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Abstract: The aim of this study was to develop models based on linear dimensions or shape factors,
and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits
of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters
were calculated using image processing. The pits of different sour cherry cultivars statistically
significantly differed in terms of selected dimensions and shape factors. The discriminative models
built based on linear dimensions produced average accuracies of up to 95% for distinguishing the pit
cultivars in the case of ‘Nefris’ vs. ‘Kelleris’ and 72% for all four cultivars. The average accuracies for
the discriminative models built based on shape factors were up to 95% for the ‘Nefris’ and ‘Kelleris’
pits and 73% for four cultivars. The models combining the linear dimensions and shape factors
produced accuracies reaching 96% for the ‘Nefris’ vs. ‘Kelleris’ pits and 75% for all cultivars. The
geometric parameters with high discriminative power may be used for distinguishing different
cultivars of sour cherry pits. It can be of great importance for practical applications. It may allow
avoiding the adulteration and mixing of different cultivars.

Keywords: sour cherry cultivars; pit images; linear dimensions; shape factors; discrimination

1. Introduction

Sour (tart) cherry (Prunus cerasus L.) is one of the two main species from the Prunus
genus, besides sweet cherry (Prunus avium L.), with fruits globally traded. These fruit crops
have been used by humans since 5000–4000 BCE, which was determined based on cherry
pits from archaeological sites. Nowadays, there are many sour cherry cultivars. Due to the
health benefits of cherries, tree crop cultivation should increase, and processing technology
should be improved [1]. The cherry fruit has low caloric content and significant amounts
of nutrients and bioactive components, e.g., polyphenols, fiber, vitamin C, carotenoids,
potassium, as well as melatonin, serotonin, and tryptophan. A small number of sour
cherries is consumed fresh. Up to 97% of fruits are processed mainly for cooking or
baking [2]. Before processing, cherries are usually accurately pitted, as the unintended pits
in processed cherry products may be a major concern for consumers (potential for injury)
and processors (litigation) [3]. The pit of cherry fruit accounts for 6.30% by weight or even
7–15% of the whole fruit and it consists of the shell (75–80%) and kernel (20–25%) [4,5].
The very hard shell contains sclerenchyma and fiber matters. The kernel contains dietary
proteins and fiber, and it has antimicrobial and antioxidant activities. The kernels may be
used for the production of oils for the pharmaceutical, perfume and cosmetic industries or
the production of biodiesel [4]. Additionally, cherry pit biomass may be potentially used
for conversion into biochar for water remediation. This biomass may be also cofired with
coal for the generation of electricity. The cherry pit biochar may be applied as catalyst
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supports, alkaline-functionalized gas adsorbents, electrode materials, or soil amendments
for greenhouse crop production [6–11]. However, pits are still an important waste disposal
problem for the processing industry [4]. The traditional waste disposal should be replaced
by greener ways of cherry pit biomass application [11].

Depending on the extraction procedure and roasting process, the nutrients may pass
from the sour cherry kernels into the oil at different percentages [12]. The sour cherry
cultivar may also influence the oil content of the kernel that is about 17–36% [5]. The
cultivar of cherry kernel also has a great effect on lipophilic bioactive compounds, e.g.,
sterols, essential fatty acids, tocopherols, tocochromanols, squalene, carotenoids [5,13]. Due
to the dependence of the chemical properties of sour cherry kernels on the cultivar, correct
cultivar recognition may be important in practice. The processing of cherry kernels may
require a uniform sample of kernels with the same characteristics. Some cultivars with
certain chemical properties may be more desirable for processing than others. Therefore,
there may be a need for authentication to avoid adulteration and mixing different cultivars.

The application of machine learning may be useful for plant research. Machine
learning as a sub-class of artificial intelligence is an important topic in the computer field.
Currently, researchers strive to increase the precision of algorithms and the intelligence of
machines. Learning became a significant part of machines. Due to computer vision, which
is a domain of machine learning, machines can be trained for processing, analyzing, and
recognizing visual data [14]. Machine learning is intended to enable machines to learn
using the available data and make predictions. The learning of computers automatically
by themselves without human intervention may be important for precise prediction [15].
The prediction models developed using machine learning and artificial intelligence can
provide promising and accurate results. The models based on artificial intelligence can
learn from existing data and then predict even nonlinear phenomena related to, e.g.,
prediction of food production, crop yield, or identification of the number of immature
fruits [16]. The application of machine learning in modern agriculture is important due
to the increasing call for food, the necessity for increasing the effectiveness of agricultural
practices and decreasing the environmental burden. Machine learning ensures an increase
in computational power compared to conventional techniques of data processing, which
can be incapable of extracting all necessary information from field data and thus meeting
the growing demands of smart farming [17]. Machine learning focused on the detection of
disease, species, and weeds in crops, the prediction of crop yield and soil parameters, and
the classification of crop images to evaluate the plant quality and yield can be one of the
key components of the agricultural revolution [18].

