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Abstract: Soil organic carbon (SOC) plays an important role in the global C cycle, as well as in the
maintenance and improvement of the soil quality. Over time, special attention has been paid to it in
the study of the SOC reserves worldwide; however, reduced attention has been given to assessing the
spatial patterns of SOC stock (SOCS) in semi-desert ecosystems. In this line, there are no conclusive
studies in drylands of Africa affected by aeolian processes (semi-desert conditions) mainly due to the
complexity of sample collection, and this is especially significant in some soil types such as Arenosols
(AR) and Calcisols (CL). This study evaluated the spatial variability of SOC and SOCS in AR and CL
with woody crops in relation to land use and management (old plantations > 100 years: centenary
olive grove; new plantations < 12 years: young olive grove, almond, and pistachio) in semi-desert
conditions. For this purpose, 16 soil profiles (for 0–40 and 40–100 cm depth) were selected and
studied in an experimental area of Menzel Chaker-Sfax in southeastern Tunisia (North Africa). The
main results indicated that the SOCS on average was higher in Old Cultivated AR (OC-AR) with
41.16 Mg ha−1 compared to Newly Cultivated AR (NC-AR) with 25.13 Mg ha−1. However, the SOCS
decreased after a long period of cultivation in CL from 43.00 Mg ha−1 (Newly Cultivated CL: NC-CL)
to 32.19 Mg ha−1 (Old Cultivated CL: OC-CL). This indicates that in the long term, CL has more
capacity to store SOC than AR, and that in the short term, AR is more sensitive to land management
than CL.

Keywords: arid climate; land use; land management; Calcisols; Arenosols; soil organic carbon stocks;
olive grove; almond grove; pistachio grove

1. Introduction

In most terrestrial ecosystems, soil organic carbon (SOC) is the largest carbon (C)
pool [1] containing approximately 2344 Gt of organic C globally [2]. In fact, SOC is an
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essential element of earthly life and constitutes the most fertilizing element of the soil,
and SOC content is an important indicator of biological and microbiological activity [3,4].
Therefore, SOC and soil organic matter (SOM) are considered major factors that influ-
ence the soil quality, affecting agricultural productivity, soil structural stabilization, plant
nutrients retention, and water-holding capacity, among other things [5,6]. However, in
addition, SOC stock (SOCS) depends on factors such as wildlife, earthworms, ants, and
microorganisms such as fungi and bacteria and organic waste [7], and this SOCS can be
found at 0–2 m depth [8,9]. Other factors that can affect to SOCS are the climatic conditions
(precipitation and temperature) and agriculture practices (land use and management) [10].
In this sense, high temperatures, low rainfall, and intensified tillage can accelerate SOM
decomposition, conditioning agricultural production in many regions of the world [11].
Therefore, a decrease in the SOM content leads to reduction in soil fertility and productiv-
ity [12]. Therefore, SOCS should be estimated to evaluate the impact of land management
practices on soil fertility and in the greenhouse gases generation [13,14].

All these considerations are especially important in drylands (semi-arid, arid, semi-
desert, and desert areas) with low average annual rainfall (<500 mm) [15], with a cover
more than one-third of the Earth’s land surface, and with more than 36% of the world’s
SOCS [16,17]. In this line, [18] indicates that these ecosystems can be more responsive to
elevated CO2 than others because net primary productivity is mostly limited by water
availability. Additionally, other authors such as [19] have reported that desert soils exhibit
higher atmospheric CO2 fixation capacity than other soils (e.g., meadow soils).

In this sense, researchers in [20] indicated that dryland areas in Tunisia is characterized
by low SOCS (18.7 Mg ha−1) due to sandy texture, which is associated with low SOM
content and reduced cation exchange capacity [21,22], highlighting that in sandy soils, the
SOM decomposition has a higher rate than in soils with high clay content [23]. However,
water scarcity is also considered as another crucial factor that causes soil degradation,
and a decrease in SOC content in semi-arid and arid regions [24]. On average, every
year, arid areas have long drought periods (4 to 6 months), so the generation of natural
biomass as C source is limited by climatic conditions, but this problem is maximized due
to management practices in these arid regions, since the highly intensified tillage causes
a loss of spontaneous vegetation cover [25]. The main consequence of these processes
acting synergistically is that these soils are highly vulnerable to degradation processes,
due mainly to SOM depletion and wind erosion, which cause desertification, which is
intensified by the current global warming crisis [26,27].

Recently, many researchers have shown great interest in the SOCS prediction (at
regional scale), extrapolating the SOCS on a wide range of soil and/or vegetation types in
arid areas of Africa [20]. In this line, [28] analyzed the SOC storage evolution in relation with
tillage system in three soil types (Vertisols, Cambisols, and Luvisols) under Mediterranean
climate, emphasizing that the SOC was significantly higher in no tillage compared to
conventional tillage (10% more in Vertisols and 8% more in Cambisols), with no significant
differences in the Luvisols case. More recently, [29] studied the SOCS distribution in
Cambisols under different crops in semi-arid Tunisian climate, suggesting that the SOCS has
exceeded the national and international standards in Cambisols. Additionally, in Tunisia,
SOCS was assessed in different soil types including Lithosols, Solonochaks, Cambisols, and
Regosols [20,29,30]; however, Calcisols (CL) and Arenosols (AR) have not been studied
yet. In this line, is important to note that three quarters of Tunisia is under arid or semi-
desert climate. Therefore, analyzing the SOCS in CL and AR in Tunisian is important to
improve the soil quality and its productive capacity, in addition to being able to extrapolate
these data to other semi-desert areas to intervene in the land use and management of
these soil types. In this sense, several studies have established that soils in arid and semi-
desert regions after cultivation suffer significant variations in their biological, physical, and
chemical properties [31–35]. However, little research has focused on assessing the effects
of woody crops (olive, almond, and pistachio) at different development stages in AR and
CL during short- and long-term periods and their relationship with the soil properties and
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SOCS. Therefore, due to the role that these soils play in C sequestration and in the crop
productivity, it is essential to understand the effectiveness of land use and managements
under extreme climatic conditions not only in terms of physical properties but also in the C
dynamic variation.

