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Abstract: Florpyrauxifen-benzyl (FPB) is a new class of auxinic herbicide developed for selective
weed control in rice. This study aimed to evaluate the effect of environmental conditions, P450
inhibitors, rice cultivar response, and gene expression on FPB selectivity in rice. Field experiments
established in a randomized block design showed that rice plant injury due to two FPB rates (30 and
60 g ai ha−1) was affected by planting time and rice stage at herbicide application. The injury
was higher at the earliest planting season and more in younger plants (V2) than larger (V6 and
R0). However, no yield reduction was detected. Under greenhouse conditions, two dose-response
experiments in a randomized block design showed that spraying malathion (1 kg ha−1) before FPB
application did not reduce herbicide selectivity. The addition of two P450 inhibitors (dietholate and
piperonyl butoxide, 10 g a.i. seed-kg−1 and 4.2 kg ai ha−1, respectively) decreased the doses to cause
50% of plant injury (ED50) and growth reduction (GR50). However, it seems not to compromise crop
selectivity. BRS Pampeira cultivar showed lower ED50 and GR50 than IRGA 424 RI. A growth chamber
experiment was conducted in a completely randomized design to evaluate the gene expression of
rice plants sprayed with FPB (30 and 60 g ai ha−1). Results showed downregulation of OsWAKL21.2,
an esterase probably related to bio-activation of FPB-ester. However, no effect was detected on
CYP71A21 monooxygenase and OsGSTL transferase, enzymes probably related to FPB degradation.
Further research should focus on understanding FBP bio-activation as the selective mechanism.

Keywords: herbicide tolerance; metabolism; Rinskor; Oryza sativa

1. Introduction

The main biotic factor that decreases the yield and quality of rice are weeds (unwanted
plants in the field), exhibiting the greatest potential for yield losses globally (34%), which is
greater compared to insects (18%) and phytopathogens (15%) [1]. Currently, rice yield loss
due to weeds is estimated at around 10% [1]; however, up to 100% losses have been reported
in the absence of control [2]. The most important weeds in rice areas include the weedy
rice complex (Oryza sativa L.), the Echinochloa spp. complex (e.g., Echinochloa crus-galli (L.)
Beauv., Echinochloa colona (L.) Link., Echinochloa oryzicola Vasinger.), and the Cyperus spp.
complex (e.g., Cyperus difformis L., Cyperus esculentus L., Cyperus iria L., Cyperus rotundus
L.) among others such as Leptochloa species, Cynodon dactylon (L.) Pers., Eleusine indica (L.)
Gaertn., Ischaemum rugosum Salisb., and Paspalum distichum L. [3]. These species are difficult
to control mainly due to their tolerance to hypoxia and herbicides [3]. Historically, the
use of synthetic auxin herbicides (SAHs), such as quinclorac and 2,4-D, allowed for the
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post-emergent selective control of weeds in rice [4,5]. However, 17 weed-resistant cases to
SAHs in rice crop areas have been reported worldwide, limiting the strategies to prevent
rice yield losses [6].

The phenomenon of weed resistance to herbicides is a concern among researchers
since the development of this in the field causes an increase in production costs [7]. One
example of this is the cost of glyphosate resistance in Amaranthus palmeri S. Wats in the
United States, which increases the cost of control per hectare up to $40, $54, and $74 in
corn, soybeans, and cotton, respectively [7]. In this context, florpyrauxifen-benzyl (FPB),
a new class of SAHs (WSSA, HRAC Group 4), has been developed for selective use in
rice with a broad spectrum of weed control even in those with confirmed resistance to
other herbicides such as quinclorac-resistant E. crus-galli [8,9] or glyphosate-resistant E.
colona [10]. Therefore, FBP has the potential to provide efficient weed management for rice
production.

Florpyrauxifen-benzyl, similar to other SAHs, mimics indole-3-acetic acid (IAA),
acting as “molecular glue” between the receptor protein complex SCFTIR/AFB (Skp1-cullin-
F-box protein) and the co-repressor protein Aux/IAA at the plant cell nucleus, promoting
the degradation of Aux/IAA by the ubiquitin-proteosome pathway (26S proteosome) [11].
Aux/IAA inhibits the auxin transcription factors (ARF) associated with the expression
of 9-cis-epoxycarotenoid dioxygenase (NCED) in abscisic acid (ABA) biosynthesis and
1-aminocyclopropane-1-carboxylic acid (ACC) synthase in ethylene (ETH) biosynthe-
sis [12,13]. The unbalance of these genes’ expression triggers the accumulation of ETH
and ABA into plants, which decontrol physiological processes and consequently lead to
symptoms and plant death [11].

According to some authors, SAHs have different affinities among SCFTIR/AFB recep-
tors [14,15]. Florpyrauxifen-benzyl has a greater affinity with the SCFTIR/AFB5 receptor
over other receptors [14,15]. For example, the Arabidopsis thaliana L. mutant with a silenced
SCFTIR/AFB5 was susceptible to 2,4-D but not to FPB [16]. This novelty site of action allows
FPB to control quinclorac-resistant E. crus-galli accessions [9].

Selectivity in weed management refers to the capacity of a specific herbicide to elimi-
nate weeds in a crop without affecting crop yield or quality [17]. This term may be confused
with crop tolerance, which refers to the ability of a plant or population to continue growth
or function when the crop is exposed to a potentially harmful agent; thus, both definitions
allow us to understand the plant-herbicide interaction [17,18]. This approach is widely used
to control weeds in rice crops (e.g., Acetyl-CoA-carboxylase inhibitors: cyhalofop-butyl;
photosystem II electron disruptors: propanil), and in many cases, it is highly dependent on
the plant’s ability to degrade the herbicide [17].

The principal process of how plants dissipate pesticides is metabolic degradation
followed by growth dilution and volatilization (76%, 21%, and 3%, respectively) [19].
Cytochrome P450 monooxygenases (CYP450s), glutathione-s-transferase (GST), and gluco-
syltransferase (GT) are involved in herbicide detoxification [20]. Florpyrauxifen-benzyl is
formulated as benzyl ester; thus, the bio-activation is necessary to be toxic (acid form) to
plants. Therefore, the activity of an esterase enzyme is required [8,21]. For SAHs-resistant
weeds, the esterase bio-activation process has been proposed to occur prior to passing
through the cell membrane [22]. The acid form is later metabolized to a hydroxy-acid form,
mediated possibly by CYP450 monooxygenation and subsequently conjugating to glucosyl
or glutathione transferase enzymes (GT or GST, respectively) [8,23]. The degradation medi-
ated by CYP450 has been reported to confer resistance to other SAHs such as 2,4-D and
dicamba in Papaver rhoeas L. and Parthenium hysterophorus L., but did not affect resistance to
picloram [24,25]. Likewise, the lack of esterification of 2,4-DB to 2,4-D permits the selective
use of SAHs in a broadleaf crop such as alfalfa (Medicago sativa L.) [26].

The selective mechanism of FPB in rice has not been fully described; however, the
information reported so far demonstrates that rice tolerance could be related to lack of
bio-activation (mediate by lack of esterase activity), metabolic activity (mediated first by
CYP450s, and followed by GT or GST), or differences in receptor affinity (SCFTIR/AFB) at the
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site of action [14,16]. Additionally, FPB has several label recommendations in order to be
selective to rice, for example: do no tank mix with malathion (CYP450 inhibitor) or methyl
parathion (acetylcholinesterase inhibitor), do not overlap double spray, sensitivity expected
of some medium grain and hybrid varieties, do not apply in adverse environmental
conditions such as extreme cold or heat, and recommended stages of application in rice at
V3–V4 [27].

