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Abstract: Chemical fertilizer has been excessively used for high yield of citrus around the world,
especially in China; meanwhile, it deteriorates the citrus orchard soil environment. To resolve the
conflict, the use of organic fertilizer provides a promising solution. However, the data about organic
fertilizer used in citrus orchard is rarely available. Here, four treatments including CK (no fertilizer),
CF (chemical fertilizer), OF + CF (chemical fertilizer reduction combined with organic fertilizer;
application of N, P2O5, K2O fertilizer and organic fertilizer is 0.564, 0.236, 0.336 and 10 kg/plant), and
BF + CF (chemical fertilizer reduction combined with bioorganic fertilizer; application of N, P2O5,
K2O fertilizer and bioorganic fertilizer is 0.508, 0.320, 0.310 and 10 kg/plant) were performed in a
‘Ponkan’ (Citrus reticulata Blanco) orchard to evaluate the effect of organic fertilizer on citrus yield,
growth, soil properties etc. when nutrients of fertilizer of each treatment were equal except CK. The
data obtained in 2019 and 2020 showed that both OF + CF and BF + CF were beneficial to improve
soil fertility (soil physicochemical and microbe properties) and citrus growth physiology (growth,
nutrient and photosynthesis), alleviate NO3

−-N leaching, and promote yields. Comprehensive
evaluation indicated that BF + CF was more effective than OF + CF. Together, organic fertilizer has
the potential to substitute partial chemical fertilizer with improvement in soil properties, growth
physiology, and yield of citrus.

Keywords: Ponkan; organic fertilizer; soil properties; photosynthesis; yield

1. Introduction

Chemical fertilizer has been generally overused around the world. Global chemical
fertilizer use has been reported to be about 1.9 × 1011 t, with China ranking first in
consumption, accounting for 25% of world usage [1]. Due to great importance of chemical
fertilizer to crops in China, the use of chemical fertilizer has continuously expanded from
8.8 × 109 t in 1978 to 6.0 × 1010 t in 2015 [2]. In addition, China’s per hectare application of
chemical fertilizer, 393.2 kg/hm2, is higher than the international environmentally safe use
limit of 225 kg/hm2, and is also about 3.05 times that of the United States and 2.54 times that
of the European Union [3,4]. In 2019, China ranked first in citrus production and cultivated
area, with about 4.4 × 108 t and 2.9 × 107 ha accounting for 27.9% and 29.1% of world
production and area [5], respectively. The yields of China’s citrus increased further with
more fertilizer being applied, especially chemical fertilizer. According to some estimates,
excessive application of nitrogen (N), phosphorus (P), and potassium (K) fertilizers were
approximately 3.6 × 106, 4.3 × 106, 3.6 × 106 t of citrus main production area in China,
respectively [6]. What’s more, the utilization rate of N, P, and K fertilizer in China is 35–40%,
8–46%, and 35–50%, respectively, far below the level of developed countries [7,8]. It is well
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known that excessive chemical fertilizer application will adversely affect soil physical and
chemical properties, resulting in soil hardness and acidification, which eventually lead
to a decline in soil organic matter and fertility [9,10]. In addition, chemical fertilizer also
negatively impacts crop quality and causes ecological environment damage, such as water
pollution, greenhouse gas emission, and N leaching [11,12]. Moreover, excessive chemical
fertilizer application leads to a waste of resources, places a financial burden on farmers, and
even reduces the international competitiveness of agricultural products [13,14]. In contrast,
organic fertilizer can improve the physical and chemical properties of soil, such as structure,
water retention, nutrients, and cation exchange capacity, and promotes positive biological
soil properties, enhancing yield and quality and even alleviating the risks of ecological
environment deterioration [15–17]. Organic fertilizer is a highly abundant resource in
China, with approximately 4.0 × 1010 t available; hence the potential for application is
enormous [18]. However, compared to the quick nutrient release of chemical fertilizers,
organic fertilizers have low nutrient concentrations, and nutrient release is too slow to
support crops in a short time [19]. A beneficial approach to overcome this problem is
reduction of chemical fertilizers combined with the application of organic fertilizers; this
has been shown to better sustain soil fertility compared to applying chemical or organic
fertilizers alone [7,15,20].

