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Abstract: Innovation adoptions in agriculture sustain high total factor productivity (TFP) growth and
overcome a potential production gap, which is beneficial for food security. Research and development
(R&D) innovation adoption in agriculture sector is dependent on producers’ willingness to adopt,
knowledge capital spillovers, and financial capacity. This research aims to investigate the impact of
R&D innovation adoption and climate factors on agriculture TFP growth in Pakistan. The annual
time series data were collected from different sources for the period of 1972–2020. For measuring the
agriculture TFP, this study adopted the Cobb Douglas and Translog production functions. To analyze
the impact of R&D innovation adoption and climate change on agricultural productivity, the dynamic
autoregressive distributive lag (ARDL) and two-stage least square (TSLS) approaches were applied
for regression analysis. The study outcomes highlight that the agricultural innovation adoption has a
significantly positive impact on agriculture TFP growth in Pakistan with weak farmers’ absorptive
ability. According to the results, agriculture tractors, innovative seed distribution, and fertilizer
consumptions make a significantly positive contribution to agriculture TFP growth. Further, rainfall
shows a positive and significant impact on agricultural productivity, where a moderate climate
is beneficial for agricultural productivity. The estimation results contain policy suggestions for
sustainable R&D adoption and agrarians’ absorptive ability. Based on the obtained results, it has been
suggested that producers should focus on R&D innovation adoption to attain higher productivity.
The government needs to emphasize innovative technology adoption, specifically to implement the
extension services to increase farmers’ education, skills based training, and networking among the
farmers to enhance their knowledge capital and absorptive ability. The farmers should also focus
on the adoption of climate smart agriculture that can be achieved through the proper utilization of
rainwater. For this purpose, the government needs to develop small community dams and large-scale
dams for better use of rainwater harvesting.

Keywords: technology adoption; climatic variation; absorptive ability; agriculture TFP growth;
TSLS; Pakistan

1. Introduction

The Global Agriculture and Productivity (GAP) report of 2020 shows that an additional
71–100 million people fell into extreme poverty due to the COVID-19 shutdown, and
235 million people are at high risk of acute hunger [1]. Globally, 20–40% of crop yield is lost
each year due to pest attacks, while around 81 million people’s food can be consumed by
large swarms annually [1]. Agriculture innovation and its adoption is an essential element
to overcome the global food security and poverty challenges. Climatic vulnerability harms
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the agriculture output and creates food insecurity problems, especially in developing
countries [2]. These food insecurity challenges may even lead to a negative impact on a
global scale. Sustainable agriculture research and development (R&D) and its spillover
shocks, climatic protection strategies, water management policies, and technology adoption
in the agriculture sector have significant potential to save the world from a harmful climate
and upcoming food security challenges. The adoption of innovative technology in the
agriculture sector provides mechanization and permits adaptation of the optimum level
of input. Utilizing optimal agriculture inputs reduces the labor demand, monitoring cost,
water scarcity challenges, and soil erosion. Further, an optimal input provides digital
logistics and trustworthy consumers to the farmers, through which agrarians can maintain
high yield and profitability. The combined collaborative efforts between government and
private partners can enhance innovative adoptions in agriculture [3]. A country’s efforts
toward agriculture innovation and adoption perform an essential role in farm and off-farm
agriculture growth [4]. Agriculture innovations consolidate the higher level of output and
sustain food availability in both developed and developing countries, which is also helpful
in food accessibility through international agriculture trade.

The agriculture total factor productivity (TFP) increases when agrarians adopt and
efficiently utilize innovative technology to attain a higher yield with fewer input resources.
Additionally, technology adoption in the cropping sector (e.g., innovative and hybrid seeds,
fertilizers, agri-technology, water efficiency, water management technology, hydroponic
technology, etc.) intensifies the output, product efficiency, and profitability. Similarly,
through the usage of animal genetics, breed varieties, and veterinary medicines, farmers
can get more milk, meat, and eggs with fewer inputs [1,5–7]. Fundamental ways to mitigate
agriculture risks are R&D, innovation adoption, and enhanced agronomic expertise. The
farmer’s expertise improves through their access to education, extension services, training,
skill-based workshops, community-led solutions, and networking with research institu-
tions [8,9]. To enhance agricultural productivity and agrarians’ expertise, Steensland [1]
highlights the policy priorities to adopt at a country level, which include R&D funding, ex-
tension services, agrarians’ training, accelerating innovation adoption, networking policies,
and financial management.