There are several reports of rice crop response to FPB in field experiments worldwide.
For example, in field conditions in Australia, the maximum visual injury reported was
16% using 60 g ai ha−1, but this did not affect rice grain yield [28]. Field experiments
carried out in Sri Lanka, rice grain yield showed no significant differences with non-treated
plots, indicating high levels of selectivity [29]. In Italy, the visual injury was no more
than 8% at the BBCH12-21 stage, with no rice grain yield reduction [30]. Field studies in
Brazil reported, on average, 4% crop injury ranging from 0 to 30% at a rate of 40 g ai ha−1;
however, the impact on the grain yield has not been reported for these last studies, and
neither has the effect of different planting dates and spraying times [31–34]. Due to the
recent introduction of FPB, most of these reports are part of conference proceedings.

Previous rice crop observations have described leaf malformations, stem curling,
chlorosis, height, tiller number reduction, and shoot dry weight reduction as common
symptomology of FPB in rice [35]. Recent research has investigated rice cultivar’s response
to FPB regarding the temperature surrounding spraying time, growth stage application,
and tank-mix with imazethapyr and malathion [35,36]. However, the effect of planting
time, growth, and quantifying the effect of inhibitors on the dose of FPB or genes expression
related to metabolism or bio-activation have not been fully described.

Considering the recent introduction of FPB and the variation in the response of rice, it
was hypothesized that (I) early planting time and application of FPB at the early rice stage
increases rice plant injury and will not result in yield losses; (II) the rice plant injury by
FPB will increase by the previous application of P450 inhibitors and would differ across
cultivars; and (III) the rapid drop in temperatures after FPB application will reduce the gene
expression of candidate genes of CYP450, GST, and esterase. Therefore, the objectives of
this research were (I) to evaluate the effect of planting time, plant growth stage at spraying
time, and FPB rates on rice crop injury and yield components; (II) to evaluate rice response
to FPB doses applied after P450 inhibitor treatment, and to different rice cultivars; and
(III) to evaluate the effect of temperature regimes on FPB selectivity and the expression of
CYP71A21, OsGSTL3, and WALK21.2 (esterase).

2. Materials and Methods
2.1. Florpyrauxifen-Benzyl Selectivity to Rice, as Affected by Planting Time, Stage, and Rate
of Application
2.1.1. Site and Plant Material Description

A field experiment was carried out at the Embrapa Clima Temperado experimental
station, Capão de Leão, Rio Grande do Sul (RS), Brazil (31◦48′47.76′′ S; 52◦28′12.28′′ W,
elevation 18 m above sea level), in 2019/2020 and repeated in the 2020/2021 growing
seasons. The soil in the area was sandy-loam, pH 6.3, and organic matter 7 g kg−1. Pampa
CL cultivar was sowed at a density of 250 plants m−2 (90 kg of seed ha−1) with a row
spacing of 12 cm. This cultivar is tolerant to imidazolinone herbicides and Embrapa
recently released it in the south of Brazil. Its’ cycle is 113–123 days, its’ mean height is
95 cm, and it has long grains with 25.1 g of 1000 grain weight. Soil preparation consisted of
two mechanical discs harrowing 15 cm deep four- and two- months before sowing. After
the second disc harrowing, a leveling pass was performed using a leveling tool attached
to the tractor. The sowing was performed on the dates below described according to
the treatments. Fertilization consisted of 350 kg ha−1 of NPK (5-20-20) at planting time.
Nitrogen was applied 50% before flooding (V3–V4) and 50% at the panicle initiation stage
(R0), resulting in the addition of 150 kg ha−1. KCl was also applied at 45 kg ha−1 at the
R0 stage.
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2.1.2. Experimental Procedures

The experiment was conducted in a randomized block design and two-factorial
arrangement with four replications. Factor A included three sowing dates for the 2019/2020
growing season: 30 September, 25 October, and 11 November, and for the 2020/2021
growing season: 25 September, 20 October, and 10 November. These dates correspond to
early, medium, and late planting times, respectively. Factor B consisted of three growth
stages when herbicide was applied (when 50% of the plants reach: V2: collar formation
on leaf two on the main stem; V6: collar formation on leaf six on the main stem; and R0:
Panicle development initiated). Factor C comprised three doses of FPB (Loyant®, Corteva
Agriscience do Brasil LTDA. At 0, 30, and 60 g ai ha−1, corresponding to non-treated check,
label rate, and maximum label rate recommended by season). We considered the maximum
label rate per season to evaluate the response simulating issues such as overlap double
spray or overdoses at tank mix in commercial field conditions. The experimental units
consisted of plots that were 2 m wide and 5 m long (10 m2), blocks were separated by 50 cm
each other, and treatments into each block were separated by 30 cm.

The weed control program for the experiment consisted of a burndown applica-
tion with glyphosate (EPSPs inhibitor, ZAPP QI 620®, Monsanto do Brasil LTDA) at
1440 g ae ha−1 30 days prior to planting. A complementary burndown with glyphosate
(1440 g ae ha−1) plus a pre-emergence herbicide imazapic + imazapyr (ALS inhibitor, Kifix®

BASF S.A.) at 24.5 and 73.5 g ai ha−1, respectively, was applied when rice was at the spiking
stage (S3) [37]. For the 2019/2020 season, imazapic + imazapyr (24.5 and 73.5 g ai ha−1)
was applied postemergence to keep the plots free of weeds. The addition of acetolactate
synthase inhibitor has been reported to be safe to rice when applied in a tank mix or close
to FPB application [36]. Florpyrauxifen-benzyl applications were performed for each stage
of the application corresponding to each treatment. All herbicide applications were carried
out using a backpack sprayer (Herbicat®) with a four-nozzle boom (Tee-Jet AIXR110015)
calibrated to deliver 150 L ha−1 spraying solution. All applications were performed with
wind speed below 4 km h−1. Irrigation (flooding) was established in the five days after
FPB spraying (7 cm of water sheet averaged over experiment) for V2 treatments, and for V6
and R0 treatments, the fields were partially drained prior to spraying and then re-irrigated
after 24 h according to the label recommendations [27].

2.1.3. Evaluations

Rice plant injury was evaluated visually where “0%” corresponded to the absence
of symptoms and “100%” corresponded to plant death. Plant injury was determined at
3, 7, 14, 21, 28, 35, and 42 days after application (DAA). Rice grain yield was obtained
by harvesting panicles in the central area of 3 m2 (1 m width × 3 m length). In addition,
by collecting five panicles from each plot, tiller number, grains per panicle, 1000 grain
biomass, vain grains per panicle, and unfilled grains per panicle were determined. Based
on unfilled grains per panicle divided by grains per panicle, the spikelet sterility percentage
was calculated. The grain yield was adjusted to 13% humidity.