In the case of the seed industry, machine learning may be important for the production,
correct cultivar identification, identification of contaminations, and quality control. The
use of machine vision techniques can result in more accurate and faster classification
results compared to the manual inspection performed by specialists based on the color
and morphological features of seeds [19]. Machine learning caused significant advances
in seed research by providing decision-making support and facilitating the development
of robust approaches in the seed industry [20]. The usefulness of the application of
machine learning for seed classification was reported in the available literature. The
machine learning models were built based on various image features. In the case of cultivar
discrimination of fruit seeds or pits and stones, the high efficiency of models based on
texture parameters was reported for pepper seeds [21], apple seeds [22], peach seeds and
stones [23], sour cherry pits [24], and sweet cherry pits [25]. Furthermore, the geometric
features proved to be useful for the pit or stone discrimination for different cultivars of
apricot [26], plum [27–29], olive [30], jujube [31], and sweet cherry [25]. However, in the
present study, extensive research using dozens of geometric parameters, including linear
dimensions and shape factors, was performed for the first time to discriminate sour cherry
pits ‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’ using different classifiers (machine
learning algorithms). The innovative models based on the sets of selected linear dimensions,
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shape factors, and combined linear dimensions and shape factors were developed. This
approach to distinguishing cultivars of sour cherry pits is original.

The aim of this study was to develop discriminative models based on geometric fea-
tures including linear dimensions and, separately, shape factors, as well as the combination
of linear dimensions and shape factors for the discrimination of the sour cherry pits of
different cultivars. The discriminative power of geometric parameters for distinguishing
the pairs of cultivars and all four cultivars was compared.

2. Materials and Methods
2.1. Materials

The pits of sour cherries ‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, and ‘Kelleris’ were
used in the research. The cherries were collected from the Experimental Orchard of the Na-
tional Institute of Horticultural Research in Dąbrowice near Skierniewice (Poland). The pits
were manually extracted from the fruits. For each cultivar, ‘Debreceni botermo’, ‘Łutówka’,
‘Nefris’, ‘Kelleris’, two hundred pits were sampled, washed, cleaned and air-dried.

2.2. Image Analysis

The pits were imaged using a flatbed scanner. The sour cherry pits were scanned on a
black background at the 1200 dpi resolution and the pit images were saved in TIFF. The
images of sour cherry pits were analyzed with the use of Mazda software (Łódź University
of Technology, Institute of Electronics, Poland) [32]. For each pit, the region of interest (ROI)
including the whole pit was determined. A caliper image was used for the calibration.
Then, for each pit with overlaid ROI, the geometric parameters were computed. Among
the linear dimensions, the following features were determined: length (L); width (S); length
of the skeletonized object (Lsz); area of circumscribing ellipse on the object (FE); maximal
length of the ellipse axis on the object (LmaxE); minimal length of the ellipse axis on the
object (LminE); area of circumscribing circle (Fd2); radius of circumscribing circle (D2); profile
specific perimeter (Ul); Martin’s maximal radius (Mmax); Martin’s minimal radius (Mmin);
vertical Feret diameter (Fv); convex perimeter (Uw); object boundary specific perimeter
(Ug); equivalent circular area diameter (Spol); total object specific area (Ft); horizontal Feret
diameter (Fh); maximal Feret diameter (Fmax); minimal Feret diameter (Fmin); Martin’s
average radius (Maver). The calculated shape factors included: elliptic shape factor (W1);
circular shape factor (W2); circularity (W3); folding factor (W4); mean thickness factor (W5);
elongation and irregularity ratio (W7); rectangular aspect ratio (W8); area ratio (W9); radius
ratio (W10); diameter range (W11); roundness ((4 π F)/(π Smax

2)) (W12); roundness (Smax/F)
(W13); roundness (F/Smax

3) (W14); roundness (4F/(π Smin Smax)) (W15); standard devia-
tion of all radii (SigR); Haralick ratio (RH); Blair–Bliss ratio (RB); Malinowska ratio (RM);
Feret ratio (Fh/Fv) (RF); Feret ratio (Fmax/Fmin) (RFf); circularity (Rc1/Rc2) (Rc); circularity
(2
√

(F/π)) (Rc1); circularity (Ug/π) (Rc2).

2.3. Statistical Analysis

The mean values of the linear dimensions and shape factors of the pits of sour cherries
‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, and ‘Kelleris’ were compared to determine the
differences in parameters between sour cherry cultivars. The STATISTICA (StatSoft Inc.,
Tulsa, OK, USA) software program was used at a significance level of p ≤ 0.05. The
normality of the distribution was checked using Kolmogorov–Smirnov, Lilliefors and
Shapiro–Wilk tests. The Newman–Keuls test was used for the comparison of the means.
The homogenous groups of sour cherry pits had no statistically significant differences
in the geometric parameters and were indicated by the same letters in columns. The
separate groups in terms of linear dimensions or shape factors with statistically significant
differences were indicated by different letters in columns.