Given this scenario, the general objectives of this study are (i) to study the SOC in
Calcisols and Arenosols of Tunisia (dryland rainfed area) and (ii) to analyze in the short and
long terms the soil’s capacity for SOC stock under different land uses and management.

2. Materials and Methods
2.1. Study Area

The study area is in an experimental farm of Essalema, located at 50 km in the
north-west in Sfax governorship, in the Menzel Chaker delegation—Tunisia (34◦59′15′′ N–
10◦20′03′′ W) (Figure 1). This area covers a surface of 18,670 ha and is divided into seven
sub-farms, with an average altitude of 161 m.a.s.l., ranging from 105 m.a.s.l. to 217 m.a.s.l.
(meters above sea level), with slopes < 3% slightly undulating.

Figure 1. Maps of the study area: (a) Tunisia map, (b) Sfax location, and (c) Menzel-Chaker district
with the location of soil profiles https://earth.google.com/web/@36.6638314,7.9704552,553.33197981
a,3949044.97759938d,35y,0h,0t,0r (Google Earth Pro—Access: 27 September 2021).

The climate is arid Mediterranean and hot arid steppe according to the Köppen–
Geiger updated classification [36]. The annual average temperature was 19.5 ◦C, with a
maximum air temperature of 33 ◦C in August and a minimum air temperature of 6 ◦C in
January (temperature data provided by the National Institute of Metrology for the period
1966–2019). The annual average precipitation was 169 mm and monthly rainfall ranges

https://earth.google.com/web/@36.6638314,7.9704552,553.33197981a,3949044.97759938d,35y,0h,0t,0r
https://earth.google.com/web/@36.6638314,7.9704552,553.33197981a,3949044.97759938d,35y,0h,0t,0r
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from 6 mm (July) to 34 mm (October) (rainfall data provided by Salama farm station for
the period 2008–2019).

The study area is characterized by outcrops of the Middle and Upper Continental
Pleistocene, and the Lower Pleistocene, formed by limnic sabkhas (deposits of coastal flats
subject to periodic flooding and evaporation) and recent alluvium. Most of the wadis are
endorheic, leading to closed depressions of the Sebkhas and Garâas type. Depending on
their morpho-structural conditions, these closed depressions take the form of synclinal
basins (Menzel Chaker region) or the form of Sebkha sand Garâas (Bou Jmal, Karafita). In
the dryland regions, the aeolian processes also play an important role, particularly where
the precipitation is lows (<150 mm y−1) [37,38], so the aeolian materials accumulation
leads to the poorly developed sandy soils formation [39], as it happens in the study area’s
experimental field [40].

2.2. Soil Sampling and Analytical Methods

Samples from 16 soil profiles were collected: 10 in CL and 6 in AR (these soil types
covered most of the studied area ~70%). All investigated soils were tilled to depths varying
between 20 and 30 cm (can reach up to 40 cm deep) four to six times per year using a tractor
with cultivator depending on rainfall. Soil profiles were dug with a mini excavator, and
soil samples were collected at different soil control section for each soil profile (S1: 0–40 cm;
S2: 40–100 cm), for a proper determination of physical and chemical soil properties [41,42].

The collected samples were labeled (A1–A5: samples of the Newly Cultivated Cal-
cisols (tilled < 12 years)—NC-CL; M1–M5: samples of the Old Cultivated Calcisols
(tilled > 100 years)—OC-CL; C1–C3: samples of the Newly Cultivated Arenosols (tilled <
12 years)—NC-AR; B1–B3: samples of the Old Cultivated Arenosols (tilled > 100 years)—
OC-AR).

Soil samples were placed in polyethylene bags, which were labeled and transferred to
the laboratory and air dried. Once dried, the samples were sieved at 2000 µm, separating
the thick fragments and roots from the rest of the material. Three repetitions were carried
out for each sample. The analytical methods, laboratory analysis, and other parameters
calculated used in this study to determine different soil properties are reported in Table 1,
according to handbook of plant and soil analysis for agricultural systems [43]. Soils were
described and classified according to World Reference Base for Soil Resources [38].

Table 1. Analytical methods used in this study (field measurements, laboratory analysis, and parameters calculated).

Parameters Method

Field measurements
Bulk density (Mg m−3) Core method [44] a

Laboratory analysis
Particle size distribution Robinson pipette method [45] b

pH—H2O Suspension in water 1:2.5 [46]
Total Organic C (g kg−1) Walkley and Black method [47]
CaCO3 (%) Soil Calcium carbonate equivalent [48,49]

Parameters calculated
SOC-S (Mg ha−1) SOC-S = SOC concentration × BD × d × (1 − δ2 mm%) × 10−1 [50–52] c

T-SOC-S (Mg ha−1) T-SOC-S = Σ soil horizon 1 . . . n SOC-S soil horizons [52] d

For all the parameters studied, the recommendations of the Handbook of Plant and Soil Analysis for Agricultural Systems have been
followed [43]. a 3 cm in diameter, 10 cm in length, and 70.65 cm3 in volume. b Prior to determination of particle size distribution, samples
were treated with H2O2 (6%) to remove organic matter (OM). Particles larger than 2 mm were determined by wet sieving, and smaller
particles were classified according to USDA standards (2004). c Where SOC is the organic carbon content (g kg−1), d is the thickness of the
soil layer (cm), δ2mm is the fractional percentage (%) of soil mineral particles >2 mm in size in the soil, and BD is the soil bulk density
(Mg m−3). d T-SOC-S: Total SOC stock determined by adding all the soil horizons considered.