2.1.4. Statistical Analysis

Normality and homogeneity of variance were analyzed by the Shapiro Wilk test [38],
and transformation was not necessary for rice grain yield and yield components (tiller
number, grains per panicle, 1000 grain biomass, vain grains per panicle, unfilled grains per
panicle, and spikelet sterility percentage). However, due to the high numbers of “0” on
plant injury response, it was necessary to convert into a scale of 0.001 to 0.999 proportional
to the visual injury scale (0% to 100%) previously described. Variables were analyzed in a
mixed model, operating planting time as a random factor using the function lmer in the
package lme4.R, and spraying time and rates were considered as fixed factors [39]. We
considered planting time as a random factor considering the lack of repetitiveness of the
field conditions. A chi-squared distribution was considered for all response variables.
Analysis of variance type III with Satterthwaite’s method test was performed to determine
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the effect of each factor and its interactions. The analysis of variance showed that there
were no significant differences between years (runs of the experiment); thus, the data were
pooled. The mean and confidential interval at 95% of eight replicates were used to compare
the treatments. All analyses were carried out with the R® version 3.5.2 GUI 1.70 statistic
ambient [40]. We performed a mixed model instead of linear models in order to consider
fix and random effects, and this analysis was performed as Oliveira [41] proposed.

2.2. Florpyrauxifen-Benzyl Selectivity to Rice, as Affected by P450 Inhibitors, and the Tolerance of
Two Cultivars

Two independent experiments were carried out; the first evaluated the addition of
P450 inhibitors, and the second evaluated the cultivar response to FPB. Both experiments
were carried out in a greenhouse at the Federal University of Pelotas (UFPel), Capão do
Leão, RS, Brazil. The first was repeated twice in November 2019 and April 2020, and the
second was repeated simultaneously in April 2020. Four rice plants of cultivar IRGA 424
RI and BRS Pampeira were established in 0.5-L pots that were previously filled with rice
paddy soil (Albaqualf) collected from the 0–20 cm soil profile from a nearby rice field. Each
pot with four plants was considered the experimental unit. IRGA 424 RI plants were used
to evaluate the additions of inhibitors, and plants for BRS Pampeira and IRGA 424 RI were
used to evaluate cultivars’ response. IRGA 424 RI is one of the most used in RS, Brazil, and
BRS Pampeira is a recently introduced cultivar in RS by Embrapa.

For both experiments, the inhibitor and the cultivar response experiment, a random-
ized block design in a two-factor factorial scheme was performed (8 × 3 and 8 × 2 factor
levels, respectively) with four and three replications, respectively. Eight FPB doses of
0, 15, 30, 60, 120, 240, 480, and 960 g a.i. ha−1 were applied for both experiments and
considered as “factor A.” These doses were considered taking into account the commercial
dose (30 g ai ha−1). The factor B for the P450 inhibitor experiment consisted of three
different levels: inhibitor-non-treated control, malathion (1 kg ai ha−1), and dietholate,
followed by piperonyl butoxide (PBO) (10 g a.i. seed-kg−1 and 4.2 kg ai ha−1, respectively).
The decision to add two inhibitors (dietholate followed by piperonyl butoxide) was be-
cause of a preliminary test that did not show inhibitor effects individually. Dietholate
was applied as a seed treatment while malathion and piperonyl butoxide were sprayed
one hour before FPB applications. The factor B for the cultivars’ response experiment
consisted of two cultivars, IRGA 424 RI and BRS Pampeira. The greenhouse temperature
was 17 ± 5 ◦C/25 ± 5 ◦C (night/day) in November 2019 and 15 ± 5 ◦C/25 ± 5 ◦C in April
2020. Relative humidity was 80 ± 10% averaged over the experiment runs. The estimated
photoperiod was 15/9 day/night with 483.5 and 327.9 cal cm−2 day−1 of solar radiation in
November 2019 and April 2020, respectively.

Herbicide applications were applied at the 3-leaf growth stage of rice (V3). A water
sheet around five centimeters above the soil ground level was maintained after herbicide
application until the end of the experiments. The application of herbicide was carried out
with the same equipment and conditions previously described.

Plant injury was evaluated as a visual variable where “0%” corresponded to the
absence of symptoms and “100%” corresponded to a dead plant, with symptoms based on
chlorosis, wilting, epinasty, leaf malformation, tissue swelling, and stunted growth. Plant
injury was determined at 3, 7, 14, 21, and 28 DAA. At 28 DAA, the shoot dry weight was
determined by drying the shoot biomass in an air-flow-oven at 60 ◦C for 48 h. The 50%
growth reduction dose values (GR50) from shoot dry weight and 50% plant injury (ED50)
with their corresponding parameters were calculated for each treatment using a logistic
model (Equation (1)) function of the drc package in R® version 3.5.2 GUI 1.70 statistic
environment [40,42];

y = f (x) = C +
D− C

1 + exp(b(log(x)− log(e)))
(1)
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where C represents the lowest limit, D represents the upper limit, b describes the slope of
curve around the e (ED50 or GR50), the values of e corresponded to the rate that reduces to
50% of the response variable y, and x is the FPB dose in g a.i. ha−1.

Florpyrauxifen-benzyl e values indices were compared using EDcomp function of
the drc package. The EDcomp function compares using the t-student test, where p < 0.05
indicates significant differences between e indices. This same function was operated to
compare the curves between runs. Data showed that there were no differences between
runs; therefore, the data were pooled. Confidence intervals were calculated using the
confint function. The ED50 of the control without inhibitor and treatments was estimated
by an inhibition ratio, as follows: Inhibition ratio = (ED50 check without inhibitor—ED50
inhibition treatment)/ED50 check without inhibitor × 100.

2.3. Florpyrauxifen-Benzyl Selectivity to Rice, as Affected by Temperature Regimen and the
Expression of Target Candidate Genes
2.3.1. Temperature and Rice Injury

The experiments were carried out in a growth chamber at the Federal University of
Pelotas (UFPel), Capão do Leão, RS, Brazil, and it was repeated twice in 2019 and 2020.
Nine rice plants of cultivar IRGA 424 RI were established in five-liter pots previously
filled with sieved paddy soil (Albaqualf) collected from the 0–20 cm soil profile nearby the
rice field.

The experiment was organized in a complete randomized block design in a factorial
arrangement with four replications. Factor A consisted of three rates of florpyrauxifen-
benzyl: 0, 30, and 60 g a.i. ha−1 (30 g a.i. ha−1 corresponds to the recommended dose).
Factor B corresponded to six temperatures treatments conditions using three regimens
and three temperatures. The three temperature regimens considered an initial growing
until spraying (V3 rice stage), for 24 h after spraying, and until the end of the experiment
(28 days after spraying). The three temperatures were medium (28/25 ◦C day/night),
low (18/15 ◦C day/night), and high (38/36 ◦C day/night). The treatments consisted of
all-optimum temperatures along with the experiment (T1), medium-low-medium (T2),
high-low-medium (T3), medium-high-high (T4), medium-high-medium (T4), and medium-
high-low (T5) (Table S1).

The growth chamber was programmed to maintain a controlled day/night tempera-
ture according to the treatments previously described under controlled conditions with a
photoperiod of 12 h (900 µmol m−2 s−1) and a constant relative humidity of 70 (±5)%.

Rice plants with three leaves (V3) were applied with FPB. A water sheet around five
centimeters above the soil ground level was maintained after herbicide application until the
end of the experiments. The application of herbicide was made with the same equipment
and conditions previously described in Section 2.1. Visual evaluation of plant injury was
assessed for each plant as described in Section 2.1. Plant injury was determined at 3, 7, 14,
21, and 28 DAA. Statistical analyses were performed as described in the field experiment
(Section 2.1). There were detected differences between runs at 3, 7, and 28 DAA; however,
Levene’s test performed to compare the homogeneity of variance over experimental runs
found no significance (p-value = 0.4051). Therefore, the variance of each experiment was
included in the means analysis considering the run as a random factor and estimating the
best linear unbiased predictors (BLUPs).

