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Abstract: The fragile structure of a rootstock predisposes the stem to mechanical damage during
grafting. Thus, it is necessary to take into account the rootstock’s rheological properties under
mechanical compression when designing a clamping mechanism. This study focused on cucurbit,
a typical rootstock for watermelon grafting. Firstly, we adopted a four-element Burgers model
to analyze viscoelastic behavior and deformation characteristics of the rootstock, then conducted
creep tests to obtain the parameters of the viscoelastic model. Next, we developed a model for
the rootstock during holding based on viscoelastic parameters, loading force and contact time.
Moreover, we evaluated the effect of various loading forces and test velocities on creep deformation
to reveal the least damage on the rootstock. Results showed that the influence of loading force
on the creep deformation was greater than test velocity. Finally, the holding test indicated that
the clamping mechanism with silicone rubber can effectively prevent the damage to the stem.
Specifically, the loading force should be controlled below 4 N to reduce the associated damage. Taken
together, our findings provide a theoretical basis for analyzing the holding damage mechanism
during watermelon grafting.

Keywords: Burgers model; clamping mechanism; rootstock; creep test; watermelon grafting

1. Introduction

Watermelon (Citrullus lanatus L.) is an important horticultural crop that is widely
cultivated across the world. Asia contributes nearly 80% of all the world’s watermelon
production. Notably, China is the largest producer of watermelon, accounting for more
than half of the global total production [1]. In China, the cultivated area of watermelon has
been increasing every year due to its higher economic value and rise in consumption [2].
However, watermelons, under a continuous cultivation system, are prone to Fusarium
wilt disease, which causes numerous economic losses and limits production worldwide.
Grafting is an environmentally friendly technology that has been applied in the continuous
cultivation system to alleviate the effects of Fusarium wilt [3–5]. Previous studies have
shown that grafting plays an essential role in the global horticulture industry, as evidenced
by the rise in demand of grafted watermelons due to high yields as well as increased
resistance to biotic and abiotic stresses [6].

Numerous studies have focused on watermelon grafting machines with the aim of
reducing labor intensity and saving costs associated with the approach [7,8]. Since rootstock
damage directly influences the survival rate of the grafted seedling, holding rootstock
represents an important link during grafting. Notably, rootstocks require gentle operation
during holding due to the fragile nature of their soft structure, thus manual grafting needs
to be operated by skilled workers who easily hold the rootstock stems without damaging
them [9,10]. Previous studies have shown that the interaction between the rootstock and the
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clamping mechanism may cause mechanical damage [11]. Therefore, holding the rootstock
stem without damaging is a key obstacle for robot grafting to replace manual labor. During
the process of rootstock holding, damage may result from both aggressiveness of the
clamping mechanism as well as the physical properties of the rootstock. Therefore, the
clamping mechanism applies an additional holding force to maintain the rootstock in a
stable position without relative sliding, which in turn causes damage to the rootstock in the
case of excessive force. Therefore, developing flexible methods that can prevent damage
to the rootstock, based on the physical properties, is imperative to an efficient grafting
process. Some studies have described the optimization of a clamping mechanism aimed
at minimizing damage to the rootstock. For example, Jiang et al. [12] designed a seedling
positioning mechanism for the rootstock, based on a combination of positive pressure
and profile positioning. Their results indicated that the mechanism adjusted the size of
the upper seedling mouth through the forward and reverse threads, thereby realizing
the clamping and positioning of the rootstock via the positioning block and air pressure.
Lou et al. [13] studied the adaptive clamping mechanism for rootstock by arranging springs
at both ends of the clamping mechanism and automatically adjusting the rootstock position
during the clamping process.

Although numerous studies have described structure optimization of the clamping
mechanism for effective adaptive clamping, the physical properties of the clamped objects,
especially vulnerable objects, are often ignored [14]. Agricultural crops, such as potatoes,
apples and pears, usually have viscoelastic properties [15], with several studies typically
applying the Maxwell, Kelvin–Voight and Burgers models to describe the viscoelastic
behavior of these crops [16–18]. For example, Zhang et al. [19] optimized a tomato grasping
system using creep tests based on Burgers model, followed by an analysis of the grasping
process. Zou et al. [14] proposed a rheological model for spinach plants based on the Burg-
ers model and validated the stiffness adjustment capabilities of the clamping mechanism
by simulation and experiments. Although these viscoelastic properties have been applied
to fruits and vegetables, their application on plant stems has not been reported.