Several studies have reported that chemical fertilizer combined with organic fertilizer
application (CFOF) improves soil conditions and promotes plant growth and even yield in
comparison with only chemical fertilizer application. For example, combined application
of organic and inorganic fertilizers greatly increases soil organic matter and the total
nitrogen content of the soil and improves soil microenvironment in wheat/maize fields [21].
Hazarika et al. [22] found similar results. According to Xiao et al. [19], organic fertilizer
combined with compound fertilizer improved soil quality, whereas the utilization of
compound fertilizer worsened soil quality and made the soil acidize; this result was
similar to that of Song et al. [20] and Pachuau et al. [23]. Qiu et al. [15] reported that
chemical fertilizer combined with biofertilizer application significantly promoted root
growth, improved the rate of nutrient distribution in citrus, and improved the external
and internal qualities of tarocco blood orange; this result was similar to those of previous
study of citrus [24–26]. According to Pei et al. [7], organic fertilizer is an alternative to
chemical fertilizer with no loss in yield and fruit quality for citrus. In addition, apple
orchard with organic–inorganic mixed fertilizer promoted soil microbial activity and
increased soil organic matter by 16% and crop production by 67% when compared with
chemical fertilizer application alone [26] and those results were consistent with research
of Lai et al. [27]. Some experiments [28–30] also show that application of CFOF improves
plant physiological indexes and yield compared with inorganic fertilizers on their own.
These studies indicate that CFOF improves soil microbial activity, enhances physical
and chemical soil properties, and promotes the absorption and utilization of nutrients,
thus facilitating high crop yields. Chemical fertilizer reduction combined with organic
fertilizer application meets the requirements for green ecology and is gradually popular
in China [7]. Recently, research on reducing chemical fertilizer use and applying organic
fertilizer has focused on the effects of reducing N fertilizer on crop yield and quality while
rarely measuring changes to soil properties, orchard environment, and plant physiology,
especially in citrus systematically, in response to a reduction in chemical fertilizer combined
with increased organic fertilizer when equal nutrients of N, P, and K fertilizers are supplied.
Due to ‘Ponkan’ (Citrus reticulata Blanco) being one of the most widely grown varieties of
Citrus reticulate, which accounted for 55.3% of the total amount of citrus on cultivated area
in China [6], we selected it as our material.

Therefore, the purpose of this research is to explore the effects of CFOF on soil prop-
erties, citrus growth physiology, and yield when nutrients of N, P, and K fertilizers are
equal and to evaluate the effects of different fertilization treatments on soil environment.
This work could provide a theoretical basis for the scientific reduction of chemical fertilizer
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and identify the amount of organic fertilizer necessary for sustainable development of the
citrus industry.

2. Materials and Methods
2.1. Study Sites and Materials

The study was conducted in two consecutive years, 2019 and 2020, in the citrus or-
chard of the citrus Research Institute, Southwest University (longitude, 29◦76′ N; latitude,
106◦38′ E; altitude, 240 m above sea level), using 15-year-old ‘Ponkan’ (Citrus reticulata
Blanco) grafted on to Poncirus trifoliata (L.) as study material. In this study, we selected
four separated plots for experiments in Ponkan orchard and we randomly selected 15 trees
(uniform growth size and plant spacing 3 m × 4 m) per treatment in the experimental
plots. All measurements were performed on the three central trees, and treatments were
distributed in a completely randomized block design with five replications. The mean an-
nual temperature, annual sunshine time, and annual precipitation were 19.26 °C, 1178.70 h,
and 1171.60 mm, respectively, with the maximum temperature in July. The orchard soil
is loose loam. The pH value of the orchard soil was 5.03 ± 0.29, while the organic mat-
ter and available N, P, and K were 20.71 ± 2.86 g·kg−1, 89.15 ± 4.59, 49.61 ± 7.64, and
190.28 ± 10.07 mg·kg−1, respectively.

Four different treatments, namely, CK (no fertilizer), CF (chemical fertilizer),
OF + CF (chemical fertilizer reduction combined with organic fertilizer), and BF + CF
(chemical fertilizer reduction combined with bioorganic fertilizer) were performed. Or-
ganic fertilizer and bioorganic fertilizer were produced by Sichuan Runzhou Biotechnology
Co., Ltd. (Jianyang, China). The N, P, and K nutrient content of each treatment except
CK was consistent. Table 1 presents the four treatments of specific fertilization. CK was
treated with no fertilizer.CF was treated with chemical fertilizers, including urea (N 46.7%),
calcium–magnesia phosphate (P2O5 12%), and potassium sulfate (K2O 51%). OF + CF
was treated with chemical fertilizer (urea, calcium–magnesia phosphate, and potassium
sulfate) reduction combined with organic fertilizer (N+P2O5+K2O ≥ 5.0%; organic matters
such as biogas residue, wheat husk, and dregs of beans were made by fermentation). BF
+ CF was treated with chemical fertilizer (urea, calcium-magnesia phosphate, and potas-
sium sulfate) reduction combined with bioorganic fertilizer (N+P2O5+K2O ≥ 5.0%, on
the basis of organic matter, and added bacteria spore such as Bacillus subtilis, Brevibacillus
laterosporus, Bacillus licheniformis, etc.). Each treatment was performed in five replications.
We applied organic or bioorganic fertilizer combined with chemical fertilizer in October
(color transition period of Ponkan) and then supplemented with only chemical fertilizer in
March (germination period of Ponkan) and July (expansion period of Ponkan). Organic or
bioorganic fertilizer was applied firstly in October in 2018, and the study of two consecutive
years of study of 2019 and 2020 was conducted. During these three physiological periods
of Ponkan growth, the proportion of N, P, and K (chemical fertilizer) was 40%:40%:20%,
20%:30%:50%, and 30%:50%:20%, respectively.

Table 1. Test design of fertilization.