The usefulness of geometric parameters including linear dimensions and shape factors
for distinguishing the pits of sour cherries belonging to different cultivars was analyzed
using the WEKA (Machine Learning Group, University of Waikato) application [33]. In the



Agriculture 2021, 11, 1212 4 of 12

first step of the analysis, the discriminative models were built based on linear dimensions.
In the next step, the models based on shape factors were developed. Then, the discrimi-
native models were built based on datasets of the combined linear dimensions and shape
factors. The discriminative models were developed separately for each pair of cultivars
and all four cultivars. The attribute selection to choose the parameters with the highest
discriminative power was carried out using the Best First with the correlation-based feature
selection (CFS) subset evaluator, the Ranker method with the Info Gain attribute evaluator,
the Ranker method with the OneR attribute evaluator, the Genetic Search method with the
CFS subset evaluator. The criterion for evaluating the usefulness of datasets selected with
the use of search methods was the highest correctness of discrimination. However, a great
reduction in the number of parameters decreased the correctness of the discrimination and
analyzes were performed with the exclusion of only a few attributes. The datasets were
manually split into a training (70%) and test set (30%). The application of a separate test set
that was not used for training ensured the objectivity of the results. The discrimination
was performed using the classifiers (machine learning algorithms): NaiveBayes, BayesNet
(from the group of Bayes), JRip, PART (Rules), J48, RandomTree (decision trees), Logistic,
MultilayerPerceptron (Functions), MultiClassClassifier, FilteredClassifier (Meta), and IBk,
KStar (Lazy) [34]. Based on preliminary observations, the highest classification accuracy
for discriminative models was found for the Logistic method and the results obtained for
this classifier are shown in this paper. The results are presented as confusion matrices and
average accuracies (rounded to integers), as well as the values of the true positive (TP)
rate, precision, F-measure, receiver operating characteristic (ROC) area and precision–recall
(PRC) area calculated using the Weka application based on the formulas:

TP Rate = TP/(TP + FN) (1)

Precision = TP/(TP + FP) (2)

F-Measure = 2 × ((Precision × Recall)/(Precision + Recall)) (3)

Recall = TP/(TP + FN) (4)

where TP is true positive; FP is false positive; FN is false negative.

3. Results and Discussion

The linear dimensions of ‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, and ‘Kelleris’ cherry
pits were compared to determine the differences in the mean values between cultivars
(Table 1). All four pit cultivars were different in the terms of their basic linear dimensions,
such as length (L) and width (S). Each cultivar formed a separate homogenous group. The
‘Kelleris’ pits were characterized by the highest mean values of the parameter L equal to
12.14 mm. Subsequently, the length of the ‘Nefris’, ‘Łutówka’, and ‘Debreceni botermo’ pits
was 11.80 mm, 11.54 mm, and 11.33 mm, respectively. The mean value of parameter S was
the highest for the ‘Nefris’ pits (10.49 mm), followed by ‘Debreceni botermo’ (10.09 mm),
‘Łutówka’ (9.87 mm), and ‘Kelleris’ (9.49 mm). The four homogenous groups were also
determined in the case of the length of the skeletonized object (Lsz), Martin’s minimal
radius (Mmin), and minimal Feret diameter (Fmin). In the case of these parameters, the
‘Nefris’ pits were characterized by the highest values (Lsz—174.71 mm, Mmin—4.92 mm,
Fmin—10.29 mm) and the ‘Kelleris’ pits had the lowest values (Lsz—125.55 mm, Mmin—
4.45 mm, Fmin—9.32 mm). In the case of many parameters (Uw, Ug, Spol, Ft, Fh, Maver), the
‘Debreceni botermo’, ‘Łutówka’, and ‘Kelleris’ pits were in one homogenous group and
the ‘Nefris’ pits formed the second homogenous group with a statistically significantly
different mean value.
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Table 1. Comparison of the mean values of linear dimensions of ‘Debreceni botermo’, ‘Łutówka’,
‘Nefris’, and ‘Kelleris’ cherry pits.