2.3.2. Gene Expression of CYP450, GST, and Esterase Candidate Genes
Plant Material, Growth Conditions, and Treatments

Four commercial rice seeds (Oryza sativa. cv IRGA424 RI) were planted at 1 cm depth
in each 500 g pot, previously filled with soil as described before. Pots were incubated in a
growth chamber at the Federal University of Pelotas, Brazil. A completely randomized de-
sign was considered in a factorial scheme with two biological replicates. Four temperature
treatments were established (T1, T2, T3, and T4) (Factor A). The initial growth conditions
(until application) were 28/25 ◦C (day/night temperature) for treatment T1, T2, and T4.
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For T3, the initial condition was 38/36 ◦C. Three doses of FPB were sprayed (0, 30, and
60 g ai ha−1) when rice reached the three-leaf stage (V3) (Factor B). Twenty-four hours
after application time, pots corresponding to each treatment were transferred to specific
temperature conditions; T1 continued at 28/25 ◦C, T2 and T3 decreased to low 18/15 ◦C,
and T4 transferred to high 38/36 ◦C. Herbicide was sprayed using the same equipment
and under the same conditions described above. Approximately eight grams of leaf tissue
were collected at each evaluation time (6, 12, and 24 h after spraying) from both biological
replicates. Plant material was collected manually from leaf blades using sterilized gloves
and scissors. The collected material of each replication was mixed, placed in aluminum
foil envelopes, separated by treatment, and immediately after it was collected, it was kept
in liquid nitrogen until it was stored in an ultra-freezer −80 ◦C. The whole material was
frozen with liquid nitrogen and macerated using laboratory mortar and pestle, and then
the material was stored in microtubes of 1.5 mL at −80 ◦C.

RNA Extraction and cDNA Synthesis

Total RNA was extracted from two grams of leaf tissue using PureLink Plant RNA
Reagent (Invitrogen®) following the protocol described by the manufacturer. The quantity
and purity of the RNA was verified by spectrophotometry in Nanovue (GE Healthcare)
and integrity by agarose gel electrophoresis. Each RNA sample (1 µg) was treated with
DNase I Amplification Grade (Invitrogen®) and was converted into cDNA using oligo(dT)
and the SuperScript III first-strand system kit (Invitrogen®).

Gene Expression Quantification by RT-qPCR

The RT-qPCR experiment was performed following the MIQE guidelines [43] using
oligonucleotides for the reference and target genes (Table S2). Validation experiments were
performed using four cDNA dilutions in order to determine the amplification efficiency
and specificity of each oligonucleotide. Those that were 90–110% efficient and with only
one peak in the dissociation curve were used.

Gene expression assay was performed with the LightCycler® 480 Instrument II (Roche)
thermocycler using three biological and three technical replicates. Reactions were per-
formed using cDNA 1 µL in 1:25 dilution (determined during validation experiments),
UltraPure™ DNase/RNase-Free Distilled Water (Invitrogen) 11.0 µL, ROX Reference Dye
(Invitrogen) 0.25 µL, 10X PCR Buffer 2.0 µL, MgCl 50 mM 1.5 µL, Platinum™ Taq DNA
Polymerase (Invitrogen) 0.05 µL, dNTPs 0.2 µL, SYBR Green I (Invitrogen) 3.0 µL, and
oligonucleotide 10 mM 1.5 µL for each forward and reverse in 20 µL of the final volume
reaction. Negative control reactions without cDNA were also performed for each oligonu-
cleotide pair. The PCR condition was of initial denaturation at 95 ◦C for 5 min, 45 cycles of
95 ◦C for 20 s, 60 ◦C for 15 s, and 72 ◦C for 20 s. Reactions were performed in LightCycler®

480 Multiwell Plates 96 (Roche).
Target gene expression quantification was conducted using the ∆∆CT method [44]

using, as the baseline, the expression of the T1 treatment (28/25 ◦C along with the ex-
periment) without herbicide application normalized with respect to Os18S, OsEF1α, and
OsUBQ5 reference genes [45]. Gene expression data were converted in Log2-fold change.
The mean and confidence interval at 95% of three technical replicates were used to compare
treatments.

3. Results
3.1. Florpyrauxifen-Benzyl Selectivity to Rice, as Affected by Planting Time, Stage, and Rate
of Application

In general, there was a significant p-value in at least one of the double interactions for
plant injury throughout the evaluation time (Table 1). The double interaction of spraying
time and rates were significant at all evaluations times. Year operated as a fixed factor and
showed non-significant p-values among evaluation times. Thus, this supports the decision
pool data over the years for posterior analyses.
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Maximum plant injuries were observed at high doses (60 g ai ha−1), sprayed at V6 for
early planting time 7 DAA (27.4%), sprayed at V2 for late planting time 14 DAA (34.8%),
and sprayed at V2 for medium planting time 21 DAA (34.4%) (Figure 1). Regarding the
planting timing, injuries in late planting time (November) showed lower values than
early (September) and medium (October) planting time. Moreover, at late planting time,
plants seem to have a better recovery from the injury than early or medium planting time.
Herbicide applications at R0 did not show differences in plant injury compared to the
non-treated in neither planting time nor FPB rate. In contrast, applications made at V2
spraying time showed more significant plant injuries than V6, excluding at 7 DAA, where
there were more injuries at V6 than at V2. Mostly, injuries were higher at double the label
rate (60 g ai ha−1) than at the label rate (30 g ai ha−1). Likewise, plant injuries at 42 DAA for
label rates were greater at V2 than at V6, suggesting better plant recovery for applications
at V6.

The environmental observations at the earliest applications suggested that low ra-
diation and low temperature surrounding the application time were related to increased
injuries. Solar radiation averaged over five days before treatment was lower for early
planting time (665.6 and 702.8 µmol m−2 s−1 for 2019 and 2020, respectively), compared
to medium (1401.9 and 946.1 µmol m−2 s−1 for 2019 and 2020, respectively) and late
planting time (1574.2 and 1306.1 µmol m−2 s−1 for 2019 and 2020, respectively) (Figure S1).
Likewise, solar radiation was lower over the five days after V2 treatments at early (1126.6
and 1179.5 µmol m−2 s−1 for 2019 and 2020, respectively) than medium (1206.7 and
1306.1 µmol m−2 s−1 for 2019 and 2020, respectively) and late planting time (1359.2 and
1048,7 µmol m−2 s−1 for 2019 and 2020, respectively) (Figure S1).

The injuries observed in this study did not cause lasting effects and did not affect rice
yield. Thus, the tiller number, the number of grains per panicle, the number of unfilled
grains per panicle, grain yield, and sterility were not affected by any treatments (Table S3).
The applications made at the early reproductive stage (R0) did not show more than 3.8% of
injury for all planting times, and there was no impact on grain yield or yield components
(Figure 1 and Table S3).

Table 1. The p-values of type III analysis of variance with Satterthwaite’s method for rice plant injury applied with three
rates of florpyrauxifen-benzyl through time after treatment and as affected by three planting times, three spraying times,
and their interactions.