Treatment
Organic/Bioorganic

Fertilizer Application
(kg/Plant)

Nutrient of Organic
Fertilizer (kg/Plant)

Nutrient of Chemical
Fertilizer (kg/Plant)

Total Amount of Nutrients
(kg/Plant)

N P2O5 K2O N P2O5 K2O N P2O5 K2O

CK 0 0 0 0 0 0 0 0 0 0
CF 0 0.000 0.000 0.000 0.705 0.480 0.520 0.705 0.480 0.520

OF + CF 10 0.141 0.244 0.188 0.564 0.236 0.332 0.705 0.480 0.520
BF + CF 10 0.197 0.160 0.210 0.508 0.320 0.310 0.705 0.480 0.520

Note: CK: no fertilizer; CF: chemical fertilizer; OF + CF: chemical fertilizer combined with organic fertilizer; BF + CF: chemical fertilizer
combined with bioorganic fertilizer. Reduction of chemical fertilizer and addition to organic/bioorganic fertilizer. The amount of
organic/bioorganic fertilization is 10 kg/per plant, and the total amounts of nutrients of each treatment are equal except CK by adjustment
of chemical fertilization.
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2.2. Organ Sampling and Nutrient Measurement

In September, current-year mature branches were sampled, and twigs and leaves of
branches were separated. Leaf area was measured by the Wseen LA-S image analysis
system (Hangzhou Wseen Testing Technology Co., Ltd., Hangzhou, China). Each treatment
included ten branches as our materials, and five replications per treatment. Thickness
of a hundred leaves and twig length were measured by Vernier caliper and ruler. The
twig and leaf samples were dried in an oven at 105 ◦C for 30 min, followed by incubation
at 75 ◦C until achieving a constant weight, and then the dry matter of a hundred leaves
were measured. Samples were ground with a powder grinder and then passed through
a 0.5 mm sieve. After H2SO4-H2O2 digestion of samples, the N, P, and K concentrations
of twigs and leaves were measured by the semi-micro Kjeldahl N determination method,
the molybdenum blue colorimetric method, and flame photometry [31], respectively. The
roots were sampled from soil pits with a size of 20 cm × 20 cm × 40 cm (length × width
× height) near the drip line of each plant in October, five replications per treatment. The
yield per citrus tree was investigated in December, each treatment included three citrus
trees and five replications per treatment. Fertilizer contribution rate was calculated by the
method in Jiang et al. [32]. The root and fruit measurement of N, P, and K concentration
was same as that of twigs and leaves.

2.3. Photosynthesis and Leaf Physiological Parameters

Leaf SPAD values were measured by SPAD–502 (Konica Minolta Co., Ltd., Tokyo,
Japan) in April (flowering period), June (fruit drop period), August (fruit expanding
period), October (fruit color change period), and December (fruit mature period). Each
treatment included ten leaves as our materials, and five replications per treatment. Between
9:00 and 11:00 a.m. on sunny days, Pn(photosynthetic rate)of current-year leaves were
measured using a 3051D portable photosynthesis system (Zhejiang Top cloud- agriculture
Co., Ltd., Hangzhou, China), and chlorophyll fluorescence parameters, PIabs and PItotal,
of current-year leaves were measured by Handy PEA (Hansatech Instruments Co., Ltd.,
Norfolk, Britain).

2.4. Soil Physicochemical Properties

Soil at a depth of 0–20 cm, approximately 15 cm away from the fertilization ap-
plication hole, was sampled in December. Soil porosity was also measured following
Haque et al. [33]. Soil was dried naturally after passing through a 2 mm sieve. Soil
pH, alkali-hydrolyzable N, available P and K, and soil organic matter were determined
following previously published methods [34]. Soil at a depth of 0–20 cm, 20–40 cm, and
60–80 cm from around fertilized hole was sampled, and the NO3

−-N contents of the soil
samples were measured following Bao [31]. Soil CO2 emission flux was measured with
LI-8100A (LI-COR, Lincoln, NE, USA) in February, April, July, October, and December.
Five replications of each treatment were performed.

2.5. Soil Microbe Properties

Rhizospheric soils of citrus were sampled per tree of different treatment, five replicates
per treatment, in April, July, and November, respectively. One part of the soil was randomly
selected, and urease, sucrase, and acid phosphatase activities were determined using a soil
enzyme kit [35] (Solarbio Science & Technology Co., Ltd., Beijing, China). Another part
of the soil was cultivated for the number of bacteria, actinomyces, and fungus using soil
dilution plating methods [36].

2.6. Statistical Analysis

Data are expressed as mean ± SD of five replicates per treatment of two consecutive
seasons in 2019 and 2020. The SPSS 25.0 software (SPSS Inc., Chicago, IL, USA) was used to
perform the statistical analyses by ANOVA and significance tests. The graphs were plotted
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using GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA). p ≤ 0.05 was
considered to indicate statistically significant differences.

3. Results
3.1. Effect of Different Treatments on Soil Properties and Environment
3.1.1. Soil Physicochemical Properties

Table 2 presents the effect of CFOF on soil physicochemical properties. In the
OF + CF and BF + CF treatments, soil porosity, pH, alkali-hydrolyzable N, available P and
K, and soil organic matter were significantly (p ≤ 0.05) higher than that of CF treatments in
2019 and 2020. In addition, soil physicochemical properties of BF + CF were higher than
those of OF + CF treatment on the whole, but no significant difference (except available P).
These results indicate that CFOF is beneficial to improving soil physicochemical properties,
especially when the BF + CF is used.

Table 2. The effect of different treatments on physical and chemical properties.