In the previous study, a rootstock clamping mechanism was designed and tested. The
test results showed that the mechanism had a better holding effect on rootstocks, with low
damage [20]. To evaluate the rootstock deformation during the holding process, further
studies need to be conducted on the viscoelastic properties of rootstock. In this study, we
focused on the commonly used rootstock, cucurbit, in watermelon grafting. Specifically,
we established a creep model during rootstock holding based on the rootstock clamping
mechanism designed. We performed creep tests, based on the Burgers model, to determine
viscoelastic parameters of the model, then analyzed the effect of various test conditions
on the deformation of the rootstock. Overall, our findings provide a theoretical basis for
analysis of the underlying damage mechanism during rootstock holding.

2. Materials and Methods
2.1. Rootstock Clamping Mechanism

Currently, the clamping mechanism often uses a mechanical clamping method, which
predisposes the rootstock to damage. To solve this problem, a flexible rootstock clamping
device, based on the inclined inserted method, was designed in the previous study [20].
In the previous study, first, the structure of the clamping device was analyzed; then, the
structural parameters and working parameters of the clamping device were optimized
through experiments. This study will employ the clamping device to establish the defor-
mation model and analyze the deformation law of the rootstock stem during holding. The
clamping device mainly included a clamping mechanism, a seedling pressing mechanism
and a pneumatic mechanism. The rootstock stem was held by the clamping mechanism,
while the seedling pressing mechanism pressed the rootstock’s cotyledons onto the clamp-
ing blocks to fully expose the growth point and subsequently facilitate its removal. The
pneumatic mechanism assisted in completing the entire holding process.
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Mechanical damage often occurs when the rootstock is squeezed by the clamping
mechanism during the holding process. Thus, the clamping mechanism represents the core
component of the clamping device. A 3D diagram of the clamping mechanism is shown in
Figure 1. During the holding process, the pneumatic cylinder drives the clamping block
to hold the rootstock stem, while the positioning pieces on two clamping blocks can cross
together to gather the stem in the middle and realize clamping positioning. To moderate the
squeezing effect, the elastic silicone rubbers (food grade and 10◦ hardness) were positioned
in the middle of the clamping blocks while the two rows of negative pressure air holes
were arranged on the upper surface of clamping blocks to hold the rootstock’s cotyledons.
The two clamping blocks were connected through the connecting frame using a connecting
block, which was fixed onto the fixing frame.
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Figure 1. A 3D diagram of the clamping mechanism [20]. 1. Pneumatic cylinder. 2. Clamping
block. 3. Negative pressure air hole. 4. Silicone rubber. 5. Positioning piece. 6. Connecting frame.
7. Rootstock seedling. 8. Connecting hole. 9. Negative pressure inlet. 10. Connecting block.
11. Fixing frame.

2.2. Test Materials

We selected Yongzhen No. 5 cucurbit (Top-Yield Seed Technology Co., Ltd., Ningbo,
China) as the experimental rootstock. Cucurbit seeds were first soaked in water for 12–16 h,
then incubated under a constant temperature (28 ◦C) in a box to accelerate germination.
Upon germination, the seeds were sown in plug trays and lined with a cultivation ma-
trix (vermiculite:perlite:peat soil = 1:1:1). The experiment was conducted when cucurbit
seedlings had one true unfolded leaf and the second true leaf exposed. Representative
pictures of the rootstock seedlings are shown in Figure 2. The holding position was from
the base of cotyledons to the stem, at 25–30 mm, according to the designed clamping
mechanism, with subsequent tests performed on the holding position.
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2.3. Establishment of a Creep Model

Vegetables and fruits belong to viscoelastic material and have rheological proper-
ties. Notably, the rootstock, being a plant, should also present the rheological properties
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under squeezing. Holding the rootstock generates contact force between the rootstock
and the clamping mechanism, which inevitably causes deformations that can either be
elastic or plastic. While elastic deformations are reversible, plastic ones can change the
shape of the rootstock and influence both its internal and external qualities. Therefore,
plastic deformations can cause mechanical damage to the rootstock during the holding
operation [19].