2.3. Experimental Design

The research was carried out in an experimental farm in Essalema–Sfax–Menzel–Tunisia.
For this, two soil types were selected (AR and CL), with different land uses (OG: olive grove,
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AT: almond and PT: pistachio) and managements. The soils’ evolution in the short (<12 years)
and long terms (>100 years) was compared to analyze the effects of management on SOCS.
Land use and management are characterized in Tables 2 and 3 and Figure 2.

Table 2. Land use, managements, and soil qualifiers of the soils (Arenosols) in the study area.

Soil SP Soil
Type Hor Depth

(cm)
Land
Use Management

AR

OC-AR

B1 ARca
Ap 0–40

OG
Density: 17 trees ha−1; Amendments: sheep manure
mixture; Olive pomace 3.5 Mg ha−1 every 10 yearsAC 40–100

B2 ARca
Ap 0–40

OG
Density: 20 trees ha−1; Amendments: Olive pomace

3.5 Mg ha−1 every 10 yearsC 40–100

B3 AReu
Ap 0–40

OG
Density: 17 trees ha−1; Amendments: sheep manure
mixture; Olive pomace 3.5 Mg ha−1 every 10 yearsAC 40–100

NC-AR

C1 ARca
Ap 0–40

AT
Density: 68 trees ha−1; The plowing is Canadian type

(plowing just with the tails of the washers).
Without organic amendmentC 40–100

C2 ARca
Ap 0–40

OG Density: 34 trees ha−1; Without organic amendmentBC 40–100

C3 AReu
Ap 0–40

OG Density: 34 trees ha−1; Without organic amendmentC 40–100

ARca: Calcaric Arenosols; AReu: Eutric Arenosols; SP: Soil profile; OC-AR: Old cultivated (tilled > 100 years) Arenosols; NCAR: Newly
cultivated (tilled < 12 years) Arenosols; SP: Soil Sampling; Hor: Horizon; OG: Olive grove; AT: Almond tree. C2 and C3: The plowing is
Canadian type (plowing just with the tails of the washers when the OG is big, sometimes using the blade types. They are plowed 4 times/year.

Table 3. Land use, managements, and soil qualifiers of the soils (Calcisols) in the study area.

Soil M SP Soil
Type Hor Depth

(cm)
Land
Use Management

CL

OC-CL

M1 ha CL
Ap 0–40

OG
Density: 20 trees ha−1; Amendments: sheep manure

mixture 3.5 Mg ha−1 every 10 years2Ck 40–100

M2 ha CL
Ap 0–40

OG
Density: 17 trees ha−1; Amendments: sheep manure
mixture; Olive pomace 3.5 Mg ha−1 every 10 years2Bk 40–100

M3 ha CL
Ap 0–40

OG Density: 17 trees ha−1; No AmendmentsCk 40–100

M4 ha CL
Apk 0–40

OG Density: 17 trees ha−1; No Amendments2Ck 40–100

M5 ha CL
Ap 0–40

OG Density: 17 trees ha−1; No Amendments2Ck 40–100

NC-CL

A1 ha CL
Ap 0–40

OG
Density: 34 trees ha−1; Amendments: sheep manure

mixture 1 Mg ha−1 every 10 years2Ck 40–100

A2 ha CL
Ap 0–40

OG
Density: 34 trees ha−1; Amendments: sheep manure

mixture 1 Mg ha−1 every 10 yearsCk 40–100

A3 ha CL
Ap 0–40

OG
Density: 34 trees ha−1; Amendments: sheep manure

mixture 1 Mg ha−1 every 10 years2Ck 40–100

A4 ha CL
Ap 0–40

AT
Density: 68 trees ha−1; The plowing is Canadian type

(plowing just with the tails of the washers)Ck 40–100

A5 ha CL
Ap 0–40

PT
Density: 39 trees ha−1; The plowing is Canadian type

(plowing just with the tails of the washers)2Bk 40–100

ha CL: Haplic Calcisols; OC-CL: Old cultivated (tilled > 100 years) Calcisols; M: Management; SP: Soil Profile; NC-CL: Newly cultivated
(tilled < 12 years) Calcisols; SP: Soil Sampling; Hor: Horizon; OG: Olive grove; AT: Almond tree; PT: Pistachio tree. A1, A2, and A3: The
plowing is Canadian type (plowing just with the tails of the washers when the OG will be big, they use sometimes the blade types. They
are plowed 4 times/year. M1, M2, M3, M4, and M5: The plowing is of the Canadian type. In the fall, they use the tails of the two-row
pucks, in the winter they use the blade (teeth), one row only, and in the spring, they use the tails of the pucks (two rows) for weeding.
During the summer, they use the blade (teeth), a single row.
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Figure 2. Different land uses in the experimental farm: Centenary olive grove, young olive grove,
almond tree, and pistachio tree. (1): Centenary olive grove—old cultivated > 100 years; (2): young
olive grove—newly cultivated < 12 years; (3): almond tree—newly cultivated < 12 years; (4): pistachio
tree—newly cultivated < 12 years.