Year Treatment pH Value Porosity (%) Organic Matter
(g·kg−1)

Alkali-Hydrolyzable
N (mg·kg−1)

Available P
(mg·kg−1)

Available K
(mg·kg−1)

2019

CK 5.01 ± 0.06 ab 44.23 ± 0.50 b 20.08 ± 0.41 b 88.82 ± 5.10 c 49.45 ± 2.96 c 188.50 ± 1.45 c
CF 4.90 ± 0.16 b 44.60 ± 0.61 b 21.13 ± 1.44 b 115.43 ± 6.31 b 51.84 ± 0.72 c 197.96 ± 1.63 b

OF + CF 5.11 ± 0.12 a 47.82 ± 1.39 a 24.20 ± 1.06 a 129.80 ± 3.33 a 69.12 ± 1.15 a 218.32 ± 4.50 a
BF + CF 5.18 ± 0.13 a 48.52 ± 0.59 a 23.99 ± 0.72 a 124.54 ± 3.34 a 61.97 ± 4.48 b 221.15 ± 5.01 a

2020

CK 4.97 ± 0.09 b 44.37 ± 1.40 b 19.52 ± 0.81 c 86.36 ± 2.96 c 47.65 ± 3.50 c 177.76 ± 4.71 c
CF 4.85 ± 0.12 b 44.21 ± 1.60 b 20.80 ± 0.70 b 123.53 ± 8.37 b 54.15 ± 4.54 b 196.51 ± 6.13 b

OF + CF 5.22 ± 0.10 a 50.95 ± 1.34 a 25.36 ± 0.82 a 136.20 ± 3.45 a 77.33 ± 4.26 a 228.44 ± 7.23 a
BF + CF 5.20 ± 0.09 a 52.46 ± 0.73 a 25.84 ± 0.43 a 138.48 ± 4.58 a 74.79 ± 4.86 a 230.26 ± 3.69 a

Note: CK: no fertilizer; CF: chemical fertilizer; OF + CF: chemical fertilizer combined with organic fertilizer; BF + CF: chemical fertilizer
combined with bioorganic fertilizer. Data are mean ± standard deviation, n = 5. Values in the same row with the same letter(s) are not
significantly different per the Duncan analysis at p ≤ 0.05 between different treatments.

3.1.2. Soil Microbe Properties

Figure 1 shows the effect of CFOF on soil enzyme activity and the number of cultivable
microbes. In each case, soil microbe properties were better in July and lower in April
and November. In the OF + CF and BF + CF treatments, soil microbe properties were
better than the CK and CF treatments on the whole. In particular, in the OF + CF and
BF + CF treatments, soil cultivable bacteria and actinomyces were significantly higher than
that of CF in July and November. In addition, when comparing soil cultivable fungus
measurements to the CF treatment, OF + CF and BF + CF treatments were significantly
higher by 48.1% and 12.4% in July, respectively, while they did not differ significantly
in November. Measurements of urease, sucrase, and acid phosphatase activities in the
OF + CF and BF + CF treatments were significantly higher than that of CK and CF in July
and November. On the whole, soil microbe properties of BF + CF treatment were better
than that of OF + CF. These results showed that CFOF improved soil enzyme activity and
the number of cultivable microbes, especially in the BF + CF treatment.

3.1.3. Soil Environment

Figure 2 shows the effect of CFOF on CO2 emission flux and NO3
−-N in soil. As seen

in Figure 2a, CO2 emission flux in OF + CF and BF + CF treatments was higher than that
observed under the CK and CF treatments. A rapid growth trend from February to July,
with a peak in July, and then and a downward trend were observed. CO2 emission flux
was significantly higher in the OF + CF and BF + CF treatments than in the CF treatment
by 57.7% and 60.7%, respectively, in July, and significantly higher in the BF + CF treatment
than in the OF + CF and CF treatments by 32.6% and 15.6%, respectively. On the whole,
CO2 emission flux was also higher in the BF + CF treatment than that of OF + CF. As
illustrated in Figure 2b, NO3

−-N from different soil layers was significantly higher in
the CF, OF + CF and BF + CF treatments than that of CK. The 0–20 cm soil layer, when
compared between the CF, BF + CF treatments had NO3

−-N that was significantly lower
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by 19.7% in 2019, while the OF + CF and BF + CF treatments were also significantly lower
by 21.2% and 25.7%, respectively, in 2020. In the 20–40 cm soil layer, compared with the
CF treatment, NO3

−-N was significantly lower by 16.6% in the BF + CF treatment in 2019,
while OF + CF and BF + CF treatments also had significantly lower NO3

−-N by 21.9% and
25.9%, respectively, in 2020. In the 40–60 cm soil layer, compared with the CF treatment,
NO3

−-N in the OF + CF and BF + CF treatments was also significantly lower by 26.0% and
19.9%, respectively, in 2019, while significantly lower by 33.9% and 46.2%, respectively,
in 2020. Additionally, NO3

−-N in the 40–60 cm soil layer of the CF treatment was larger
than that of any other soil layer, while NO3

−-N in the 20–40 cm soil layer of the OF + CF
and BF + CF treatments was larger than that of any other soil layer. Furthermore, NO3

−-N
from each soil layer of the BF + CF treatment was lower than that of those measured from
the OF + CF treatment on the whole. Therefore, CFOF is beneficial for slowing down the
accumulation and migration of NO3