Parameter

Cultivar

‘Debreceni
Botermo’ ‘Łutówka’ ‘Nefris’ ‘Kelleris’

L (mm) 11.33 a 11.54 b 11.80 c 12.14 d

S (mm) 10.09 c 9.87 b 10.49 d 9.49 a

Lsz (mm) 141.68 b 150.88 c 174.71 d 125.55 a

FE (mm2) 116.98 a 114.59 a 119.62 b 121.63 b

LmaxE (mm) 12.42 a 12.23 b 12.42 a 12.68 c

LminE (mm) 11.96 a 11.90 a 12.23 b 12.18 b

Fd2 (mm2) 120.41 a 117.07 b 121.14 a 125.20 c

D2 (mm) 6.18 a 6.10 b 6.20 a 6.30 c

Ul (mm) 100.37 a 101.16 a 105.06 b 100.83 a

Mmax (mm) 6.27 a 6.21 b 6.31 a 6.39 c

Mmin (mm) 4.67 c 4.58 b 4.92 d 4.45 a

Fv (mm) 10.69 bc 10.44 a 10.86 c 10.59 ab

Uw (mm) 34.44 a 34.19 a 35.60 b 34.52 a

Ug (mm) 100.45 a 101.54 a 105.19 b 101.50 a

Spol (mm) 10.70 a 10.62 a 11.12 b 10.67 a

Ft (mm2) 90.20 a 88.74 a 97.31 b 89.57 a

Fh (mm) 11.09 a 11.13 a 11.59 b 11.23 a

Fmax (mm) 12.34 a 12.15 b 12.35 a 12.58 c

Fmin (mm) 9.78 c 9.63 b 10.29 d 9.32 a

Maver (mm) 5.36 a 5.32 a 5.56 b 5.35 a

L—length; S—width; Lsz—length of the skeletonized object; FE—area of circumscribing ellipse on the object;
LmaxE—maximal length of the ellipse axis on the object; LminE—minimal length of the ellipse axis on the object;
Fd2—area of circumscribing circle; D2—radius of circumscribing circle; Ul—profile specific perimeter; Mmax—
Martin’s maximal radius; Mmin—Martin’s minimal radius; Fv—vertical Feret diameter; Uw—convex perimeter;
Ug—object boundary specific perimeter; Spol—equivalent circular area diameter; Ft—total object specific area;
Fh—horizontal Feret diameter; Fmax—maximal Feret diameter; Fmin—minimal Feret diameter; Maver—Martin’s
average radius. a,b,c,d—the same letters in rows denote no statistical differences between samples.

The mean values of the shape factors of ‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’,
and ‘Kelleris’ cherry pits are presented in Table 2. In terms of some parameters, such
as mean thickness factor (W5), compactness (W6), area ratio (W9), roundness (W12) and
(W14), Malinowska ratio (RM), and circularity (Rc), the pits were statistically significantly
different, and each cultivar formed a separate homogenous group. For one parameter,
Feret ratio (RF), the pits belonging to all cultivars were in one homogenous group with
no statistically significant differences between the mean values. In the case of most shape
factors, elliptic shape factor (W1), circular shape factor (W2), circularity (W3), elongation
and irregularity ratio (W7), rectangular aspect ratio (W8), radius ratio (W10), diameter range
(W11), roundness (W13) and (W15), standard deviation of all radii (SigR), Haralick ratio (RH),
Blair–Bliss ratio (RB), and Feret ratio (RFf), three homogenous groups were formed, and in
most cases (W7, W10, W11, W13, SigR, RH, RFf), the ‘Debreceni botermo’ and ‘Łutówka’ pits
were in one group.
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Table 2. Comparison of the mean values of shape factors of ‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’,
and ‘Kelleris’ cherry pits.

Parameter

Cultivar

‘Debreceni
Botermo’ ‘Łutówka’ ‘Nefris’ ‘Kelleris’

W1 (-) 1.04 a 1.03 b 1.02 c 1.05 a

W2 (-) 0.11 c 0.11 b 0.11 a 0.11 a

W3 (-) 111.91 b 115.58 c 113.67 a 113.83 a

W4 (-) 2.91 a 2.96 b 2.95 b 2.92 a

W5 (-) 0.67 c 0.61 b 0.57 a 0.75 d

W6 (-) 0.09 b 0.09 d 0.09 a 0.09 c

W7 (-) 1.30 a 1.30 a 1.24 b 1.38 c

W8 (-) 0.89 a 0.86 c 0.89 a 0.78 b

W9 (-) 1.27 a 1.28 c 1.27 b 1.29 d

W10 (-) 0.75 a 0.74 a 0.78 c 0.70 b

W11 (-) 2.57 a 2.52 a 2.52 b 3.27 c

W12 (-) 2.37 b 2.41 c 2.55 d 2.26 a

W13 (-) 0.14 a 0.14 a 0.13 b 0.14 c

W14 (-) 0.05 b 0.05 c 0.05 d 0.04 a

W15 (-) 0.95 b 0.96 c 0.97 a 0.97 a

SigR (-) 204.90 a 198.94 a 133.71 b 322.29 c

RH (-) 1.00 a 1.00 a 1.00 c 0.99 b

RB (-) 9.35 b 9.28 ab 9.77 c 9.24 a

RM (-) 10.94 a 11.17 d 11.04 b 11.11 c

RF (-) 1.05 a 1.08 a 1.08 a 1.08 a

RFf (-) 0.79 a 0.79 a 0.83 c 0.74 b

Rc (-) 0.33 d 0.33 a 0.33 c 0.33 b

Rc1 (-) 10.70 a 10.62 a 11.12 b 10.67 a

Rc2 (-) 31.97 a 32.32 a 33.48 b 32.31 a

W1—elliptic shape factor; W2—circular shape factor; W3—circularity; W4—folding factor; W5—mean thickness
factor; W6—compactness; W7—elongation and irregularity ratio; W8—rectangular aspect ratio; W9—area ratio;
W10—radius ratio; W11—diameter range; W12—roundness ((4 π F)/(π Smax