Factor
Pr (>F)

7 DAA 1 14 DAA 21 DAA 28 DAA 35 DAA 42 DAA

Year 0.1325 0.2345 4 × 10−11 0.2744 0.0953 0.0928
Planting time 1 × 10−11 0.070 0.044 0.010 0.002 0.004
Spraying time 2 × 10−16 2 × 10−16 2 × 10−16 2 × 10−13 3 × 10−12 1 × 10−10

Rate 2 × 10−15 2 × 10−16 2 × 10−16 1 × 10−15 4 × 10−12 1 × 10−10

Planting time × Spraying time 2 × 10−12 3 × 10−4 0.028 0.080 0.225 0.194
Planting time × Rate 1 × 10−5 0.393 0.267 0.022 0.039 0.169
Spraying time × Rate 3 × 10−10 5 × 10−12 8 × 10−15 2 × 10−7 3 × 10−6 9 × 10−6

Planting time × Spraying time × Rate 7 × 10−6 0.058 0.027 0.238 0.338 0.539
1 Abbreviations: DDA, days after application.
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and with dietholate followed by PBO inhibitor, whereas for the treatment with malathion, 
it did not show a difference (Figure 2). The dietholate followed by PBO showed the lowest 
GR50 with a 63% inhibition ratio compared to FPB without the inhibitor; however, as ob-
served with ED50, the dose to reach GR50 was 2.9-fold times the recommended label rate 
(89.6 g ai ha−1) (Table 2). 
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Figure 1. Rice crop injury as affected by planting time and florpyrauxifen-benzyl (FPB) application
time and rate. Average of two growing seasons (2019/20 and 2020/21). EP: early planting time (30
September 2019/25 September 2020), MP: medium planting time (25 October 2019/20 October 2020),
and LP: late planting time (11 November 2019/10 November 2020). Growth stage at spraying time,
when 50% of crop reached V2: collar formation on leaf two on the main stem; V6: collar formation on
leaf six on the main stem; R0: Panicle development has initiated. Confidence interval at 95% (n = 8).

3.2. Florpyrauxifen-Benzyl Selectivity to Rice, as Affected by P450 Inhibitors, and the Tolerance of
Two Cultivars
3.2.1. Effect of P450 Inhibitors on Rice Response to Florpyrauxifen-Benzyl

Based on the confidence interval of GR50 calculated from the dry shoot weight col-
lected at 28 DAA, there was a significant difference between the check without inhibitor
and with dietholate followed by PBO inhibitor, whereas for the treatment with malathion,
it did not show a difference (Figure 2). The dietholate followed by PBO showed the lowest
GR50 with a 63% inhibition ratio compared to FPB without the inhibitor; however, as
observed with ED50, the dose to reach GR50 was 2.9-fold times the recommended label rate
(89.6 g ai ha−1) (Table 2).

Generally, the efficient doses of FPB for rice plant injury (ED50) through time were
numerically lesser when plants were treated with inhibitors than plants without inhibitors
(Table S4). Likewise, the dietholate followed by PBO treatments showed lower ED50 in
comparison with both the check without inhibitor and with malathion (Table S4). However,
the p-value of the t-student test only detected significant differences for ED50 at 21 DAA
between the check without inhibitor and dietholate followed by PBO treatment. Although,
at 28 DAA, there was no detected significance, this treatment reaches almost 40% of
inhibition with a p-value = 0.06.
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Figure 2. Modeled dose-response of rice growth reduction sprayed with florpyrauxifen-benzyl and
applied with two P450 inhibitor treatments (malathion (1000 g ai ha−1) and dietholate (10 g ai seed-
Kg−1) followed by (fb) piperonyl butoxide (PBO) (4200 g ai ha−1)). Dietholate was applied as a seed
treatment, while malathion and piperonyl butoxide were applied one hour before florpyrauxifen-
benzyl spraying. Confidence interval is estimated at the 50% of growth reduction, using the confint
function in the drc R-package. Mean over experimental runs (n = 8).

Table 2. Parameters estimate of the dose response curve of rice dry shoot weight evaluated at 28 days after florpyrauxifen-
benzyl treatment as affected by P450 inhibitors applied one hour before for malathion and piperonyl butoxide (PBO), and at
seed treatment for dietholate.

Treatments B 1 SE 2
Dry Shoot Weight (g plant−1) GR50

4 CI 5 95% Inhibition
Ratio (%) 6 p-Value 7

D 3 SE g a.i. ha−1

Check without inhibitor 1.4 (0.3) 4.4 (0.2) 216.9 (144.5–274.7)
Malathion 2.0 (0.4) 4.0 (0.2) 243.0 (186.9–289.6) 0.0 0.573

Dietholate fb PBO 1.1 (0.2) 3.5 (0.2) 89.6 (59.5–125.4) 63.1 0.031
1 Slope around GR50. 2 SE: standard error. 3 Upper limits for all plants. 4 Doses of florpyrauxifen-benzyl (g a.i. ha-1) causes 50% of grow
reduction. 5 CI: confidence interval. 6 (GR50 check without inhibitor—GR50 inhibition treatment)/GR50 check without inhibitor × 100.
7 Florpyrauxifen-benzyl vs. inhibition treatment fb florpyrauxifen-benzyl on rice dry shoot weight t-statistics comparison of GR50. p-value
> 0.05 means non-significant difference between treatments.

3.2.2. Rice Cultivar Response to Florpyrauxifen-Benzyl Application

The response of both IRGA 424 RI and BRS Pampeira to FPB doses at 28 DAA are
observed in Figure 3. The confidential intervals at ED50 and GR50 do not intersect between
cultivars, suggesting a significant difference (Figure 3). The rice cultivar BRS Pampeira was
more sensitive than IRGA 424 RI to the dose rising of FPB in both plant injuries and shoot
dry weight reduction.
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Figure 3. Rice cultivar BRS Pampeira and IRGA 424 RI response to florpyrauxifen-benzyl doses to (a) plant injury and
(b) shoot dry weight relative to the non-treated check. The confidential interval was estimated at 50% of plant injury and
growth reduction, respectively. Means over experimental runs (n = 6).

The ED50 and GR50 values showed that BRS Pampeira was 2.3-fold and 3.0-fold times
lesser than the IRGA 424 RI, respectively (Table 3). T-student tests were used to analyze
the differences between cultivars for the ED50 and GR50 values; as observed at the p-value,
there was a significant differential response of rice cultivars to FPB being less tolerant of
BRS Pampeira than IRGA 424 RI (Table 3).

Table 3. Parameters estimate of the dose-response curve of rice plant injury and rice dry shoot weight evaluated at 28 days
after florpyrauxifen-benzyl treatment to two rice cultivars.

Cultivar B 1 SE 2
Rice Plant Injury (%) ED50

4 CI 95% 5

p-Value 6

D 3 SE g a.i. ha−1

IRGA 424 RI −2.1 (0.2) 100 (3.7) 205.5 (181.2–229.8)
BRS

Pampeira −1.6 (0.1) 100 (3.2) 88.0 (75.4–100.5) 0.000

Dry shoot weight (g) GR50
5 CI 95%

IRGA 424 RI 2.1 (0.5) 4.6 (0.2) 267.2 (204.9–329.4)
BRS

Pampeira 1.3 (0.2) 4.5 (0.3) 88.3 (54.2–122.5) 0.004

1 Slope around ED50 and GR50. 2 SE: standard error. 3 Upper limit for all plants. 4 Doses of florpyrauxifen-benzyl (g a.i. ha−1) cause 50% of
plant injury and growth reduction. 5 Confidence interval. 6 IRGA 424 RI vs. BRS PAMPEIRA on plant injury and rice dry shoot weight
t-statistics comparison of ED50 and GR50. p-value > 0.05 means non-significant difference between treatments.