−-N in the soil while promoting CO2 emission flux to
some degree, especially in the BF + CF treatment.
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Figure 1. The effect of different treatments on microbial properties of soil, including bacteria
(a), actinomycetes (b), fungi (c), urease (d), sucrase (e), acid phosphatase (f). CK: no fertilizer;
CF: chemical fertilizer; OF + CF: chemical fertilizer combined with organic fertilizer; BF + CF: chemi-
cal fertilizer combined with bioorganic fertilizer. The bars were means ± standard error; the column
with different letters indicated significant difference at p ≤ 0.05.
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3.2. Effect of Different Treatments on Growth Physiology
3.2.1. Plant Growth

Table 3 presents the effect of CFOF on plant growth index. In comparison with leaf
area, thickness of a hundred leaves, dry matter of a hundred leaves of CK and CF, all that of
CFOF was promoted in 2019, especially BF + CF significantly. In the OF + CF and BF + CF
treatments, twig length was longer than that observed in the CK and CF treatments in 2019.
In addition, the plant growth index in 2019 was similar to that of 2020. The plant growth
index observed in the BF + CF treatment was higher than that of OF + CF treatment on the
whole. These results show that CFOF is beneficial for promoting plant growth, especially
the BF + CF treatment.

Table 3. The effect of different treatments on plant growth.

Year Treatment Area of Leaf (cm2)
Thickness of Hundred

Leaves (mm)
Dry Matter of Hundred

Leaves (g) Length of Twigs (cm)

2019

CK 17.53 ± 0.77 c 26.74 ± 0.38 c 15.63 ± 0.52 c 6.98 ± 0.54 b
CF 18.59 ± 1.06 bc 27.02 ± 0.35 bc 17.03 ± 0.19 b 7.60 ± 0.86 ab

OF + CF 19.71 ± 1.05 ab 27.85 ± 0.69 b 17.75 ± 0.69 ab 7.96 ± 0.92 ab
BF + CF 20.78 ± 1.42 a 28.88 ± 0.74 a 18.06 ± 0.78 a 8.50 ± 0.83 a

2020

CK 17.38 ± 0.86 c 26.00 ± 0.33 c 14.86 ± 0.62 c 6.80 ± 0.30 b
CF 18.76 ± 0.33 b 27.73 ± 0.32 b 16.52 ± 0.56 b 7.95 ± 0.10 a

OF + CF 20.30 ± 0.56 a 28.50 ± 0.62 a 17.36 ± 0.35 a 8.13 ± 0.39 a
BF + CF 20.34 ± 0.90 a 28.62 ± 0.42 a 17.95 ± 0.44 a 8.38 ± 0.56 a

Note: CK: no fertilizer; CF: chemical fertilizer; OF + CF: chemical fertilizer combined with organic fertilizer; BF + CF: chemical fertilizer
combined with bioorganic fertilizer. Data are mean ± standard deviation, n = 5. Values in the same row with the same letter(s) are not
significantly different per the Duncan analysis at p ≤ 0.05 between different treatments.

3.2.2. Nutrient Elements

Table 4 presents the effect of CFOF on leaf nutrient physiology and twigs. The results
showed that N, P, and K contents of leaves and twigs were higher in the OF + CF and
BF + CF treatments than that of CK and CF treatments, in general. Moreover, N content of
leaves in the OF + CF and BF + CF treatments was significantly higher than that observed in
the CK treatment by 4.8% and 5.4%, respectively, in 2019, and by 6.2% and 6.3%, respectively,
in 2020. Compared with the CK treatment, leaf K content in the OF + CF and BF + CF
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treatments was significantly higher by 12.6% and 16.6%, respectively, in 2019, and by 27.9%
and 29.5%, respectively, in 2020. N, P, and K contents of twigs measured under the OF + CF
and BF + CF treatments were significantly higher than that observed in the CK treatment in
2019 and 2020.Moreover, leaf K content in the BF + CF treatment was significantly higher
than that observed in the CF treatment by 7.3% and 7.4% in 2019 and 2020. Furthermore,
the nutrient content of leaves and twigs from the BF + CF treatment was higher than that
of the OF + CF treatment; however, no significant difference was observed.

Table 4. The effect of different treatments on nutrients of leave and twigs.

Year Treatment
Leave Twigs

N (g·kg−1) P (g·kg−1) K (g·kg−1) N (g·kg−1) P (g·kg−1) K (g·kg−1)

CK 27.95 ± 0.66 b 1.34 ± 0.16 a 13.10 ± 0.51 c 11.17 ± 0.25 b 0.81 ± 0.06 b 8.17 ± 0.40 a
2019 CF 29.15 ± 0.55 a 1.40 ± 0.05 a 14.23 ± 0.46 b 11.70 ± 0.37 ab 0.92 ± 0.07 a 8.46 ± 0.15 a

OF + CF 29.30 ± 0.15 a 1.43 ± 0.04 a 14.75 ± 0.52 ab 11.85 ± 0.40 a 0.95 ± 0.08 a 8.49 ± 0.32 a
BF + CF 29.47 ± 0.74 a 1.46 ± 0.02 a 15.27 ± 0.56 a 11.97 ± 0.60 a 0.97 ± 0.04 a 8.63 ± 0.37 a