2)); W13—roundness (Smax/F); W14—
roundness (F/Smax

3); W15—roundness (4F/(π Smin Smax)); SigR—standard deviation of all radii; RH—Haralick
ratio; RB—Blair–Bliss ratio; RM—Malinowska ratio; RF—Feret ratio (Fh/Fv); RFf—Feret ratio (Fmax/Fmin); Rc—
circularity (Rc1/Rc2); Rc1—circularity (2

√
(F/π)); Rc2—circularity (Ug/π). a,b,c,d—the same letters in rows denote

no statistical differences between samples.

In the first step of the discriminant analysis, the cherry pits were compared in pairs
including two different cultivars. The results of the discrimination based on selected linear
dimensions are presented in Table 3. The highest average accuracy of 95% was determined
in the case of distinguishing between ‘Nefris’ and ‘Kelleris’ pits. The confusion matrix
revealed that 95% of the pits belonging to ‘Nefris’ were correctly included in the class
‘Nefris’ and 5% incorrectly assigned to the class ‘Kelleris’, whereas 94% of ‘Kelleris’ pits
were correctly included in the class ‘Kelleris’ and 6% were incorrectly included in the
class ‘Nefris’. For these pit cultivars, the values of the true positive (TP) rate (‘Nefris’—
0.95, ‘Kelleris’—0.94), precision (‘Nefris’—0.94, ‘Kelleris’—0.96), F-measure (‘Nefris’—0.94,
‘Kelleris’—0.95), ROC (Receiver Operating Characteristic) Area (‘Nefris’—0.97, ‘Kelleris’—
0.97) and precision–recall (PRC) area (‘Nefris’—0.95, ‘Kelleris’—0.95) were the highest.
It may indicate that the ‘Nefris’ and ‘Kelleris’ pits were the most different in terms of
linear dimensions. It confirmed the results of the comparison of the mean values of linear
dimensions (Table 1) that indicated that for most parameters, the ‘Nefris’ and ‘Kelleris’ pits
were not in one homogenous group and in some cases formed two of the most distant
groups. The lowest average accuracies were observed for the discrimination of the pits
of cherry ‘Łutówka’ vs. ‘Nefris’ (78%) and ‘Debreceni botermo’ vs. ‘Łutówka’ (84%). In
these cases, the linear dimensions had the lowest discriminative power. The ‘Łutówka’
and ‘Nefris’ pits, as well as those of ‘Debreceni botermo’ and ‘Łutówka’ were the most
similar in terms of length. The difference in length between the ‘Łutówka’ and ‘Nefris’ pits
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was 0.26 mm and the difference between the ‘Debreceni botermo’ and ‘Łutówka’ pits was
equal to 0.21 mm (Table 1). In the case of other pairs of cherry pits, an average accuracy of
90% was found for distinguishing ‘Debreceni botermo’ vs. ‘Kelleris’, 87% for ‘Debreceni
botermo’ vs. ‘Nefris’ and ‘Łutówka’ vs. ‘Kelleris’ (Table 3).

Table 3. The discrimination performance for the pair comparison of the pits of cherry ‘Debreceni botermo’, ‘Łutówka’,
‘Nefris’, and ‘Kelleris’ based on selected linear dimensions.

Pair
Comparison Predicted Class (%) Actual

Class

Average
Accuracy

(%)
TP Rate Precision F-

Measure
ROC
Area

PRC
Area

‘Debreceni
botermo’ vs.
‘Łutówka’

‘Debreceni
botermo’ ‘Łutówka’

85 15 ‘Debreceni
botermo’ 84

0.85 0.86 0.86 0.91 0.92

16 84 ‘Łutówka’ 0.84 0.82 0.83 0.91 0.87

‘Debreceni
botermo’ vs.

‘Nefris’

‘Debreceni
botermo’ ‘Nefris’

87 13 ‘Debreceni
botermo’ 87

0.87 0.90 0.88 0.93 0.94

13 87 ‘Nefris’ 0.87 0.84 0.85 0.93 0.92

‘Debreceni
botermo’ vs.