All soil samples were taken at the same time (synchronic approach) under different
management practices at known durations from an initial reference state, and the SOCS
was compared under this initial reference state [53].

2.4. Statistical Analyses

The effect of land management and soil depth on soil properties was analyzed using
SPSS 20.0 for Windows. Data were tested for normality to verify the model assump-
tions using Duncan’s multiple range tests, and differences of p < 0.05 were considered
statistically significant.

3. Results and Discussion
3.1. Soil Characterization

The soils studied are developed from loamy or sandy material often of aeolian origin,
and all soils had simple morphology with two genetic horizons—Ap horizon and under-
lying horizons with calcium carbonates accumulation (Ck and Bk); according to [38], the
studied soils were mainly Haplic CL (CLha), Calcaric AR (ARca) and Eutric AR (AReu)
(Tables 2–5).
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Table 4. Principal soil properties evaluated (average ± SD *) in the soil profile by soil control section in Arenosols.

Soil M SP LU Hor Depth
(cm)

Gravel
(%)

Sand
(%)

Silt
(%)

Clay
(%)

BD
(Mg m−3)

pH
(H2O)

CaCO3
(%)

OC
(%)

AR

OC-AR
n = (3 × 2)

B1 OG
Ap 0–40 1.15 96.37 1.17 2.46 1.701 9.18 2.64 0.125
AC 40–100 0.60 92.99 4.62 2.39 1.645 9.14 2.78 0.330

B2 OG
Ap 0–40 1.91 94.66 1.69 3.65 1.692 9.25 4.06 0.290
C 40–100 6.74 92.95 2.44 4.61 1.673 9.19 7.42 0.171

B3 OG
Ap 0–40 1.48 98.22 0.34 1.44 1.705 9.09 0.51 0.282
AC 40–100 2.60 98.05 0.49 1.46 1.681 9.10 0.55 0.290

X
Ap 0–40 1.51 ± 0.28 96.42 ± 1.78 1.07 ± 0.68 2.52 ± 1.11 1.70 ± 0.01 9.17 ± 0.08 2.40 ± 1.79 0.23 ± 0.09
AC 40–100 3.31 ± 3.13 94.66 ± 2.93 2.52 ± 2.07 2.82 ± 1.62 1.67 ± 0.02 9.14 ± 0.05 3.58 ± 3.51 0.26 ± 0.08

NC-AR
n = (3 × 2)

C1 AT
Ap 0–40 2.98 80.51 10.75 8.74 1.560 8.95 4.11 0.270
C 40–100 4,32 82.58 8.38 9.04 1.530 8.94 6.49 0.165

C2 OG
Ap 0–40 0.66 88.91 5.22 5.87 1.632 8.81 3.03 0.290
BC 40–100 0.88 95.32 1.33 3.35 1.681 8.68 2.63 0.095

C3 OG
Ap 0–40 0.09 94.01 2.23 3.76 1.670 9.12 1.04 0.145
C 40–100 0.44 91.58 2.09 6.33 1.690 9.17 0.81 0.065

X
Ap 0–40 1.24 ± 1.53 87.81 ± 6.82 6.07 ± 4.32 6.12 ± 2.50 1.62 ± 0.06 8.96 ± 0.16 2.73 ± 1.56 0.24 ± 0.08
C 40–100 1.88 ± 2.13 89.83 ± 6.55 3.93 ± 3.87 6.24 ± 2.85 1.63 ± 0.09 8.93 ± 0.25 3.31 ± 2.90 0.11 ± 0.05

SD *: Standard deviation; M: Management; SP: Soil sampling; Hor: Horizon; BD: Bulk density; OC: Organic carbon; n = Sample size.
OC-AR: Old cultivated (tilled > 100 years) Arenosols; NC-AR: Newly cultivated (tilled < 12 years) Arenosols.

Table 5. Principal soil properties evaluated (average ± SD *) in the soil profile by soil control section in Calcisol.

Soil M SP LU Hor Depth
(cm)

Gravel
(%)

Sand
(%)

Silt
(%)

Clay
(%)

BD
(Mg m−3)

pH
(H2O)

CaCO3
(%)

OC
(%)

CL

OC-CL
n = (3 × 2)

M1 OG
Ap 0–40 6.91 91.43 3.77 4.80 1.621 9.26 5.66 0.131
2Ck 40–100 7.47 74.28 8.69 17.03 1.591 9.10 20.47 0.201

M2 OG
Ap 0–40 0.81 92.14 2.85 5.01 1.610 9.19 4.27 0.260
2Bk 40–100 2.38 56.41 21.17 22.42 1.342 8.81 22.03 0.295

M3 OG
Ap 0–40 23.54 73.98 12.89 13.13 1.330 8,78 11.61 0.540
Ck 40–100 41.86 63.59 14.45 21.96 1.451 8.99 21.97 0.230

M4 OG
Apk 0–40 16.16 90.97 5.79 3.24 1.570 9.12 10.08 0.115
2Ck 40–100 6.20 63.32 3.94 32.74 1.501 8.74 54.48 0.255

M5 OG
Ap 0–40 0.73 91.03 6.31 2.66 1.531 9.29 1.99 0.215
2Ck 40–100 2.28 66.14 31.16 2.70 1.420 9.19 21.94 0.255

X
Ap 0–40 9.63 ± 10.00 87.91 ± 7.80 6.32 ± 3.94 5.77 ± 4.24 1.53 ± 0.12 9.13 ± 0.21 6.72 ± 4.02 0.25 ± 0.17