2020

CK 27.89 ± 0.53 b 1.36 ± 0.30 a 12.38 ± 1.05 c 11.22 ± 0.40 b 0.78 ± 0.06 b 8.20 ± 0.73 b
CF 29.40 ± 0.89 a 1.43 ± 0.07 a 14.93 ± 0.52 b 12.57 ± 0.36 a 0.88 ± 0.05 a 8.98 ± 0.23 a

OF + CF 29.62 ± 0.16 a 1.41 ± 0.07 a 15.83 ± 0.14 ab 12.11 ± 0.13 a 0.93 ± 0.06 a 9.01 ± 0.16 a
BF + CF 29.66 ± 0.87 a 1.45 ± 0.09 a 16.03 ± 0.64 a 12.53 ± 0.71 a 0.95 ± 0.05 a 8.92 ± 0.18 a

Note: CK: no fertilizer; CF: chemical fertilizer; OF + CF: chemical fertilizer combined with organic fertilizer; BF + CF: chemical fertilizer
combined with bioorganic fertilizer. Data are mean ± standard deviation, n = 5. Values in the same row with the same letter(s) are not
significantly different per the Duncan analysis at p ≤ 0.05 between different treatments.

Table 5 presents the effect of CFOF on nutrient physiology of fruits and roots. The
nutrient content of fruits and roots grown under the OF + CF and BF + CF treatments
was higher than that observed for the CK and CF treatments in 2019 and 2020. In 2019,
compared with the CF treatment, nutrient content of fruits was significantly higher in the
OF + CF and BF + CF treatments, while the nutrient content of roots grown under the
BF + CF treatment was also significantly higher. In 2020, N and P contents of fruits were
significantly higher in the OF + CF and BF + CF treatments than that observed in the CF
treatment, and P and K contents of roots grown in the BF + CF treatment were significantly
higher than that seen in the CF treatment by 16.7% and 8.9%, respectively. In addition,
nutrient content of fruits and roots in the BF + CF treatment was higher than that seen
in the OF + CF treatment; however, no statistically significant difference was observed.
Therefore, CFOF is beneficial in promoting the absorption of nutrients in the citrus organ,
especially the BF + CF treatment.

Table 5. The effect of different treatments on nutrients of fruits and roots.

Year Treatment
Fruits Roots

N (g·kg−1) P (g·kg−1) K (g·kg−1) N (g·kg−1) P (g·kg−1) K (g·kg−1)

2019

CK 19.17 ± 0.23 d 1.26 ± 0.05 c 11.23 ± 0.41 b 10.82 ± 0.11 b 0.36 ± 0.02 c 8.56 ± 0.39 b
CF 19.70 ± 0.48 c 1.37 ± 0.07 b 11.71 ± 0.13 b 11.03 ± 0.44 b 0.38 ± 0.03 bc 8.62 ± 0.67 b

OF + CF 20.77 ± 0.14 b 1.45 ± 0.02 a 12.57 ± 0.34 a 11.46 ± 0.46 ab 0.41 ± 0.01 ab 8.87 ± 0.39 b
BF + CF 21.87 ± 0.31 a 1.48 ± 0.04 a 12.73 ± 0.48 a 11.83 ± 0.56 a 0.43 ± 0.04 a 9.72 ± 0.45 a

2020

CK 19.23 ± 0.23 d 1.29 ± 0.05 c 11.20 ± 0.56 b 10.84 ± 1.07 a 0.33 ± 0.03 c 8.46 ± 0.32 c
CF 20.19 ± 6.19 c 1.44 ± 0.05 b 11.91 ± 0.08 ab 11.10 ± 0.91 a 0.36 ± 0.04 bc 8.86 ± 0.45 bc

OF + CF 20.94 ± 5.94 b 1.51 ± 0.02 a 12.13 ± 0.23 a 12.14 ± 1.13 a 0.39 ± 0.02 ab 9.21 ± 0.33 ab
BF + CF 22.03 ± 1.03 a 1.53 ± 0.01 a 12.35 ± 0.78 a 12.11 ± 0.17 a 0.42 ± 0.01 a 9.65 ± 0.42 a

Note: CK: no fertilizer; CF: chemical fertilizer; OF + CF: chemical fertilizer combined with organic fertilizer; BF + CF: chemical fertilizer
combined with bioorganic fertilizer. Data are mean ± standard deviation, n = 5. Values in the same row with the same letter (s) are not
significantly different per the Duncan analysis at p ≤ 0.05 between different treatments.
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3.2.3. Photosynthesis