‘Kelleris’

‘Debreceni
botermo’ ‘Kelleris’

92 8 ‘Debreceni
botermo’ 90

0.92 0.91 0.91 0.95 0.93

11 89 ‘Kelleris’ 0.89 0.90 0.89 0.95 0.93

‘Łutówka’ vs.
‘Nefris’

‘Łutówka’ ‘Nefris’
78 22 ‘Łutówka’

78
0.78 0.79 0.78 0.85 0.85

22 78 ‘Nefris’ 0.78 0.76 0.77 0.85 0.82

‘Łutówka’ vs.
‘Kelleris’

‘Łutówka’ ‘Kelleris’
87 13 ‘Łutówka’

87
0.87 0.86 0.87 0.92 0.91

13 87 ‘Kelleris’ 0.87 0.87 0.87 0.92 0.92

‘Nefris’ vs.
‘Kelleris’

‘Nefris’ ‘Kelleris’
95 5 ‘Nefris’

95
0.95 0.94 0.94 0.97 0.95

6 94 ‘Kelleris’ 0.94 0.96 0.95 0.97 0.95

TP Rate—true positive rate; ROC Area—receiver operating characteristic area; PRC Area—precision–recall area.

The results of discrimination of the pairs of pits of cherry ‘Debreceni botermo’,
‘Łutówka’, ‘Nefris’, ‘Kelleris’ based on shape factors are shown in Table 4. The tendency was
similar to the results of discriminative models built based on linear dimensions (Table 3).
In both cases, the ‘Nefris’ and ‘Kelleris’ pits were characterized by the highest average
discrimination accuracy of 95% (Tables 3 and 4). The sour cherry pits of ‘Łutówka’ vs.
‘Nefris’ (78%) (Tables 3 and 4) and ‘Debreceni botermo’ vs. ‘Łutówka’ (84% (Table 3), 85%
(Table 4)) had the lowest average accuracies. The other discriminative models built based
on shape factors produced average accuracies of 92% for ‘Debreceni botermo’ vs. ‘Kelleris’
pits, 88% for ‘Debreceni botermo’ vs. ‘Nefris’ pits, 87% for ‘Łutówka’ vs. ‘Kelleris’ pits
(Table 4). It indicated that the accuracies for models built based on shape factors (Table 4)
were slightly higher than models built based on linear dimensions (Table 3).
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Table 4. The discrimination performance for the pair comparison of the pits of cherry ‘Debreceni botermo’, ‘Łutówka’,
‘Nefris’, and ‘Kelleris’ based on selected shape factors.

Pair
Comparison Predicted Class (%) Actual

Class
Average
Accuracy

(%)
TP Rate Precision F-

Measure
ROC
Area

PRC
Area

‘Debreceni
botermo’ vs.
‘Łutówka’

‘Debreceni
botermo’ ‘Łutówka’

87 13 ‘Debreceni
botermo’ 85 0.87 0.86 0.86 0.91 0.93

18 82 ‘Łutówka’ 0.82 0.84 0.83 0.91 0.87

‘Debreceni
botermo’ vs.

‘Nefris’

‘Debreceni
botermo’ ‘Nefris’

89 11 ‘Debreceni
botermo’ 88 0.89 0.90 0.90 0.94 0.93

13 87 ‘Nefris’ 0.87 0.86 0.86 0.94 0.88

‘Debreceni
botermo’ vs.

‘Kelleris’

‘Debreceni
botermo’ ‘Kelleris’

92 8 ‘Debreceni
botermo’ 92 0.92 0.93 0.92 0.96 0.96

8 92 ‘Kelleris’ 0.92 0.90 0.91 0.96 0.92

‘Łutówka’ vs.
‘Nefris’

‘Łutówka’ ‘Nefris’
77 23 ‘Łutówka’ 78 0.77 0.79 0.78 0.86 0.86
21 79 ‘Nefris’ 0.79 0.76 0.77 0.86 0.80

‘Łutówka’ vs.
‘Kelleris’

‘Łutówka’ ‘Kelleris’
87 13 ‘Łutówka’ 87 0.87 0.86 0.87 0.94 0.94
13 87 ‘Kelleris’ 0.87 0.87 0.87 0.94 0.93

‘Nefris’ vs.
‘Kelleris’

‘Nefris’ ‘Kelleris’
95 5 ‘Nefris’ 95 0.95 0.95 0.95 0.98 0.96
5 95 ‘Kelleris’ 0.95 0.96 0.95 0.98 0.97

TP Rate—true positive rate; ROC Area—receiver operating characteristic area; PRC Area—precision–recall area.

