.
All background information was masked in black after PC transformation. It is evident in
Figure 5 that the surrounding edge of each chestnut appears blue, and the middle region
appears red or orange. This color difference in individual chestnut space can be well
explained by the changes of its own shape. However, the PC1 plotting line shows no
significant differences among chestnuts from different geographical origins, as with PC2.
Thus, further studies are still required to determine the origin accurately.

Figure 5. The PC1 and PC2 score images. PC1, first principal component, and PC2, second principal component.

3.3. Analysis of Classification Model Based on Full Spectra

For a more intuitive comparison of different models, the accuracies of PLS-DA, 1D-
CNN, and PSO-SVM models with their optimal parameters are listed in Table 4. These
models were all built based on full wavelengths (383.4–990.4 nm) with or without prepro-
cessings. The second column in Table 4 shows the preprocessing methods used in modeling,
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including none, SNV, SNV-detrend, normalization, and first- and second-derivative (SG-
1der and SG-2der). The last column in Table 4 shows the optimal parameters of the model.
Figure 6 visualizes the process of finding LVs in the PLS-DA model based on raw spectra.
After that, the value of LVs was finalized as 16, because the error rate corresponding to the
16 LVs has been around 0.05, and the improvement of accuracy was not obvious since then.
Figure 7 visualizes the accuracy and loss curves of 1D-CNN model based on raw spectra.
With the increase of epochs, the accuracy of training set and validation set was increasing,
while both losses were decreasing. The curve trend of training set and cross-validation set
was the same, and with no overfitting.

Table 4. Performance of the classification models based on full wavelengths with or without preprocessings.

Modeling Methods Preprocessings
Accuracy (%)

Parameters
Calibration Set Cross-Validation Set Prediction Set

PLS-DA

None 97.84 94.96 95.68 LVs = 16
SNV 99.28 98.20 97.12 LVs = 18

SNV-detrend 97.84 96.04 94.96 LVs = 14
Normalization 97.48 95.32 94.96 LVs = 15

SG-1der 98.56 95.32 94.96 LVs = 16
SG-2der 100 84.89 84.17 LVs = 19

1D-CNN

None 97.84 91.38 92.81 /
SNV 97.12 83.52 95.68 /

SNV-detrend 99.64 93.13 97.12 /
Normalization 98.56 82.42 91.37 /

SG-1der 96.40 92.49 88.49 /
SG-2der 100 75.61 93.53 /

PSO-SVM

None 98.20 84.17 89.93 /
SNV 96.04 91.73 95.68 /

SNV-detrend 97.84 92.81 95.68 /
Normalization 97.12 84.17 92.09 /

SG-1der 80.22 77.70 79.86 /
SG-2der 73.38 66.91 71.22 /

Figure 6. The optimal number of LVs determination in the PLS-DA model. LVs: latent variables.
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Figure 7. The accuracy and loss curves of 1D-CNN model without preprocessing.

In the classification models, the classification accuracies of models with preprocessings
were generally better than those without preprocessings. The optimal accuracy (97.12%) of
PLS-DA model was based on the SNV-preprocessed spectra. The prediction accuracy of 1D-
CNN after preprocessing of SNV-detrend also achieved 97.12%, which was the best among
1D-CNN models. Using SNV-detrend and SNV preprocessing, PSO-SVM classification
models both gave a predictive accuracy of 95.68%, which was slightly lower than those of
the two above-mentioned models. Although the accuracy of prediction sets pre-processed
by SNV and SNV-detrend were the same, the accuracies in calibration set and prediction
set for SNV-detrend spectra were superior to the former. Finally, the optimal preprocessing
methods of the three models were selected for further analysis.

Figure 8 visualizes the result of the PLS-DA, 1D-CNN, PSO-SVM models with optimal
spectral preprocessings using confusion matrices. The colors in the confusion matrix were
indicated by a heat map with values from 0 to 47. The result indicated that the number of
misclassified samples in Dandong group was fewer than in other two groups. In detail,
both PLS-DA and CNN models were correct in the prediction of Dandong chestnuts, PSO-
SVM misclassified two samples into Yuxi group. For the optimal PLS-DA model, Qianxi
chestnuts seemed to be more easily misclassified as Yuxi, three Qianxi chestnuts were
classified as Yuxi, and one Yuxi chestnut was misclassified as Qianxi. The optimal 1D-CNN
models performed with four misclassifications. In terms of the PSO-SVM models, one
Qianxi chestnut and two Dandong chestnuts were misclassified into Yuxi group, and three
Yuxi chestnuts were misclassified as Qianxi.