2Bk/Ck 40–100 12.04 ± 16.83 64.75 ± 6.44 15.88 ± 10.70 19.37 ± 10.93 1.46 ± 0.09 8.97 ± 0.19 28.18 ± 14.72 0.25 ± 0.04

NC-CL
n = (3×2)

A1 OG
Ap 0–40 1.56 82.93 9.08 7.99 1.570 8.77 9.34 0.271
2Ck 40–100 3.80 61.04 16.72 22.24 1.351 8.74 26.16 0.285

A2 OG
Ap 0–40 4.28 78.68 8.76 12.56 1.541 8.72 7.80 0.351
Ck 40–100 0.64 60.01 22.25 17.74 1.355 8.74 22.76 0.265

A3 OG
Ap 0–40 10.85 69.64 12.85 17.51 1.412 8.95 17.13 0.395
2Ck 40–100 21.60 51.58 18.83 29.59 1.371 8.83 35.41 0.402

A4 AT
Ap 0–40 14.47 53.30 25.64 21.06 1.032 8.90 19.41 0.490
Ck 40–100 9.83 65.53 14.81 19.66 1.461 8.93 21.26 0.271

A5 PT
Ap 0–40 3.24 77.06 13.75 9.19 1.370 8.83 9.80 0.560
2Bk 40–100 11.99 54.22 18.71 27.07 1.355 8.87 32.37 0.275

X
Ap 0–40 6.88 ± 5.51 72.32 ± 11.67 14.02 ± 6.87 13.66 ± 5.54 1.39 ± 0.22 8.83 ± 0.09 12.70 ± 5.21 0.41 ± 0.11

2Bk/2Ck 40–100 9.57 ± 8.12 58.48 ± 5.58 18.26 ± 2.77 23.26 ± 4.98 1.38 ± 0.05 8.82 ± 0.08 27.59 ± 6.11 0.30 ± 0.06

SD *: Standard deviation; M: Management; SP: Soil sampling; Hor: Horizon; BD: Bulk density; OC: Organic carbon; n = Sample size.
OC-CL: Old cultivated (tilled > 100 years) Calcisols; NC-CL: Newly cultivated (tilled < 12 years) Calcisols.

In general, the surface horizon (topsoil) was weakly developed with low SOC content
ranging from 0.12% (OC-AR: B1-Ap) to 0.56% (NC-CL: PT: A5-Ap). In this sense, the man-
agement type (strongly mechanized) caused the soil homogenization by mixing the surface
horizons in the first 40 cm. Due to the low SOC, they are not diagnostic horizons [38], so
the C content was below the 0.2% (Tables 4 and 5). Similar results were obtained by [54,55]
in CL in the Sfax region, near of the study area, stating that the natural SOC content in
the Ap horizon of these soils was very low (<0.3%) due to climatic conditions, relief, and
lithology. Calcium carbonate content in the deeper horizons (40–100 cm) was variable, with
simultaneous presence of secondary precipitation (calcic horizons). According to [56], the
soils developed from carbonate parent materials are common and belong to the main soil
groups in North Tunisia.

In the remaining soils, the calcium carbonate content was not high, and due to texture
(sandy) and the lack of diagnostic horizons, they were classified as AR. The presence of
weakly developed AR derived from aeolian sediments has also been confirmed by [37].
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Nevertheless, the carbonates’ presence in these soils was expressed using the Calcaric
qualifier (C1, C2, B1, B2).

3.2. Soil Bulk Density and pH in AR and CL

One of the problems that the soils in the study area have is bulk density (BD) quan-
tification, since they are sandy soils with strong wind erosion, together with the high
carbonate concentration. In this sense, the BD determination is very important, since it
affects SOCS analysis [50–52].

The BD study did not show a clear trend; although in most cases BD decreased in
depth, this behavior was expected, since in most cases, the BD reduction prevented an
increase in the SOC concentration (Tables 4 and 5). In the superficial layer (0–40 cm),
our results showed that BD on average were between 1.7 and 1.39 Mg m−3 for OC-AR
and NC-CL, respectively; however, in sub-soil (40–100), the BD ranged between 1.69 and
1.35 Mg m−3 for NC-AR and NC-CL. It is important to note that BD was higher in AR
compared to CL regardless of the study period (long-term and short-term) (Tables 4 and 5).
The studied soils have shown that BD decreased significantly in NC-CL and OC-CL; in
this line, [57] confirmed that in temperate zones, a decrease in BD is related to an increase
in calcium carbonate content. BD values tended to be higher in surface horizons than
in deep layers specifically in CL. This increase can be explained by the effect of tillage,
which reduces the SOM content, increasing soil compaction and increasing the soil DB.
This effect has been shown by [58] in soils with different land uses, indicating a BD increase
in cropland. In addition, this BD increase was more important in the soil that was most
intensively tilled.

Our results show differences in BD between CL and AR, and these differences may be
due to soil type, management practices, and climatic conditions, in addition due to several
factors, such as volume and rainfall intensity, drying and wetting of soil, land position,
and crop type, among others [59]. According to [60], the time factor could be the most
important factor that explains the BD variations in surface and subsurface. In fact, these
authors reported that under conventional tillage, the general trend in surface at 15 cm
depth was a BD increase during the cropping cycle except in the surface rows where BD
was already high at the first measurement time.