The accuracies of discrimination based on selected combined linear dimensions and
shape factors (Table 5) were higher than for the discrimination performed with shape
factors (Table 4) and linear dimensions (Table 3). In the case of models built based on sets of
combined linear dimensions and shape factors (Table 5), the average accuracy reached 96%
for distinguishing ‘Nefris’ and ‘Kelleris’. It is 1% higher than for the discrimination of the
‘Nefris’ and ‘Kelleris’ pits for models built based on linear dimensions (95%, Table 3) and
shape factors (95%, Table 4). In addition, the lowest accuracy of 79%, determined based
on combined linear dimensions and shape factors for ‘Łutówka’ vs. ‘Nefris’ pits (Table 5),
was 1% higher than for the model based on linear dimensions (78%, Table 3) and shape
factors (78%, Table 4) for the discrimination of the ‘Łutówka’ and ‘Nefris’ pits. Furthermore,
the discrimination accuracies for all other pairs of cherry pits based on combined linear
dimensions and shape factors (Table 5) increased and were equal to 86% for ‘Debreceni
botermo’ vs. ‘Łutówka’, 89% for ‘Debreceni botermo’ vs. ‘Nefris’, 93% for ‘Debreceni
botermo’ vs. ‘Kelleris’, and 90% for ‘Łutówka’ vs. ‘Kelleris’.

The performance of the discrimination for all four cultivars was compared for the mod-
els built separately for linear dimensions, shape factors and combined linear dimensions
and shape factors (Table 6). The average accuracy of 75% was the highest for discriminative
models including combined linear dimensions and shape factors. In this analysis, the
pits ‘Debreceni botermo’ and ‘Kelleris’ were characterized by an accuracy of 82%. The
correctness of 76% was determined for the pits ‘Nefris’ and 59% for the pits ‘Łutówka’.
The least incorrectly classified cases were between the pits ‘Nefris’ and ‘Kelleris’, and
the most incorrectly classified cases were between the pits ‘Łutówka’ and ‘Nefris’. The
discriminative models built based on shape factors produced an accuracy of 73%. The
lowest average accuracy of discrimination of four cherry cultivars was observed for models
built based on linear dimensions (72%). It indicated that combined linear dimensions
and shape factors had the highest discriminative power for distinguishing the cherry pits
belonging to different cultivars, and the discriminative power of linear dimensions was
the lowest.
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Table 5. The discrimination performance for the pair comparison of the pits of cherry ‘Debreceni botermo’, ‘Łutówka’,
‘Nefris’, and ‘Kelleris’ based on selected combined linear dimensions and shape factors.

Pair
Comparison Predicted Class (%) Actual

Class
Average
Accuracy

(%)
TP Rate Precision F-

Measure
ROC
Area

PRC
Area

‘Debreceni
botermo’ vs.
‘Łutówka’

‘Debreceni
botermo’ ‘Łutówka’

87 13 ‘Debreceni
botermo’ 86 0.87 0.88 0.87 0.92 0.92

15 85 ‘Łutówka’ 0.85 0.84 0.85 0.92 0.89

‘Debreceni
botermo’ vs.

‘Nefris’

‘Debreceni
botermo’ ‘Nefris’

89 11 ‘Debreceni
botermo’ 89 0.89 0.91 0.90 0.94 0.95

12 88 ‘Nefris’ 0.88 0.85 0.87 0.94 0.90

‘Debreceni
botermo’ vs.

‘Kelleris’

‘Debreceni
botermo’ ‘Kelleris’

92 8 ‘Debreceni
botermo’ 93 0.92 0.94 0.93 0.97 0.97

7 93 ‘Kelleris’ 0.93 0.91 0.92 0.97 0.96

‘Łutówka’ vs.
‘Nefris’

‘Łutówka’ ‘Nefris’
79 21 ‘Łutówka’ 79 0.79 0.80 0.80 0.85 0.86
21 79 ‘Nefris’ 0.79 0.77 0.78 0.85 0.79

‘Łutówka’ vs.
‘Kelleris’

‘Łutówka’ ‘Kelleris’
90 10 ‘Łutówka’ 90 0.90 0.89 0.90 0.94 0.92
10 90 ‘Kelleris’ 0.90 0.90 0.90 0.94 0.91

‘Nefris’ vs.
‘Kelleris’

‘Nefris’ ‘Kelleris’
96 4 ‘Nefris’ 96 0.96 0.96 0.96 0.99 0.99
4 96 ‘Kelleris’ 0.96 0.96 0.96 0.98 0.98

TP Rate—true positive rate; ROC Area—receiver operating characteristic area; PRC Area—precision–recall area.

Table 6. The performance of discrimination of the pits of cherry ‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, and ‘Kelleris’
based on selected geometric parameters.