3.4. Characteristic Wavelengths Selection

The use of full spectra commonly introduced noise leading to over-fitting, nonlin-
earities, and loss of efficiency or accuracy. In this study, SPA and CARS algorithms were
individually employed to analyze the full spectra (383.4–990.4 nm, 176 bands). Only SNV
and SNV-detrend were taken into consideration because these two preprocessings showed
good performance as shown in Table 4. The SPA results using SNV preprocessed spectra
are shown in Figure 9, and the SPA results after SNV-detrend preprocessing are shown
in Figure 10. Before features selection by SPA, the minimum wavelength and maximum
wavelength numbers were set as 5 and 30, respectively, according to experience [66].

The RMSE of the ten-fold cross-validation is shown in Figures 9a and 10a. Both
figures show a trend of first decreasing and then increasing RMSE value. This trend
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corresponds to the removal of redundant variables in the early step and the removal of
related variables in the later step. In terms of SNV preprocessing, the minimum RMSE
was 0.43541, and the number of characteristic wavelengths corresponding to the minimum
RMSE was 16. Figure 9b shows the distribution of 16 characteristic wavelength points at
full wavelengths; more detailed information of wavelengths are listed in Table 5. For SNV-
detrend preprocessing, the RMSE decreased to 0.56049 when the number of characteristic
wavelengths reached 15. As a result, Figure 10b shows the distribution of 15 characteristic
wavelength points at full wavelengths; more detailed information of wavelengths are listed
in Table 5.

Figure 8. Visualized confusion matrix of three different modeling methods based on their optimal
preprocessings, where Q, D, and Y represent “Qianxi”, “Dandong”, and “Yuxi”, respectively.

Figure 9. Selection of characteristic wavelengths using SPA after SNV preprocessing: (a) number of effective variables and
(b) visualized characteristic wavelengths in the raw spectra.
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Figure 10. Selection of characteristic wavelengths using SPA after SNV-detrend preprocessing: (a) number of effective
variables and (b) visualized characteristic wavelengths in the raw spectra.

Table 5. The characteristic wavelengths selected by SPA.

Preprocessings Number Selected Wavelengths (nm)

SNV 16 402.5, 431.5, 483.7, 540, 570.2, 593.9, 607.5, 628, 669.3,
704.1, 835.7, 875.7, 908.6, 934.5, 975.4, 990.4

SNV-detrend 15 392.9, 431.5, 438, 460.8, 540, 563.5, 607.5, 634.8, 665.8,
679.7, 693.6, 875.7, 941.9, 949.3, 990.4

In CARS algorithm, Monte Carlo resampling was adopted to select 80% of the sub-
samples, and 50 Monte Carlo sampling runs were conducted. For the RMSECV, a 10-fold
cross-validation was performed. All preceding parameters were chosen empirically [67].

It can be seen from Figure 11a,b that the number of features decreased exponentially
with the increasing number of monte Carlo sampling runs. This exhibition was in line with
the principle of ‘rough selection first’ and ‘careful selection later’. With the increasing of
sampling times, RMSECV descended first and subsequently ascended; this was because
CARS eliminated variables with high correlation at the end of steps. The characteristic
wavelengths were determined by the lowest RMSECV during sampling runs [68]. As illus-
trated in Figure 11, the smallest RMSECV corresponds to the blue vertical line. The number
of sampling runs based on the smallest RMSECV took place on 28 and 26 respectively. The
detailed wavelengths selected by CARS are shown in Table 6.

Table 6. The characteristic wavelengths selected by CARS.

Preprocessings Number Selected Wavelengths (nm)

SNV 15 460.8, 473.8, 523.4, 526.7, 530, 533.3, 536.7, 546.7,
570.2, 573.6, 577, 583.7, 669.3, 686.7, 697.1

SNV-detrend 18
421.8, 460.8, 467.3, 473.8, 523.4, 526.7, 530, 533.3,
570.2, 573.6, 577, 669.3, 686.7, 756.9, 908.6, 912.3,

945.6, 971.7
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Figure 11. CARS Running results. (a) CARS wavelength selection after SNV preprocessing and (b) CARS wavelength
selection after SNV-detrend preprocessing.

3.5. Classification Models on Characteristic Wavelengths

After the feature selection steps, the selected wavelengths were imported into tradi-
tional machine learning algorithms. As shown in Yang et al. [50], the 1D-CNN model based
on full spectra was also listed for easy comparison. More detailed classification results are
provided in Table 7.

Table 7. Comparison of performance obtained with machine learning methods based on feature selection.