Several rheological models, including the Maxwell, Kelvin and Burgers models, have
been commonly applied [21]. Among them, a four-element Maxwell model—as shown
in Figure 3, comprising two parallel units, each of which consist of elastic and viscous
elements in series—has been effectively applied to approximate the relaxation curve [22].
The Kelvin model, which is a two-element model consisting of an elastic element and a
viscous element in parallel, has been used to approximate creep behavior of rheological
objects at constant stress. On the other hand, the Burgers model, as shown in Figure 3, is a
more complex four-element model than the above models and consists of Maxwell and
Kelvin elements in series [23]. Notably, the Burgers model enables detection of viscous
and elastic deformations under the external forces and also mediates comprehensive
identification of creep properties of viscoelastic materials [24].
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Figure 3. Two viscoelastic models.

In order to prevent the holding damage to the rootstock, silicone rubbers were ar-
ranged in the middle of the clamping blocks to make it flexible. The process of rootstock
holding deformation is shown in Figure 4. Silicone rubber represented the elastic mate-
rial; its mechanical properties under compression were obtained using a universal testing
machine. To simplify the study process, we analyzed the rootstock and silicon rubber as
a whole. In this study, we applied a four-element Burgers model to detect deformations
in the rootstock. A summary of the relationship in the interaction model between the
rootstock and the silicone rubber during the holding process is shown in Figure 5.
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Figure 5. Model of the interaction relationship between the rootstock and the silicone rubber.

Under external force, the deformations can be divided into three layers, namely an
elastic element (i = 1), a set of parallel viscoelastic unit (i = 2) and a viscous element (i = 3).
Based on the relationship between the contact force f (t) and the deformation response x(t)
of the rootstock in each layer, the following equations are obtained [14,25]:

f (t) = f1(t) = f2(t) = f3(t) (1)

x(t) =
3

∑
i=1

xi(t) (2)

f1(t) = k1x1(t) (3)

f2(t) = k2x2(t) + c2
.
x2(t) (4)

f3(t) = c1
.
x3(t) (5)

During the holding process, the rootstock deformation x(t) and clamping force f (t)
satisfy the following equation.

x(t) = xh(t)−
2 f (t)

k3
(6)

where xh(t) denotes total deformation, including deformation of the rootstock and that of
the silicone rubber.

The rheological constitutive equation for rootstocks can be obtained from Equations (1)–(6).

b2
..
xh(t) + b1

.
xh(t) = a2

..
f (t) + a1

.
f (t) + f (t) (7)

where
b2 =

c1c2

k2
(8)

b1 = c1 (9)

a2 =
c1c2(2k1 + k3)

k1k2k3
(10)

a1 =
2k1k2c1 + k3(k2c1 + k1c2 + k1c1)

k1k2k3
(11)

The constitutive equation coefficients a1, a2, b1 and b2 can all be obtained from creep
model parameters k1, k2, c1 and c2, while the creep model parameters can be determined in
creep tests by using the following equation [14,18].

x(t) =
f0

k1
+

f0

c1
t +

f0

k2
(1 − e−

k2
c2

t
) (12)

x(t)—The deformation, mm;
t—The loading time, s;
f 0—The loading force, N;
k1—The instantaneous elasticity coefficient, N·mm−1;
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c1—The series viscous coefficient, N·s·mm−1;
c2—The parallel viscous coefficient, N·s·mm−1;
k2—The retarded elasticity coefficient, N·mm−1.

2.4. Test Methods

Rootstocks were measured using a vernier caliper (Minnet Industrial Co., Ltd., Shang-
hai, China), prior to creep tests. The average sizes of the rootstocks we selected were long
axe 3.40 ± 0.35 mm, short axe 2.61 ± 0.24 mm, cotyledon width 20.12 ± 1.66 mm and
single cotyledon length 31.87 ± 3.14 mm. Creep tests were conducted using the TMS—PRO
texture analyzer (Food Technology Corporation, Sterling, VA, USA), shown in Figure 6.
In summary, the rootstock was first placed horizontally on a stage then the probe moved
rapidly along it at a pre-test velocity. Upon reaching an initial contact force, the probe
continued to move at the test velocity, then stopped and maintained at the state according
to the loading time after reaching the loading force determined by the pre-test. Finally, the
loading force was unloaded, the probe returned to the set height at the post-test velocity
and the single test was completed. The operating parameters of TMS-PRO texture analyzer
are listed in Table 1.
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Table 1. Operating parameters of the texture analyzer.