The soil pH values showed that pH decreased slightly with increasing depth in newly
and previously cultivated CL and AR (Tables 4 and 5). In the superficial layer, pH values
were between 8.78 and 8.95 in NC-CL and between 8.94 and 9.17 in NC-AR. In the deep
layer, pH values ranged from 8.74 to 8.93 in NC-CL and from 8.81 to 9.12 in NC-AR. In
OC soil, pH values in superficial layers fluctuated between 8.78 and 9.29 in OC-CL and
between 9.10 to 9.25 in OC-AR. In the deep layer, pH values varied between 8.74 and
9.19 in OC-CL and between 9.10 and 9.19 in OC-AR. These results were similar to those
found by [61] in Sfax Tunisia in conventional tillage (cultivated soil) with alkaline pH
(9.17 ± 0.76); since the SOC degradation and the CaCO3 solubilization may affect pH, in
this line, we suggest that the alkaline condition can be caused by the high concentration of
the calcium carbonate.

3.3. Soil Organic Carbon Stock Concentration

All SOCS values of newly cultivated soils (<12 years) and old cultivated soils (>100 years)
are shown in Tables 6 and 7. The results indicate important differences between SOCS in
newly and previously cultivated soils regarding the soil type (CL or AR).



Agriculture 2021, 11, 1267 9 of 15

Table 6. Soil organic carbon stock in Arenosols.

Soil M SP LU Hor Th
(cm)

Gravel
(%)

BD
(Mg m−3)

OC
(g kg−1)

SOCS
Mg ha−1

T-SOCS
Mg ha−1

AR

OC-AR
n = (3 × 2)

B1 OG
Ap 40 1.15 1.701 1.25 8.407 40.783
AC 60 0.60 1.645 3.30 32.376

B2 OG
Ap 40 1.91 1.692 2.90 19.252 35.260
C 60 6.74 1.673 1.71 16.008

B3 OG
Ap 40 1.48 1,705 2.82 18.947 47.436
AC 60 2.60 1.681 2.90 28.489

X
Ap 40 1.51 ± 0.28 1.70 ± 0.01 2.32 ± 0.93 15.535 ± 6.175 41.159 ± 7.363
AC 60 3.31 ± 3.13 1.67 ± 0.02 2.64 ± 0.83 25.624 ± 8.552

NC-AR
n = (3 × 2)

C1 AT
Ap 40 2.98 1.560 2.70 16.346 30.839
C 60 4,32 1.530 1.65 14.493

C2 OG
Ap 40 0.66 1.632 2.90 18.806 28.303
BC 60 0.88 1.681 0.95 9,497

C3 OG
Ap 40 0.09 1.670 1.45 9.677 16.239
C 60 0.44 1.690 0.65 6.562

X
Ap 40 1.24 ± 1.53 1.62 ± 0.06 2.35 ± 0.79 14.943 ± 4.723 25.127 ± 4.367
C 60 1.88 ± 2.13 1.63 ± 0.09 1.08 ± 0.51 10.184 ± 4.010

M: Management; SP: Soil sampling; BD: Bulk density; OC: Organic carbon; SOCS: Soil organic carbon stock; T-SOCS: Total SOCS; n = Sample
size. OC-CL: Old cultivated (tilled > 100 years) Calcisols; NC-CL: Newly cultivated (tilled < 12 years) Calcisols.

Table 7. Soil organic carbon stock in Calcisol.

Soil M SP LU Hor Th
(cm)

Gravel
(%)

BD
(Mg m−3)

OC
(g kg−1)

SOCS
Mg ha−1

T-SOCS
Mg ha−1

CL

OC-CL
n = (3 × 2)

M1 OG
Ap 40 6.91 1.621 1.31 7.907 25.661
2Ck 60 7.47 1.591 2.01 17.754

M2 OG
Ap 40 0.81 1.610 2.60 16.608 39.796
2Bk 60 2.38 1.342 2.95 23.188

M3 OG
Ap 40 23.54 1.330 5.40 21.965 33.607
Ck 60 41.86 1.451 2.30 11.642

M4 OG
Ap 40 16.16 1.570 1.15 6.055 27.596
2Ck 60 6.20 1.501 2.55 21.541

M5 OG
Ap 40 0.73 1.531 2.15 13.070 34.301
2Ck 60 2.28 1.420 2.55 21.231

X
Ap 40 9.63 ± 10.00 1.53 ± 0.12 2.52 ± 1.72 13.121 ± 6.471 32.192 ± 5.536

2Bk/Ck 60 12.04 ± 16.83 1.46 ± 0.09 2.47 ± 0.35 19.071 ± 4.600

NC-CL
n = (3 × 2)

A1 OG
Ap 40 1.56 1.570 2.71 16.753 38.977
2Ck 60 3.80 1.351 2.85 22.224

A2 OG
Ap 40 4.28 1.541 3.51 20.710 42.117
Ck 60 0.64 1.355 2.65 21.407

A3 OG
Ap 40 10.85 1.412 3.95 19.889 45.815
2Ck 60 21.60 1.371 4.02 25.926

A4 AT
Ap 40 14.47 1.032 4.90 17.300 38.721
Ck 60 9.83 1.461 2.71 21.421

A5 PT
Ap 40 3.24 1.370 5.60 29.694 49.371
2Bk 60 11.99 1.355 2.75 19.677

X
Ap 40 6.88 ± 5.51 1.39 ± 0.22 4.13 ± 1.14 20.869 ± 5.209 43.000 ± 3.7625

2Bk/2Ck 60 9.57 ± 8.12 1.38 ± 0.05 3.00 ± 0.58 22.131 ± 2.316

M: Management; SP: Soil sampling; BD: Bulk density; OC: Organic carbon; SOCS: Soil organic carbon stock; T-SOCS: Total SOCS; n = Sample
size. OC-CL: Old cultivated (tilled > 100 years) Calcisols; NC-CL: Newly cultivated (tilled < 12 years) Calcisols.