Modeling
Methods

Feature
Selection Number LVs

Accuracy (%)
Computing

Time (s)Calibration Cross-
Validation Prediction

PLS-DA
FULL 176 18 99.28 98.2 97.12 5.19
SPA 16 13 98.2 97.84 97.12 3.51

CARS 15 10 95.32 93.88 93.53 3.39

PSO-SVM
FULL 176 \ 97.84 92.81 95.68 771.01
SPA 15 \ 96.76 91.37 95.68 349.42

CARS 18 \ 96.76 94.24 96.4 238.21

1D-CNN FULL 176 \ 99.64 93.13 97.12 35.32

Overall, the computation time of the two machine learning models were both largely
reduced after feature selection. The PLS-DA model decreased from 5.19s of the full spectra
to 3.39s based on CARS selection. Although the modeling efficiency in this case was the
highest, the results in calibration set and prediction set were the worst among the six
models, with accuracy of 95.32% in the calibration set and 93.53% for the prediction set.
The selected wavelength greatly reduced the amount of data, which reduced from 176
wavelengths in the full spectra to less than 20, and improved the speed of modeling. In
particular, the computation time of PSO-SVM model decreased from 771.01 s in the full
spectra to 238.21 s based on CARS-selected wavelengths. In addition, the performance in
cross-validation set and prediction set of models developed by CARS-selected wavelengths
slightly improved compared with the full spectra, which was the only one of the six models
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that improved the results. Notably, the PLS-DA and 1D-CNN models revealed the same
predictive accuracy of 97.12%.

The evaluation index of the models in Table 7 was the accuracy. However, when the
number of various samples was uneven, the accuracy tended to be biased towards the
large category (a large number of samples) and abandon the small category (a few numbers
of samples). Given the uneven number of predicting samples of different geographical
origins, the Kappa coefficient, which can punish the ‘bias’ of the model, was introduced
for classification evaluation. To allow further comparison of the specifics of the models,
sensitivity and specificity were also presented in Table 8.

Table 8. Confusion matrix of the three sets predicted by SPA-PLS-DA and 1D-CNN models.

Actual Class

Predicted Class

SPA-PLS-DA 1D-CNN

Qianxi Dandong Yuxi Qianxi Dandong Yuxi

Qianxi 48 0 0 46 1 1
Dandong 0 42 1 0 43 0

Yuxi 2 1 45 1 1 46
Sen a (%) 100 97.67 93.75 95.83 100 95.83
Spe b (%) 97.80 98.96 98.90 98.90 97.92 98.90

Kappa 0.95677 0.95681
Acc c (%) 97.12 97.12

a The sensitivity of models; b the specificity of models; and c the prediction accuracy of models.

As illustrated in Table 8, the Kappa coefficient values of all the models are greater than
0.9; these results can be considered well in classification tasks according to Peng et al. [69].
The Kappa coefficient value of the 1D-CNN model was slightly higher than that of the
PLS-DA model. The accuracy of the 1D-CNN model was 97.12% with a sensitivity of 100%
for Dandong chestnuts. Meanwhile, the selected PLS-DA model based on SPA showed a
perfect classification performance for Qianxi chestnuts, which reached 100%. Taken as a
whole, whether it was PLS-DA or CNN model, the chestnut from Qianxi, Dandong, and
Yuxi could be well distinguished. These results are encouraging in that they suggest that
both SPA-PLS-DA and 1D-CNN models combined with HSI have a great potential for the
geographical origin discrimination of Chinese chestnuts.

4. Conclusions

Our study demonstrated that the combination of HSI with chemometrics could be
a feasible and effective method for the geographical origin discrimination of Chinese
chestnuts. To our knowledge, it is the first study to demonstrate that HSI could well
discriminate the geographical origin of Chinese chestnuts. Preprocessing and feature
selection steps were carried out to obtain the optimal models of traditional machine
learning (PLS-DA, PSO-SVM). Meanwhile, a deep learning method (1D-CNN) based upon
preprocessing was given and compared with the optimal model in traditional machine
learning.

Our results revealed that the prediction accuracies of developed 1D-CNN and PLS-
DA models both achieved 97.12%. Although the Kappa coefficient value of PLS-DA was
slightly lower than that of 1D-CNN, the Kappa coefficient values of both models were
above 0.95. These results indicated that both the PLS-DA and 1D-CNN models could be
well used in origin identification. Considering the HSI also includes image features, future
studies will explore if it was possible to further improve the accuracy by adding image
features to 2D-CNN. Meanwhile, future studies will include more geographical origins of
Chinese chestnuts to improve the generalization ability of the models.
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