Parameter Value

Force sensor 100 N
The diameter of probe 50 mm
The set height of probe 10 mm
Pre-test velocity 30 mm/min
Test velocity 10–240 mm/min
Post-test velocity 30 mm/min
Initial contact force 0.1 N
Loading force 1–5 N
Sampling frequency 1000 points/s
Loading Time 30 s

2.5. Test Design and Data Analysis

In this test, we selected test velocity and loading force as test factors for investigating
the effect of rheological parameters on the rootstock deformation. Particularly, test velocity
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was set at 10, 60, 120, 180 and 240 mm/min [26,27], whereas the loading force ranged from
1 to 5 N in increments of 1 N. A total of nine groups for single factor experiments were
carried out (30 rootstock seedlings in each group). In addition, the damage rate of the stem
was calculated for each group in this study and the damage rate is the ratio of the number
of damaged stems to the total number of stems.

All data were preliminarily processed using Microsoft Excel 2013 (Microsoft Corp.,
Redmond, WA, USA), then fitted using custom-written functions in Origin 8.5 (OriginLab,
Northampton, MA, USA) software to obtain the viscoelastic parameters of the creep model.
The analysis of variance (ANOVA) was conducted to evaluate the significance, at p < 0.05,
using SPSS software version 19.0 (IBM, Armonk, NY, USA). The software MATLAB R2019a
(Mathworks, Natick, MA, USA) was used to solve the equations.

3. Results and Discussion
3.1. Compression Test

It is necessary to carry out compression tests on the rootstock stem prior to subjecting
it to creep tests, as this helps in determining the stem’s limit force. Probes with a cylindrical
shape (15 mm diameter and 3 mm thickness) were used in the test. From the compression
test results, shown in Figure 7, an elastic limit appeared during compression. Particularly,
a rootstock’s stem pressure less than the elastic limit implied that the rootstock was in the
safe clamping range; otherwise, it would cause damage to the rootstock. Therefore, the
elastic limit was used as the basis for investigating whether the rootstock was safe. Results
of the compression test revealed an average elastic limit value of 4.45 N.
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3.2. Creep Test

The deformation–time curve of the creep test is shown in Figure 8. During the test,
the rootstock was quickly loaded to a constant load (loading phase), while the probe was
maintained at a constant load for 30 s (creep phase). The results indicated that the defor-
mation gradually increased with the increase in time, although the increase progressively
decreased. Meanwhile, we noted an obvious occurrence in creep deformation, which later
reversed upon unloading. To obtain the rootstock’s viscoelastic parameters during the
holding process, this study only analyzed the creep deformation process (creep phase).

3.3. Single-Factor Experiment Analysis and Discussion

The results from the single factor experiments targeting test velocity are shown in
Figure 9. Notably, a slower test velocity resulted in less creep deformation (Figure 9). This
was attributed to the fact that a slower test velocity caused more adequate deformation
of the rootstock in the loading phase, which in turn weakened the ability of continued
deformation during the creep phase [27]. Figure 10 shows the deformation and damage
rate during creep under various test velocities. The deformation gradually increased with
an increasing test velocity. The trend from 60 mm/min to 180 mm/min, however, was
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not apparent. When the test velocity reached 240 mm/min, the appearance of the plastic
deformation led to the damage of some rootstock stems. Meanwhile, the deformation
showed significant increase. This may be because a larger loading velocity produced a
greater instantaneous impact load when first touching the stem [26].
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The fitting viscoelastic parameters of the creep model under various test velocities are
shown in Table 2. Theoretically, the instantaneous elasticity coefficient k1 tend to be a certain
value in the constant loading force condition. However, from Table 2, the instantaneous
elasticity coefficient k1 showed a slow change. The reason was that the rootstock was not a
rigid material and the force transmission inside the rootstock was nonlinear, resulting in a
different force on each section [28]. Moreover, no obvious rule for the retarded elasticity
coefficient k2, series viscous coefficient c1 and parallel viscous coefficient c2 was observed
as the test velocity increased. Consequently, the loading velocity less than 240 mm/min
should be selected in follow-up studies to reduce the test error. In addition, Figure 9 and
Table 2 show that the Burgers model offered a good fitting (R2 > 0.98) for the creep curves
of rootstock.

Table 2. The fitting viscoelastic parameters of the creep model under various test velocities.