The SOCS analysis showed that on average, the SOCS content in CL was 20.9 Mg ha−1

and 13.1 Mg ha−1 in topsoil (0–40 cm depth) for NC-CL and OC-CL, respectively. In
sub-soil (1 m depth), the SOCS was 43.0 Mg ha−1 (NC-CL) and 32.2 Mg ha−1 (OC-CL). In
this line, [62] in dryland of southeastern Spain found 52 Mg ha−1 and 70 Mg ha−1 for 0.5 m
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and 1 m depth, respectively, and [63] in southern Spain reported 50.1 Mg ha−1 at 0.25 m
depth and 82 Mg ha−1 at 0.75 m depth. These differences in SOCS between our results and
the results reported by [62,63] could be explained by the impact of tillage that increases
the SOC depletion and reduces the biomass generation. In addition, these discrepancies
(low SOCS content in the studied soils) may reflect a combination of different factors such
as intensive farming practices, climate conditions, soil types, soil age, and topography
area [64,65].

In the AR case, on average, the SOCS contents were as follows: 14.9 Mg ha−1 and
25.1 Mg ha−1 for 0.4 m and 1 m depth, respectively, in NC-AR, and 15.5 Mg ha−1 and
41.2 Mg ha−1 at 0.4 m and 1 m depth, respectively, in OC-AR. Other authors such as [66],
for soil groups in Peninsular Spain (FAO soil map of Peninsular Spain), reported low SOCS
content in AR (22.2 Mg ha−1) in soil profiles deeper than 1 m. Furthermore, [8] indicated
that the SOC content (average values) in the upper 1 m was 31 Mg ha−1 for sandy AR.
These differences between our data and the data indicated by other authors may be due to
soil texture (sandy soils) and tillage. In NC-AR, the SOCS at surface depth (Ap horizon)
was higher than in the C horizon. In this line [67], argued that the SOCS on surface horizon
was greater than in deep soil due to tillage and in turn increasing the physical protection of
native SOC from microbial decomposition. We can increase C inputs into surface soil by
enhancing crop biomass and in turn residue return. With respect to OC-AR, this relation
was inverse (SOCS increased in AC horizon); this effect can be explained by soil texture
(sandy soils) and tillage, because native SOC can be reduced on the surface, which may be
attributed to soluble organic compounds that can leach into deeper layers, increasing the
soil aggregates [68,69].

3.4. Effects of Management Time on Soil Organic Carbon Stock

The results indicated important differences between SOCS (0–100 cm) in newly and
previously cultivated soils regarding the soil type (CL or AR). In NC-CL, the SOCS
(0–100 cm) content ranged from 38.7 Mg ha−1 (NL-CL-AT) to 49.4 Mg ha−1, (NC-CL-
PT); however, lower SOCS were obtained for OC-CL, varying between 25.7 Mg ha−1

(OC-CL-OG) and 39.8 Mg ha−1 (OC-CL-OG). In the CL case, it is important to note that the
land use affected the SOCS content, since on average (0–100 cm), the centenary OG (OC-CL)
had a 25.6% lower SOCS than the young OG (NC-CL). However, in depth (40–100 cm),
no differences were found according to the land use age (OC and NC) with respect to
SOCS. Another aspect to highlight is that in the different crops developed (olive, almond,
and pistachio) in NC-CL, the pistachio (PT) had the highest SOCS content (49.4 Mg ha−1),
whereas the lowest SOCS values were found in almond tree (AT) (38.7 Mg ha−1).

However, the study of AR has shown that the SOCS content on average in the Ap
horizon (0–40 cm) in NC and OC were very similar (OC-AR: 15.5 Mg ha−1; NC-AR:
14.9 Mg ha−1), but nevertheless, in depth (40–100 cm: AC/BC/C horizon), significant
differences were found (OC-AR: 25.6 Mg ha−1; NR-AR: 10.2 Mg ha−1). When comparing
both soils (AR and CL), significant differences were observed between NC-CL and NC-AR;
however, no significant differences were observed between OC-CL and OC-AR. The highest
SOCS contents were obtained in NC-CL regardless of the land tillage time.

In OC-CL, the SOCS (32.2 Mg ha−1) was significantly lower compared to NC-CL
(43 Mg ha−1). However, the SOCS in OC-AR (41.2 Mg ha−1) increased with respect to
NC-AR (25.1 Mg ha−1) (Tables 6 and 7). These results indicate that the SOCS in CL and AR
are linked to land management duration (OC > 100 years and NC < 12 years). In this line,
our results are accordance with [70] in CL in Turkey, which justified an SOC reduction with
intensive soil management under strong wind and water erosion conditions, clarifying
that under these conditions, the SOM is rapidly mineralized in the soil. In addition, soil
management over time may deteriorate the aggregates’ stability [69] and reduce the CL
quality, affecting the soil water storage capacity in rainfed OG [70], these processes therefore
could explain the SOM reduction and the SOCS decreasing in the surface horizon.
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Several studies have found an increase in the SOC content in AR cultivated more than
20 years in different arid areas [71–73]. This is in concordance with our study; however,
according to [74], the SOC could be depleted under intensive tillage, which is in discrepancy
with our findings. In this sense, [75], in the same study area as [76], showed the olive
roots’ presence within the sands; however, it was observed that olive roots were absent
in the calcareous crusts. In the study soils, more than 90% of AR had sandy texture; for
this reason, we suggest that the SOC increase could be due to the olive roots’ presence
since the calcareous crusts are not present. Moreover, the tillage can affect a large part in
the accumulation of the olive roots (along the profile), which may explain our findings.
In the literature, the tillage is assumed to alter the SOCS and also to reduce the SOC
quantity and to deteriorate the aggregates in the soil [10,69]. However, long cultivation
periods with heavy tillage showed a positive effect on SOCS in AR, but due to the climatic
conditions (semi-desert), more research should be carried out in AR to be able to identify
the mechanism that explains this SOCS increase in AR.