Figure 3 shows the effect of CFOF on photosynthetic physiology. Parameters of
photosynthetic physiology in the OF + CF and BF + CF treatments were higher than that
seen in the CK and CF treatments. As shown in Figure 3a, leaf SPAD values increase
to a peak after rapid leaf growth between April and August and then gradually lower
and flatten from August to December. Leaf SPAD values measured during the OF + CF
and BF + CF treatments were significantly higher than those in the CF treatment, by 6.2%
and 7.0% in April, respectively. In addition, leaf SPAD values were significantly higher
for the BF + CF treatment than for the CF and OF + CF treatments, by 3.2% and 2.0%,
respectively. As shown in Figure 3b, each Pn treatment showed rapid growth to peak
from April to August and then rapidly decreased from August to December. In August
and December, Pn of the BF + CF treatment was significantly higher than that of the CF
treatment by 31.2% and 70.4%, respectively, while significantly higher than that of the
OF + CF treatment by 23.6% and 61.7%, respectively. As shown in Figure 3c, d, the trend of
PIabs and PItotal of treatment was similar to Pn. For the OF + CF and BF + CF treatments,
PIabs was significantly higher than that of the CF treatment in August and December, while
PItotal of the OF + CF and BF + CF treatments was significantly higher than that of CF in
April and August. In addition, photosynthetic physiology for the BF + CF treatment was
higher than that of OF + CF on the whole. Consequently, CFOF is beneficial to improving
photosynthetic physiology, especially the BF + CF treatment.
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Figure 3. The effect of different treatments on photosynthesis physiology of citrus, including
SPAD (a), Pn (b), PIabs (c), PItotal (d). SPAD: relative chlorophyll content; Pn: photosynthetic
rate; PIabs: light absorption performance parameters; PItotal: total index of photosynthetic
performance. CK: no fertilizer; CF: chemical fertilizer; OF + CF: chemical fertilizer combined
with organic fertilizer; BF + CF: chemical fertilizer combined with bioorganic fertilizer. The bars
were means ± standard error.

3.3. Effect of Different Treatments on Yield of Ponkan

Figure 4 shows the effect of CFOF on yield per tree and the contribution rate of fertilizer
on Ponkan. As shown in Figure 4a, compared with CF, yield per tree was significantly
higher for the OF + CF and BF + CF treatments by 22.9% and 25.2% in 2019 and by 26.5% and
30.6% in 2020, respectively. As illustrated in Figure 4b, compared with CF, the contribution
rate of fertilizer was significantly higher for the OF + CF and BF + CF treatments in
2019 and 2020. In addition, yield per tree and the contribution rate of fertilizer for the
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BF + CF treatment were higher than that of OF + CF, but the difference was not statistically
significant. These results show that CFOF improved yield per tree and the contribution
rate of fertilizer of Ponkan, especially the BF + CF treatment.
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4. Discussion

Due to great importance of chemical fertilizer to citrus, chemical fertilizer has been
widely used and even overused in order to maintain high citrus yield. This has led to
deterioration of soil properties and ecological environment. However, a combination
of chemical and organic fertilizer is not only beneficial in improving the properties and
environment of soils, but also promotes crop yield and quality [19–30]. Here, our work
confirmed that CFOF was helpful in increasing citrus yield and improving soil properties.

It has previously been reported that the content of soil organic matter, which can
strengthen the ability of the soil to maintain and supply fertilizer as well as change the
structure of soil aggregates and enhance soil fertility, can effectively be improved by
increasing the use of organic fertilizer [37]. Additionally, many studies show that organic
fertilizer can improve soil physicochemical properties, such as soil organic matter, total
porosity, available N, P, and K of soils [38–40]. Thus, the combined application of organic
fertilizer and chemical fertilizer could greatly enhance soil properties. In this study, the
soil physicochemical properties of the OF + CF and BF + CF treatments were higher than
those of the CK and CF treatments in 2019 and 2020. These results indicate that CFOF
raised soil fertility and physicochemical properties and that organic fertilizer could contain
several active substances, such as humic acid, amino acid, and microbes, among others,
which could promote the formation of soil aggregates, making soil more relaxed and
breathable, and strengthening the ability to conserve fertilizer and water to a certain degree.
These results are similar to those of previous studies [41–43]. Soil microbe content, which
is often used as an indicator to evaluate soil quality, plays an important role in the soil
ecosystem, not only by assuming the responsibility of decomposer but also by promoting
nutrient absorption by roots. In addition, as a crucial member of the soil ecosystem, soil
enzymes play an important role in mineralization and decomposition of organic materials,
because they can react sensitively to changes in soil environment and reflect soil fertility
changes [44,45]. In this study, the soil microbe properties of the OF + CF and BF + CF
treatments were higher than those observed in the CK and CF treatments. These findings
indicate that CFOF improved the soil microbial community structure in a manner that
was relative to the organic matter, humic acid, and amino acids and which could increase
soil microbial activity. These results are similar to the research of previous study [46,47].
Moreover, the study showed that soil microbe properties were the largest in July and were
related to local temperature and humidity [48].

To some extent, different measures of fertilization application can affect the orchard
ecological environment. Zhou et al. [49] and Lv et al. [10] report that long-term and
short-term application of organic fertilizer combined with synthetic fertilizer can increase



Agriculture 2021, 11, 1207 11 of 15

N2O (greenhouse gases) emission. In this study, the CO2 (greenhouse gases) soil carbon
flux seen in the OF + CF and BF + CF treatments was higher than that of CK and CF,
leading to the possibility that soil biological properties can be improved. In addition, CO2
carbon flux for each treatment was largest in July and lowest in December. This could be
due to soil microbial activity; the findings were similar to previous studies [50–52]. The
long-term, large amount of chemical fertilizer especially nitrogen fertilizer is a main cause
of soil N leaching [53]. Nitrogen fertilizer is decomposed by microbes into NO3