Test Velocity/
(mm/min) k1/N·mm−1 k2/N·mm−1 c1/N·s·mm−1 c2/N·s·mm−1 R2

10 6.23 74.48 3031.19 313.93 0.992
60 5.33 52.25 2486.59 159.50 0.991
120 6.86 53.98 2755.67 154.58 0.990
180 5.28 79.03 2882.64 225.19 0.982
240 5.66 65.28 2823.59 254.57 0.989

From the creep test under various test velocities, a larger loading velocity may cause
damage to the stem, which in turn increased the test error. A smaller velocity increased
the test time to observe the stem deformation and it would affect the test results. Due to
good fitting at 60 mm/min, a loading velocity of 60 mm/min was used for subsequent
testing. The results from the single factor experiment targeting the loading force are
shown in Figure 11. In the creep test, the deformation produced by instantaneous elasticity
coefficient k1, retarded elasticity coefficient k2, series viscous coefficient c1 and parallel
viscous coefficient c2 increased with the increasing time and force. However, because
the growth of deformation produced by c1 was slower than k1, the creep curve showed a
slowly rising process. As shown in Figure 11, the creep deformation increased gradually
with an increase in loading force. The increase first exhibited a relatively wide variation
before leveling off. When the loading force was smaller, the deformation would not
increase with the increase in loading time due to the strain saturation phenomena [29].
Figure 12 shows the deformation and damage rate during the creep under various loading
forces. As the loading force increased, the creep deformation gradually increased. When
the loading force approached the elastic limit, some rootstock stems underwent plastic
deformation, which in turn caused damage to the stems. The damage increased with a
further increase in loading force, thus resulting in the increase in creep deformation. The
same conclusion was obtained by Wang [30] and Wu [31]. Therefore, the holding force
should be controlled below 4 N to reduce the creep deformation and prevent holding
damage during rootstock holding.

The results of the fitting viscoelastic parameters for the creep model under various
loading forces are shown in Table 3. As seen in Table 3, a stronger loading force gener-
ated a larger instantaneous elasticity coefficient k1 which was accompanied by a larger
retarded elasticity coefficient k2. These results were consistent with findings from related
studies [32,33]. Additionally, the series viscous coefficient c1 and parallel viscous coefficient
c2 were also greater. From Figure 11 and Table 3, it can be seen that the fitting viscoelastic
parameters from the creep model were all greater than 0.98, which indicated that the
Burgers model can appropriately express the rootstock’s creep characteristics.



Agriculture 2021, 11, 1266 10 of 14

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 14 
 

 

the loading force approached the elastic limit, some rootstock stems underwent plastic 
deformation, which in turn caused damage to the stems. The damage increased with a 
further increase in loading force, thus resulting in the increase in creep deformation. The 
same conclusion was obtained by Wang [30] and Wu [31]. Therefore, the holding force 
should be controlled below 4 N to reduce the creep deformation and prevent holding 
damage during rootstock holding. 

 
Figure 11. The representative deformation with respect to time under various loading forces. Note: 
the test velocity was 60 mm/min. 

 
Figure 12. The deformation and damage rate during creep under various loading forces. Note: the 
test velocity was 60 mm/min. 

The results of the fitting viscoelastic parameters for the creep model under various 
loading forces are shown in Table 3. As seen in Table 3, a stronger loading force generated 
a larger instantaneous elasticity coefficient k1 which was accompanied by a larger retarded 
elasticity coefficient k2. These results were consistent with findings from related studies 
[32,33]. Additionally, the series viscous coefficient c1 and parallel viscous coefficient c2 
were also greater. From Figure 11 and Table 3, it can be seen that the fitting viscoelastic 
parameters from the creep model were all greater than 0.98, which indicated that the Burg-
ers model can appropriately express the rootstock’s creep characteristics. 

  

Figure 11. The representative deformation with respect to time under various loading forces. Note:
the test velocity was 60 mm/min.

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 14 
 

 

the loading force approached the elastic limit, some rootstock stems underwent plastic 
deformation, which in turn caused damage to the stems. The damage increased with a 
further increase in loading force, thus resulting in the increase in creep deformation. The 
same conclusion was obtained by Wang [30] and Wu [31]. Therefore, the holding force 
should be controlled below 4 N to reduce the creep deformation and prevent holding 
damage during rootstock holding. 

 
Figure 11. The representative deformation with respect to time under various loading forces. Note: 
the test velocity was 60 mm/min. 

 
Figure 12. The deformation and damage rate during creep under various loading forces. Note: the 
test velocity was 60 mm/min. 