Predicted Class (%) Actual
Class

Average
Accuracy

(%)
TP Rate Precision F-

Measure
ROC
Area

PRC
Area

Linear dimensions
‘Debreceni
botermo’ ‘Łutówka’ ‘Nefris’ ‘Kelleris’

76 9 7 8 ‘Debreceni
botermo’

72

0.76 0.76 0.76 0.91 0.81
13 55 19 13 ‘Łutówka’ 0.55 0.60 0.57 0.82 0.58
11 17 71 1 ‘Nefris’ 0.71 0.70 0.70 0.91 0.75
5 10 1 84 ‘Kelleris’ 0.84 0.79 0.82 0.95 0.87

Shape factors
‘Debreceni
botermo’ ‘Łutówka’ ‘Nefris’ ‘Kelleris’

79 9 7 5 ‘Debreceni
botermo’

73

0.79 0.78 0.78 0.92 0.85
13 54 20 13 ‘Łutówka’ 0.54 0.59 0.56 0.83 0.60
8 18 73 1 ‘Nefris’ 0.73 0.69 0.71 0.93 0.77
6 10 0 84 ‘Kelleris’ 0.84 0.82 0.83 0.96 0.88

Linear dimensions + shape factors
‘Debreceni
botermo’ ‘Łutówka’ ‘Nefris’ ‘Kelleris’

82 6 7 5 ‘Debreceni
botermo’

75

0.82 0.82 0.82 0.93 0.84
9 59 20 12 ‘Łutówka’ 0.59 0.64 0.61 0.82 0.59
7 16 76 1 ‘Nefris’ 0.76 0.70 0.73 0.93 0.77
7 10 1 82 ‘Kelleris’ 0.82 0.81 0.81 0.95 0.88

TP Rate—true positive rate; ROC Area—receiver operating characteristic area; PRC Area—precision–recall area.
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The results of the studies revealed the usefulness of the geometric parameters for the
discrimination of different cultivars of sour cherry pits. Both linear dimensions and shape
factors had a high discriminative power. However, the models built based on combined
linear dimensions and shape factors provided the highest results, equal to 96%, for the
discrimination of two pit cultivars and 75% for four pit cultivars. The results obtained by
Ropelewska [24] indicated that the textures had even higher discriminative power for the
discrimination of the pits of different sour cherry cultivars. The pairs of cultivars were
discriminated with an average accuracy of up to 100%, whereas, for the discrimination of
four cultivars, the correctness of up to 96.25% was achieved. Ropelewska [25] reported
that for sweet cherry pits as well, the discrimination accuracies for models built based on
textural features (up to 100% for two pit cultivars and 95% for three cultivars) were higher
than for geometric parameters (up to 99% for two cultivars and 95% for three cultivars).
Additionally, Ropelewska [25] found that the models combining geometric and textural
parameters provided the highest accuracies of up to 100% for two cultivars and 98% for
three pit cultivars. The results of cultivar discrimination of sour cherry pits based on
geometric parameters presented in this paper did not reach 100%. This may indicate some
limitations of the developed models that make it impossible to distinguish ‘Debreceni
botermo’, ‘Łutówka’, ‘Nefris’, and ‘Kelleris’ sour cherry pits based on geometric features
with 100% accuracy. It prompts us to carry out further research on sour cherry pits to build
discriminative models combining selected geometric and other features. However, the
contribution of this study to distinguishing sour cherry pit cultivars using machine learning
is significant. The linear dimensions and shape factors with the highest discriminative
power were indicated. The mean values of these selected parameters differed the most
among the cultivars. The next stage of the research may involve combining these geometric
features and selected textures in the model to increase the discrimination accuracy. The
developed models based on geometric and textural features could be more successfully
applied in practice to detect falsification of sour cherry pit cultivars.

4. Conclusions

The geometric parameters such as linear dimensions and shape factors proved to be
useful for the discrimination of sour cherry pits belonging to different cultivars. Higher
accuracies were observed when distinguishing pairs of pit cultivars than four cultivars.
The discriminative models built based on sets of linear dimensions or shape factors and
combined linear dimensions and shape factors provided very high results. However, the
highest discriminative power for distinguishing the different cultivars of sour cherry pits
was observed for combined linear dimensions and shape factors, whereas the linear dimen-
sions were characterized by the lowest discriminative power. The present study was the
first extensive approach to classify sour cherry pits belonging to different cultivars using
innovative models built based on geometric features by machine learning algorithms. Such
models developed using the sets of selected linear dimensions, shape factors and com-
bined linear dimensions and shape factors for the discrimination of ‘Debreceni botermo’,
‘Łutówka’, ‘Nefris’, and ‘Kelleris’ sour cherry pits were not found in the available literature.
The results of the discrimination based on geometric features were high, comparable to the
results obtained for models built using texture parameters reported in previous studies.
Demonstrating the usefulness of geometric features to distinguish sour cherry pit cultivars
can have practical importance to authenticate pit samples and avoid mixing different culti-
vars with different chemical properties. However, the limitation of the proposed approach
may be the accuracy of the discrimination, which was less than 100%. Therefore, future
research may focus on developing the models combining the geometric and texture features
to increase their discrimination accuracy.
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