3.3. Florpyrauxifen-Benzyl Selectivity to Rice, as Affected by Temperature Regimen and the
Expression of Target Candidate Genes
3.3.1. Temperature and Rice Injury

There were detected differences over runs for plant injury at 3, 7, and 28 DAA (Table 4);
therefore, this effect was analyzed as a random factor, and we calculated the corresponding
BLUPs to predict the effect of runs (Table S5). Generally, injuries through evaluations were
lesser for treatments where temperatures keep all medium or decrease until low for 24 h
after spraying (T1, T2, and T3) than those where temperature increased from medium to
high for 24 h after spraying (T4, T5, T6) (Table 4). There was an exception for T5 at 7 and
14 DAA, where injuries were not different to the non-treated and similar to treatments
where temperature decreased from medium to low for 24 h after spraying. However, at
21 and 28 DAA, injuries were similar to those where temperature increased from medium
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to high 24 h after application (Table 4). Thereby, results in this research suggest that the
increase in air temperature 24 h after spraying (from 28/25 ◦C to 38/36 ◦C) promoted the
rice injury to FPB.

Table 4. Effect of six temperature treatments and three florpyrauxifen-benzyl rates on rice plant injury at 3, 7, 14, 21, and
28 days after application.

Treatment 1 Rate 2
Rice Plant Injury (%)

3 DAA 3 7 DAA 14 DAA 21 DAA 28 DAA

Non-treated 0 0 h 0 h 0 e 0 d 0 f

T1 (all medium) 30 3.3 fg 5.5 efg 2.8 de 4.0 c 1.8 f
60 6.5 cde 11.3 b 11.0 bc 10.4 b 2.3 f

T2 (med-low-med) 30 3.5 f 3.9 fg 6.1 cde 2.6 cd 1.9 f
60 4.0 ef 7.2 cdef 5.3 cde 1.7 cd 1.7 f

T3 (high-low-med) 30 2.4 fgh 4.0 efg 8.1 cd 4.6 c 3.3 ef
60 5.3 def 6.6 defg 10.6 bc 4.3 c 2.5 f

T4 (med-high-high) 30 8.9 bc 7.6 cde 16.5 b 10.0 b 6.9 de
60 14.4 a 20.5 a 24.2 a 12.4 ab 11.9 b

T5 (med-high-med) 30 8.2 bcd 3.2 gh 8.0 cd 10.8 b 7.8 cd
60 14.5 a 4.7 efg 5.6 cde 11.1 b 10.9 bc

T6 (med-high-low) 30 7.8 bcd 10.8 bc 11.3 bc 13.5 ab 10.9 bc
60 10.0 b 9.4 bcd 16.4 b 14.6 a 21.9 a

Pr (>F)
Rate 2.20 × 10−16 2.20 × 10−16 2.20 × 10−16 2.20 × 10−16 2.20 × 10−16

Temperature treatment 2.20 × 10−16 3.84 × 10−8 1.05 × 10−8 2.20 × 10−16 2.20 × 10−16

Run 2.20 × 10−16 0.0253 0.7306 0.4464 1.23 × 10−5

Rate: Temperature treatment 5.62 × 10−9 3.83 × 10−8 0.000121 3.50 × 10−12 2.20 × 10−16

1 See Table S3 for temperature treatments. 2 Florpyrauxifen-benzyl rate in g ai ha−1. 3 Abbreviations: DAA, days after application. Mean
aggrupation with different letters means significant differences for fixed effects into each planting time by the Kenward-roger method and
across random factor (PT) when necessary (confidence level 95%).

3.3.2. Cytochrome P450 Monooxygenase Expression in Rice as Affected by
Florpyrauxifen-Benzyl and Temperature

Six hours after the spraying (HAS) at commercial and double doses, CYP71A21
expression was lesser than those non-treated for rice growth at 28/25 ◦C, whereas it was
greater than those non-treated for rice growth at 38/35 ◦C, but it was not consistent at
the double dose (Table 5). At 12 HAS, the T1 treatment, which continues at medium
temperature (28/25 ◦C), showed greater expression of CYP71A21 after spraying FPB, of
0.6-, 1.6-, and 1.8-fold, for non-treated, 30, and 60 g ai ha−1, respectively. However, it was
not consistent with 12 and 24 HAS, and contrastingly, all CYP71A21 gene expression was
downregulated even in the non-treated check treatment.
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Table 5. Relative mRNA abundance (Log2-fold change of gene expression) in rice (Oryza sativa cv IRGA 424 RI) leaves
after florpyrauxifen-benzyl application. mRNA abundance of each gene from non-treated plants served as the baseline for
determining relative RNA levels. The color scale below the heatmap shows the expression level, and values in parentheses
represent the confidence interval (n = 4).

Florpyrauxifen-Benzyl
Log2-Fold Change of Gene Expression

T1 All Medium T2 Med-Low T3 High-Low T4 Med-High

Gene Doses 6 HAS 1 12 HAS 24 HAS 12 HAS 24 HAS 6 HAS 12 HAS 24 HAS 12 HAS 24 HAS

CYP71A21
0 3.4 (0.32) −0.6

(0.02)
−3.1
(0.17) 1.9 (1.06) −1.9

(0.14)
−0.8
(0.35)

−4.3
(0.81)

−4.4
(1.66)

−3.4
(1.32)

−3.0
(0.46)

30 −0.9
(0.07) 1.6 (0.21) −2.1

(0.84)
−0.1
(0.08)

−4.0
(0.63) 2.5 (0.25) −7.6

(1.82)
−5.1
(1.22)

−4.6
(1.94)

−2.7
(0.91)

60 0.7 (0.13) 1.8 (0.55) −4.3
(1.00)

−4.9
(1.32)

−3.0
(1.28) 0.6 (0.83) −5.0

(1.12)
−3.4
(0.64)

−3.3
(0.66)

−4.6
(0.81)

OsGSTL3
0 0.20 (0.37) 0.3 (1.15) −0.8

(0.44) 0.6 (0.02) −2.2
(0.32)

−2.3
(0.87)

−0.5
(0.68)

−3.3
(0.33)

−1.0
(0.67)

−6.1
(1.91)

30 −0.7
(0.18) 1.1 (0.96) −2.4

(1.31) 0.4 (0.50) −3.3
(1.12) 0.9 (0.00) −4.0

(1.35)
−3.6
(1.79)

−1.6
(0.30)

−5.4
(1.65)

60 2.9 (1.01) 0.2 (0.18) −3.0
(0.66)

−2.7
(0.59)

−2.7
(1.13)

−0.9
(0.16)

−2.0
(0.88)

−3.5
(0.85)

−1.5
(0.62)

−6.2
(1.37)

WAKL21.2
0 6.9 (0.16) 6.6 (0.81) 4.9 (0.04) 3.1 (0.10) 4.5 (0.20) 5.0 (0.41) 4.6 (0.48) −1.0

(0.98) 5.7 (0.92) 1.7 (0.73)

30 3.4 (0.28) 5.4 (0.89) 2.7 (0.70) 5.6 (1.16) 0.5 (0.01) 0.1 (0.00) −1.2
(0.09)

−2.0
(0.51) 3.5 (0.77) 2.6 (0.34)

60 2.9 (0.90) 5.4 (0.39) 3.3 (0.78) 5.0 (0.32) 2.4 (0.65) 1.7 (0.64) 0.0 (0.56) 3.0 (0.36) 3.6 (1.20) 0.6 (0.33)
Scale

Expression scale (Log2-fold change) <−8 −8 to −4 −4 to −2 −2 to 0 0 to 2 2 to 4 >4
1 HAS = hours after herbicide spraying florpyrauxifen-benzyl; T1, T2, and T4 share same conditions at initial growing (until 6 HAS); thus,
the same expression was considered for them.