The results of the fitting viscoelastic parameters for the creep model under various 
loading forces are shown in Table 3. As seen in Table 3, a stronger loading force generated 
a larger instantaneous elasticity coefficient k1 which was accompanied by a larger retarded 
elasticity coefficient k2. These results were consistent with findings from related studies 
[32,33]. Additionally, the series viscous coefficient c1 and parallel viscous coefficient c2 
were also greater. From Figure 11 and Table 3, it can be seen that the fitting viscoelastic 
parameters from the creep model were all greater than 0.98, which indicated that the Burg-
ers model can appropriately express the rootstock’s creep characteristics. 

  

Figure 12. The deformation and damage rate during creep under various loading forces. Note: the
test velocity was 60 mm/min.

Table 3. The fitting viscoelastic parameters of creep model under various loading forces.

Loading Force/N k1/N·mm−1 k2/N·mm−1 c1/N·s·mm−1 c2/N·s·mm−1 R2

1 3.40 28.58 1081.87 69.74 0.985
2 4.21 43.58 3220.18 130.12 0.987
3 5.33 52.25 2486.59 159.50 0.991
4 6.59 73.50 2643.97 152.66 0.991
5 6.91 71.40 3140.74 151.67 0.991

The analysis of variance (one-way ANOVA) results, indicating the effect of test factors
(loading force and test velocity) on creep deformation, are shown in Table 4. It can be seen
from Table 4 that the p-value for loading force and test velocity were both less than 0.05,
indicating that the loading force and test velocity significantly affected creep deformation
(p < 0.05). Moreover, the F-value indicated that the influence of loading force on the creep
deformation was greater than test velocity. Therefore, more attention should be directed to
adjusting the loading force than test velocity to prevent holding damage under conditions
of effective holding during the holding process.
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Table 4. ANOVA results for creep deformation.

Source Sum of Squares df Mean Square F-Value p-Value Significant

Loading force 0.069 4 0.017 6.181 <0.0001 Yes
Test velocity 0.039 4 0.01 3.515 0.008 Yes

Error 0.724 261
Total 3.950 270

3.4. Holding Test for Rootstock

To investigate the damage to rootstocks in holding, a clamping mechanism was used
to perform the holding test. The physical drawing of the clamping mechanism is shown
in Figure 13. The contact force was measured by a force sensor (2 kg, Chengke Electronic
Technology Co., Ltd., Shanghai, China). Unlike the texture analyzer, the force during
holding can be only adjusted by changing the velocity of the pneumatic cylinder. The
acceleration sensor (50 g, Chengke Electronic Technology Co., Ltd., Shanghai, China)
measured acceleration, which was then integrated to obtain the velocity.
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The representative force–time curve with and without silicone rubber is shown in
Figure 14. From Figure 14, the force without silicone rubber was greater than that with
silicone rubber under the same velocity condition. Moreover, the clamping block produced
a large instantaneous impact load without silicone rubber when in contact with just the
stem. This was consistent with the results obtained by the creep test. However, the force–
time curve was relatively stable with silicone rubber. This is because the deformation
occurred while force acting on the silicone rubber and a part of energy was converted to
deformation energy of silicone rubber, thus the force acting on the stem decreased. The
results indicated that the damage rate exceeded 90% without silicone rubber, while there
was no damage with silicone rubber.
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4. Conclusions

In this study, the four-element Burgers model was utilized to present the viscoelastic
behavior and the deformation characteristics of the rootstock. Creep tests were conducted
on the rootstocks to obtain the viscoelastic parameters of the Burgers model, using cucurbit
(commonly used in watermelon grafting) as an example. The obtained results indicated
that this model fitted well and could describe the creep characteristics of the rootstock.
Additionally, we analyzed the effect of viscoelastic parameters on rootstock deformation
under various test conditions and found that creep deformation gradually increased with
the increase in loading force and test velocity. Notably, the rootstock stems showed some
damage due to the occurrence of plastic deformation when the loading force was 4 N,
which significantly affected the holding effect. One-way ANOVA results showed that the
influence of the loading force on the creep deformation was greater than the test velocity.
The holding test results without silicone rubber was in accordance with the creep test.
Additionally, the clamping mechanism with silicone rubber can effectively prevent the
damage to the stem, compared to without silicone rubber. Taken together, these results
affirm the need to control the holding force below 4 N to reduce creep deformation and
prevent holding damage during the watermelon grafting. These findings are expected to
guide future explorations into the damage mechanism during rootstock holding.
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