Another question to highlight is that OC could be influenced by the abundance of
the olive root mass. In this sense, it should be noted that the olive tree renews its roots
every year and that the root system is better developed in the ventilated area (AR) than in
compacted soils (CL). Another issue to point out is the addition of the organic amendments,
so that some sources of organic amendments may accelerate the SOC mineralization. In the
study area, in some plots, different organic amendments were added (B1, A1, A2, and M1),
the main consequence was a SOCS reduction in the soil surface with respect to the plots
without amendments (C1, A4, A5, and M3) (Tables 2 and 3). However, in other cases, there
was a SOCS increase in the soil surface in modified plots (A3, B2, C2, and M2) compared to
the unmodified plots (M4). This SOCS variability could be explained by the results obtained
by [76], who suggested that depending on the organic amendment type, the SOC balance
(gain or loss of SOC) is conditioned by the incubation period and the organic amendment
type. The increase in SOC of green manure derived from olive pruning residues (dried and
crushed shoots and leaves of olive trees) is too limited (0.13 mg g−1), and the SOC balance
(between the day after amendment and 120 days after) (−0.45) compared to the SOC gain
of compost of manure and olive husk and palm-leaf-based compost are (0.28 mg g−1) and
(0.31 mg g−1), respectively. The SOC balance is (−0.02) and (−0.05) in both compost types.
These results could explain the SOC variability in the study area. However, we must be
careful, as the organic amendments addition can be confounding as they lead to variability
of the SOC content.

In Egypt (semi-desert conditions), Ref. [77] proposed a direct relation between the
cropping history and SOCS (longer cultivation period implies the higher SOCS). This result
is in agreement with AR and in disagreement with CL. We suggest that the soil type plays
an important role in the depletion or the gain of SOC. In the study area, AR are efficient for
SOCS accumulation, especially after 100 years of cultivation and tillage, and they could be
carbon sink and may be involved in reducing carbon dioxide (CO2) emissions. In fact, it
has been reported that soil might represent a sink for atmospheric CO2 [78–80].

3.5. Uncertainties and Bias

The complexity of these soils study is due to the continuous movement of the surface
particles by the wind (eolian processes). For this reason, in demi-desert areas, few studies
have been developed to define SOCS thresholds. In this line, all soil samples were taken
at the same time (synchronic approach) under different management practices at known
durations from an initial reference state, and the SOCS was compared under this initial
reference state [53]. However, due to eolian processes (displacement of particles by the
wind), it could be useful to carry out different samplings throughout the year, to reduce
the wind effect, this question is relevant to establish the thickness of the surface horizon.

However, despite the mistakes, the SOCS study in these soils type (AR and CL) under
these climatic conditions could help us to promote strategies to combat the desertifica-
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tion and climate change. So, this research constitutes a preliminary assessment of SOCS
estimation with different land uses and different management practice durations.

4. Conclusions

The main conclusions derived from this research depend on land use (olive grove,
almond tree, and pistachio tree), land management (tillage and amendments) the practice’s
duration (old plantations > 100 years and new plantations < 12 years) and soil type
(Arenosols and Calcisols) in semi-desert conditions. In this line, the crop type, tillage, and
tillage duration affect to soil bulk density, pH, and SOC for the same soil type.

On average, the SOCS for woody crops in semi-desert areas in CL is 43.0 Mg ha−1

and 32.2 Mg ha−1 (0–100 cm depth) for NC and OC, respectively, and with 40 cm depth,
the SOCS is 20.9 Mg ha−1 (NC) and 13.2 Mg ha−1 (OC). In the case of the AR, the SOCS is
25.1 Mg ha−1 and 41.2 Mg ha−1 (0–100 cm depth) for NC and OC, respectively, and with
40 cm depth, the SOCS is 14.9 Mg ha−1 (NC) and 15.5 Mg ha−1 (OC). According to this, in
dryland (semi-desert conditions), some soils could have a good capacity to increase soil
organic carbon with certain management practices and duration specifically, the AR could
increase the SOCS after 100 years of cultivation and tillage; however, the CL the SOC can
be reduced.

Thus, SOCS content variations were detected and have established pistachio as the
most efficient woody crop related to carbon storage (49.4 Mg ha−1) under the soils and
climatic conditions analyzed in the short term. Therefore, good information to better under-
stand the dynamics of soil organic carbon storage could help to develop and consolidate
the Framework of the United Nation Convention to Combat Desertification (UNCCD) on
the one hand and to minimize greenhouse gases on the other.
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F.B., R.C., H.R., H.B.M., K.G., N.R., N.B., M.Ś., M.G.-R., L.P.-A., and Á.S.-B., writing—review and
editing, F.B., R.C., H.R., H.B.M., K.G., N.R., N.B., M.Ś., M.G.-R., L.P.-A., and Á.S.-B., visualization,
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