3.3.3. Glutathione S-Transferase Expression in Rice as Affected by Florpyrauxifen-Benzyl
and Temperature

Six hours after FPB spraying, an overexpression for double doses was observed,
whereas the high to low treatment (T3) showed a slight upregulation at commercial doses
(Table 4). At 12 HAS, an increase in expression of OsGSTL3 was observed for treatments
at constant temperature (T1: all medium, 28/25 ◦C) at commercial doses compared to
non-treated. Treatment where temperature change from medium to low (T2: 28/25 ◦C
to 18/15 ◦C) showed downregulation at double of the commercial dose. The rest of
the treatments at 12 and 24 HAS showen downregulation even in the non-treated check
treatments.

3.3.4. OsWAKL21.2 Expression in Rice as Affected by Florpyrauxifen-Benzyl
and Temperature

Generally, the non-treated plants showed positive values of OsWAKL21.2 for all
temperature treatments at 6, and 12 HAS (Table 4). However, at 24 HAS, a decrease was
observed in expression for non-treated treatment for temperature changes from high to low
and medium to high (T3: 38/35 ◦C to 18/15 ◦C, and T4: 28/25 ◦C to 38/35 ◦C, respectively)
compared to all medium temperature and medium to low (T1: 28/25 ◦C and T2: 28/25 ◦C
to 18/15 ◦C, respectively) (Table 4), whereas T3 at 60 g a.i. ha−1 and T4 at 30 g a.i. ha−1 were
upregulated 3-fold and 2.5-fold times compared to the non-treated. Therefore, generally,
the addition of FPB suggests a decrease in the expression of OsWAKL21.2 in rice, but an
increase in temperatures before or after FPB spraying led to upregulation, which could be
related to increasing the bio-activation of FPB-ester.

4. Discussion

Our results were similar to others experiments carried out in greenhouse conditions in
Arkansas, where the rice injury caused by FPB (30 g ai ha−1) was higher at 1-leaf (15%) than
at 5-leaf rice (4%) [35]. Raising the rate of FPB and the growth stage of spraying was similar
to the results observed for triclopyr (another auxin herbicide). The increased triclopyr
rate raised the rice crop injury in different cultivars, being higher when sprayed at 0.8
than 0.6 Kg ai ha−1, and exposed greater injury when sprayed at the early stage of growth
(V2: 65–45% V4: 40–15%) than at late stages (panicle initiation: 0%) [46]. Those studies
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discuss that smaller plants can be more susceptible to herbicide since more concentration
of herbicide may reach the plant tissue. Likewise, larger rice plants are able to metabolize
and detoxify auxin herbicides. However, for instance, at 7 DAA, we observed more injuries
at V6 applications than V2, and these results also were observed in a medium-grain rice
cultivar sprayed with FPB in field conditions, where greater injury (13%) has been reported
for applications in 5-leaf rice than at 1-leaf (<3%) [36]. These results are more related to the
uncontrolled conditions at the field than the size of the rice.

In general, FPB injury increases with dose particularly when applied at the early
growth stage and to rice planted earlier. Dawn and dusk application of 2,4-D and dicamba
suggest an inverse relationship in the activity and efficacy in Amaranthus palmeri S. Watson,
a consequence of more translocation and ABA-induced stress [47]. However, further
studies in controlled conditions must be done to prove the interaction of FPB, rice, and
solar radiation.

For FPB, greater injury recovery has been reported at warmer (32/24 ◦C, day/nighttime)
rather than cooler temperatures (24/17 ◦C day/nighttime) [35]. In this study, for the
temperature averaged over the years and spraying time, five days after spraying was
lesser for early planting time (20.6 ◦C) than medium and late planting time (22.3 ◦C,
23.9 ◦C, respectively). This variable may explain the higher injuries and the lesser recovery
observed on early application treatments since low temperature may reduce the FPB
metabolism [35]. Finally, FPB injury increases with dose but does not affect yield. Therefore,
these observations lead us to evaluate the effect of the addition of P450 inhibitors and the
expression of candidate genes related to the FPB metabolism and temperature, as shown
herein.

Regarding the effect of P450 inhibitors on rice response to FPB, our result is similar
to those observed on field experiments carried out in Arkansas rice areas [36]; they re-
ported 2% of rice injuries when they applied FPB (30 and 60 g ai ha−1) plus malathion
(700 g ai ha−1), and there was no detected lasting adverse effects on yield. The label
recommendation does not allow the use of malathion on tank-mix or seven days before
FPB application [27]. Thus, with both results, this restriction can be changed, and farmers
could use malathion safely prior to FPB application or a tank mix. On the other hand,
the effect of two P450 inhibitors may have a negative effect on growth and injury, but the
doses are still over the commercially recommended; thus, it seems to not compromise the
selectivity [27]. Contrary to Wright et al.’s [36] conclusion, which suggests that there is
no dependency of P450 on the degradation of this herbicide in rice, we considered that
there could be more interaction of FBP with P450 inhibitors in plants since there have
been reported 356 CYP genes encoding P450 enzymes on rice [48]. Hence, the addition
of two inhibitors, dietholate followed by PBO, may inhibit other CYP isoenzymes that
malathion does not do. An example of this is when triazole, imidazole, and pyrimidine
derivatives inhibited cytochrome P450 isoenzymes selectively [49]. However, currently,
there is no report of the potential accumulative effect of two inhibitors in rice tolerance to
FPB. Therefore, more studies must be done in order to consider this effect on rice yield.

Currently, GR50 or ED50 of FPB has not been reported to rice cultivars. However,
the response of cultivars to sequential applications of FPB has been reported [35]. The
hybrid CL745 injuries at two FPB sequential doses of 30 g ai ha−1 (total 60 g ai ha−1) were
around 46% and were 64% at 60 g ai ha−1 (total 120 g ai ha−1) when applications were
made four days apart. Thus, a similar result has been reported regarding differential rice
cultivars’ response to FPB, and the values of the injuries are similar to those observed
for BRS Pampeira at 120 g ai ha−1. This result supports the hypothesis proposed in this
research that cultivars show different levels of tolerance possible by differential metabolism
activity or differential bio-activation.

In both cultivars, doses causing ED50 and GR50 were over the recommended maximum
per season (60 g a.i. ha−1) and taking into account the label, it must be applied in two
separate applications [27]. Therefore, there is no risk on field conditions considering the
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maximum doses per season [27]. Further studies could evaluate the metabolism of FPB
among cultivars to prove this hypothesis.

Regarding temperature regimes, warmer temperatures tend to exacerbate FPB injury
in rice. However, this response varied by the cultivar being examined. A rice tolerance
experiment to florpyrauxifen-benzyl rates conducted in a growth chamber at warm and
low temperatures (32/24 ◦C and 27/18 ◦C day/nighttime) reported that the long-grain
pure-line (CL111) was more tolerant over warm temperature conditions than the medium-
grain pure-line CL272, with 18% of plant injury at 60 g a.i. ha−1, and the long-grain hybrid
CLXL745, with 25% of plant injury at 60 g a.i. ha−1 [35]. The cultivar IRGA 424 RI used in
this experiment corresponds to a medium non-hybrid cultivar; thus, the injury increases
in treatments where temperature increased after spraying coupled with what has been
reported for medium-grain pure-line CL272 cultivar or long-grain hybrid CLXL745 at
32/34 ◦C. In Section 3.1, FPB does not show lasting effects on yield. Therefore, the injuries
observed in these results do not represent adverse effects on yield.