−-N and
NO2

−-N, and NO3
−-N is soluble in water and can easily leach, often causing groundwater

pollution and endangering human and animal health because of its negative charge and
strong mobility in solution [54]. According to Liao et al. [55], chemical fertilizer application
decreased the diversity of the diazotrophic community, while chemical fertilizer combined
with organic manure improved not only the diversity of the diazotrophic community but
also their abundance and nitrogen fixation rate. It has also been reported that chemical
fertilizer reduction combined with organic fertilizer application is considered an effective
measure to reduce the risk of N leaching in farmland [56,57]. In this study, NO3

−-N from
the 0–60 cm soil layer of the OF + CF and BF + CF treatments was lower than that of CF,
while NO3

−-N from the 40–60 cm soil layer of the OF + CF and BF + CF treatment was
lower than that of the 20–40 cm soil layer. This illustrates that chemical fertilizer combined
with organic fertilizer can alleviate the risk of N leaching and N migration to deep soil,
because organic fertilizer contains organic carbon and humic acid and other relative matter,
which adsorbs shallow soil NO3

−-N and inhibits its downward migration [58]. These
results are consistent with previous studies [59,60].

Nutrition is a key factor affecting quantity and metabolites in plant growth. Citrus
is a green plant in all seasons and germinates branches many times a year; consequently,
it consumes a several nutrients [61]. Many studies have shown that the use of organic
matter like manure, compost, and straw can improve and increase the nutrients of crop
organs [62–64]. Thus, combined application of organic matter and chemical fertilizer could
promote the nutrients of the crop. In this study, N, P and K found in the branches, roots,
and fruits of trees treated with OF + CF and BF + CF were higher than that of CK and CF.
These findings indicate that CFOF facilitates absorption and distribution of nutrients in
citrus. This may be due to organic fertilizer improving soil physicochemical properties and
enhancing the ability of absorption and transportation of nutrients by roots, as previously
suggested [65,66]. Ample nutrition plays an indispensable role in plant growth. In this
study, the index of plant growth from the OF + CF and BF + CF treatments was better
than that of CK and CF, and it was relative to nutrient balance. These results are similar
to previous studies [28,67]. Photosynthesis is a key physiological activity of plants and
plays an important role in growth and development. It has been reported that more
than 90% of crop biomass is derived from photosynthesis [68]. Chlorophyll fluoresce
is an ideal parameter for studying the physiological condition of plant photosynthesis
in multiple settings, because it reflects various aspects of photosynthesis, such as light
energy absorption, transmission, and photoreaction. In addition, PI of the chlorophyll
fluorescence parameter can reflect the optical system performance index of a whole leaf,
and PIabs and PItotal comprehensively reflect the light absorption and photosynthetic
performance of a leaf [69,70]. In this study, SPAD, Pn, PIabs, and PItotal measurements in
the OF + CF and BF + CF treatments were higher than those of CK and CF. These results
indicate that CFOF greatly improved leaf photosynthesis. The promotion of nutrient
absorption, leaf growth, and the enzyme activity of leaf-related physiological metabolism
could bring about improvement in leaf photosynthesis [50,71]. These findings are similar to
previous studies [26,72,73]. In addition, the results showed that photosynthetic physiology
was best in August, which may be due to leaf growth, light intensity, and physiological
metabolism [74,75].

As discussed above, CFOF could increase soil microbial activity, improve soil’s physi-
cal and chemical properties, enhance nutrient availability in citrus tree organs, and promote
citrus growth and photosynthesis. Yield is also an important parameter to measure because
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of its economic benefits, which are determined by many factors, such as the condition of
growth and photosynthesis. Previous studies have shown that yield can be maintained or
even significantly increased relative to application of synthetic fertilizer alone [4,15,21,28].
In this study, yield per citrus tree and the contribution rate of fertilizer in the OF + CF and
BF + CF treatments were significantly higher than that of CF. This illustrates that CFOF is
beneficial for boosting citrus yield. This result might be explained by the fact that chemical
fertilizer combined with organic fertilizer could improve soil fertility and enhance the
ability of photosynthesis and growth with the above research findings. These results were
consistent with previous studies [76–78]. In addition, nutrient availability of citrus organs,
photosynthesis, soil properties, and orchard environment parameters as measured in the
BF + CF treatment were better than that of OF + CF on the whole, perhaps because bioor-
ganic fertilizer contains abundant active substances, such as microorganisms, amino acids,
and humic acids, which could benefit root growth, water and nutrient absorption, and
photosynthesis. These results are similar to previous studies [79–81]. Consequently, CFOF
is beneficial to promoting citrus physiology, improving soil characteristics, and increasing
orchard yield, which could meet the requirements of green ecological development.

5. Conclusions

The results of this study show that CFOF is beneficial to improving the physicochemi-
cal and microbe properties of soil, promoting nutrient content of citrus plants, enhancing
photosynthesis and growth of citrus, and thus promoting orchard yield. In addition, CFOF
notably alleviates NO3

−-N leaching and NO3
−-N migration to deep soil. In summary,

CFOF can obtain high yields and ensure good citrus orchard and tree conditions and
ecological environment, especially when the BF + CF treatment is used. The application of
N, P2O5, K2O fertilizer and bioorganic fertilizer of BF + CF treatment is 0.508, 0.320, 0.310
and 10 kg/plant, respectively.
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