The differential tolerance of rice cultivars to herbicides has been reported, and this is
considered a result of differential crop metabolism rate among cultivars. One example of
this has been reported for triclopyr, another synthetic auxin herbicide, where rice cultivars
Mars and Tebonnet (15% and 16% of the injury, respectively) were more tolerant than
Lemont (25% of injury) [46]. Another common example is the differential tolerance to
imazamox among Clearfield® rice cultivars [50]. Hence, it is likely that FPB is metabolized
in rice plants, and then temperature changes after treatment affect this metabolism rate,
causing the injuries observed in this study. Moreover, the non-bioactivation of the FPB-
ester form may be involved since the rice response to temperature affected the activity
or expression of enzymes related to this process. Therefore, these observations lead us to
evaluate the expression of candidate genes related to herbicide metabolism such as the
P450 enzyme (CYP71A21) and glutathione S-transferase (OsGSTL3) and a possible enzyme
related to FPB bio-activation, esterase activity enzyme (OsWAKL21.2).

CYP71A21 is a gene encoding for a P450 monooxygenase enzyme in rice seedlings,
described as responsive to herbicides, including auxins [51]. This gene has been reported
to be upregulated in E. colona resistant to quinclorac (5.1-fold change) compared to de
quinclorac-susceptible [52]. Our results demonstrated no upregulation of this gene in
rice after FPB application; however, other genes from this family may be affected by
FPB application and different environmental factors. For example, CYP72A1 increases
expression in E. colona treated with FPB (4.2-fold) compared with the untreated which
was down-regulated (−0.3-fold), and this expression was greater induced when plants
grow at optimal conditions (30 ◦C: 4.2-fold) and drought stress (4.2-fold) than at heat stress
(45 ◦C: 3.2-fold) and well-watering (1.7-fold) [53,54]. Correspondingly, CYP72A15 was
greater induced at 45 ◦C rather than at 30 ◦C (4.5-fold and 0.1-fold, respectively). Therefore,
future studies should focus on evaluating other genes from the CYP72A family more than
CYP72A21 in order to elucidate the interaction between FPB and temperature in rice.

OsGSTL3 gene encodes glutathione s-transferase, a widely known enzyme that con-
fers herbicide tolerance in rice [55]. GST expression has been described as providing
plants the capability to tolerate herbicides. For example, organ-specific expression of
AtGSTU19 confers tolerance of chloroacetamide in Arabidopsis sp. [56]. Upregulation of
SbGSTF1 and SbGSTF2 is induced by fluxofenim, a safener used in seed treatment in
Sorghum halepense [57]. OsGSTL2 transgenic rice improves glyphosate and chlorsulfuron tol-
erance [55]. OsGSTL3 confers quizalofop-p-ethyl resistance to Polypogon fugax [58] Herein,
it was observed that there was a differential profile in the expression of OsGSTL3 as a
product of temperature changes over time, probably by its role as ROS scavenger [59].
However, it cannot be proven if the FPB spraying caused an overexpression. Since the
increase in FPB rate does not show a consistent increase in expression on OsGSTL3.

Our results showed that there is a reduction in GR50 of rice when applying FPB with
two CYP450 inhibitors (dimethoate and PBO), but not when applying malathion. On the
other hand, our candidate gene CYP72A21 did not show differential response among FPB
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rates. These results suggest a certain dependency of CYP450 on rice tolerance but not
because of our candidate gene. Therefore, further studies should focus on evaluating other
genes of this enzyme family on FPB tolerance to rice.

Wall associate kinases (WAKs) are enzymes localized through the cell wall and mem-
brane, and they are capable of sending signals into the cytoplasm [60]. WAKs have an
essential role in physiological prosses such as cell elongation, pollen development, and
abiotic and biotic stress tolerance [60]. OsWAKL21.2 encodes to a WAK, which has a dual
function as a receptor or co-receptor of wall damage and a receptor of biotic stress [61].
Although the interaction of this gene with SAHs has not been reported, we hypothesize
about its role in FPB bio-activation considering the temperature stress and esterase ac-
tivity outside the cell. OsWAKL21.2 overexpression in rice induces tolerance to cell wall
degradation products and immune response to lipases/esterases [61]. The OsWAKL21.2
indicates a downregulation over FPB doses. Thus, this result supports the hypothesis that
rice tolerance to FPB may rely on the bio-activation of the ester form and potentially the
lack of esterase WAKL enzyme expressions being involved. The lack of esterase activity
has already been reported in rice selectivity to cyhalofop-butyl (Acetyl-CoA-carboxylase
inhibitors) herbicide [62] and proposed as a resistant mechanism of weeds to auxin her-
bicides [22]. Additionally, we observed that OsWAKL21.2 gene expression might vary
among high temperatures before or after FPB application 24 HAS (Table 5); thus, the FPB
bio-activation may be affected. However, further experiments must be done to confirm the
role of WAKL21.2 in rice sprayed with FPB, additionally to prove the temperature effect on
the expression of this gene and the consequence of this interaction in rice selectivity.

5. Conclusions

This study contributed to the knowledge about the performance of florpyrauxifen-
benzyl (FPB) selectivity to rice in field and controlled conditions. In summary, our research
showed that FPB is selective to rice in Brazilian conditions with some highlighted points.
As observed at early and medium planting time, injuries in rice can be promoted by low
solar radiation and low temperature surrounding the FPB application. Increased FPB
doses promote more significant injuries, especially when it was sprayed at V2 and V6. The
differential tolerance of rice cultivars to FPB seems to not compromise selectivity in the
field. The addition of P450 inhibitors does not compromise the selectivity, and the two
candidate genes (CYP71A21 and OsGSTL3) related to the metabolism of herbicides were
not upregulated by FPB, whereas a candidate gene related to the bio-activation of FPB-ester
(OsWAKL21.2) was upregulated. Finally, this study provides farmers and agronomists the
confidence to use FPB in Brazilian conditions, increasing the use of new tools in integral
weed management. Moreover, this study contributes to expanding the knowledge of auxin
herbicides and hints about the rice selectivity mechanism to FPB, especially regarding
bio-activation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agriculture11121270/s1, Figure S1: Daily mean, maximum and minimum air temperature,
rainfall (gray shading), and solar radiation throughout the experiment. The continuous line represents
planting date and discontinue line represents spraying dates. Planting time abbreviations E: Early
planting time (blue), M: Medium planting time (red), and L: Late planting time (orange). Spraying
time abbreviations V2: collar formation on leaf two on the main stem; V6: collar formation on leaf six
on the main stem, and R0: Panicle development has initiated. (Source: Embrapa Clima Temperado
weather station). Table S1: Temperature regime “Factor B” of growth chamber experiment. Table S2:
Oligonucleotides used in this study for RT-qPCR assay. Table S3: Yield components and analysis of
deviance type II Wald chi-square test of rice as affected by planting time (two seasons 2019/2020;
30 September, 25 October and 11 November; and 2020/2021; and 25 September, 20 October and 10
November), spraying time (V2, V6, and R0) and florpyrauxifen-benzyl rates (0, 30 and 60 g ai ha−1).
Table S4: Parameters estimate of the dose response curve of rice plant injury evaluated at three, seven,
14, 21 and 28 days after florpyrauxifen-benzyl treatment as affected by P450 inhibitors applied one
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hour before for malathion and Piperonyl butoxide, and at seed treatment for dietholate. Table S5:
Best Linear Unbiased Predictor BLUP’s of runs for rice injury for growth chamber experiment.
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