To feed the 10 billion projected global population in 2050, global agriculture requires
a higher annual TFP growth of 1.73% as compared to current TFP growth, which is at
1.63% [1]. In order to sustain the global food requirement, the government R&D spending
in agricultural innovation is essential for agriculture productivity, food security, and
environmental sustainability [9]. The government should provide agricultural innovation,
such as rival goods, especially innovative seed varieties and other essential agriculture
technologies. Further, the negligence of government towards agriculture R&D puts future
agri-TFP growth at high risk [10]. Globally, the private sector accounted 52.5% of domestic
agriculture R&D spending in 2011 as compared to 42% in 1980 [9]. A paradigm shift
happened in agriculture R&D spending from public to private, and worldwide from higher
income countries to middle-income countries (like USA to Brazil, China, and India) [9,11].
Further, Chai et al. [12] point out that the Chinese government spent the two-thirds of R&D
funding on agriculture from their total, outspending the USA in both public and private
sector agriculture expenditures.

Innovation adoption in agriculture is an essential element to increase farm level pro-
ductivity, farmers’ welfare, and to ensure the food security. However, the technological
spillovers and adoption are heterogeneous across the farms, regions, and countries, cre-
ating heterogeneity in farmers’ welfare, income equality, and poverty [13–15]. Similarly,
Hurley et al. [16] argued that agriculture R&D spending has a high rate of return and
provides 2.5–5% productivity over the non-R&D spenders. In addition, Diederen et al. [17]
concluded that the farmers who adopt innovation early gain higher profitability over
later adopters, so the period of innovation adoption is as important as innovation itself.
Maffioli et al. [18] found the positive effect of technology adoption on agriculture out-
put, whereas the improved adoption rate of seed varieties is certainly weak. Similarly,
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Gallardo & Sauer [19] investigated the role of laborsaving and technological adoption
in agriculture output and found that innovative adoption performs a successive role in
agriculture productivity. Bucci et al. [20] worked on precision agriculture technology (PAT)
adoption in Italy and concluded that the chosen PAT farmers face various obstacles like
geographical area, cultural barrier, limited information about benefits, small farm size, and
low appreciating benefits over the cost of PAT chosen. Additionally, ref. [1,21] reviewed the
existing literature and found that weak extension services are major hurdles in agriculture
technology diffusion and earlier adoption.

Investment in agriculture innovation performs an influential role in agriculture growth.
Evidence shows that agriculture investment has a high rate of return, and investment in
tractor and tube-well has a significant impact on agriculture production in Punjab, Pak-
istan [22]. Chandio et al. [23] revealed that farmers’ financial access and technology
adoption improved cereal production, whereas carbon emission and harmful climate neg-
atively affected cereal output. Shabbir & Yaqoob [24] argued that agriculture innovative
inputs have stabilized the cotton production in Pakistan and that hybrid seed, mechaniza-
tion, and cotton yield area are important reasons for the growing output. Abdullah &
Samah [25] studied the appreciative measures of agriculture technology and concluded
that the farmers’ education, willingness to learn about advanced technology, updated
knowledge of extension workers, extension services, and the area’s physical condition
all perform an essential role in technology transformation and agriculture output. The
updated knowledge of extension workers can help in training and educating the farmers
to prepare for agriculture innovation adoption. In a similar line, Sjakir et al. [26] found
that agri-field schools modernized agrarian expertise and extension services, playing an
effective role in technology expansion. This revealed that the farmers who attended such
field schools have improved knowledge and productivity.

In Pakistan, the agriculture share of GDP is decreased because of the lacking govern-
ment consideration, poor agriculture development expenditure, weak extension services,
technological availability, low agriculture financial services, farmers’ education, and lack of
agrarians’ management skills [27,28]. The agriculture innovation adoption (like innovative
seeds, new production process, water management strategies, fertilizers, pesticides, and
advance agri-technology) and favored production environment have a noteworthy impact
on the agriculture production of Pakistan. The innovation in agriculture technology has
the potential to increase the output that leads to an increase in farmers’ income, consump-
tion, standard of living, and poverty alleviation in rural areas [28–31]. Additionally, Ali
& Behera [27] found that the wealthier and educated young farmers are more willing to
adopt alternative irrigation technology, but the frequent energy shortage and lack of finan-
cial credit facilities creates hurdles in irrigation technology adoption. Similarly, Chandio
et al. [32] argued that farm size, labor, credit, and fertilizer usage perform a positive role in
rice productivity, while technical efficiency indicates that rice farmers are highly efficient
with rice production technology.

This paper contributes to the literature in following ways. First, the perpetual inven-
tory methodology (PIM) was used to calculate the net capital stock of the agriculture sector
of Pakistan [33]. For necessary conditions, the initial capital stock is calculated from the
gross capital investment of the agriculture in Pakistan. Second, the TFP is calculated by
adopting the Cobb Douglas production function in the form of Translog function. Thirdly,
the existing literature regarding agriculture innovation adoption focused on a cross-section
framework, either cross-country or across the regions, while this study adopts the time
series empirics for country-specific analysis. This research not only focused on technology
adaption measures, but also incorporated the laborer absorptive capacity in the agriculture
sector. Fourth, the literature review regarding technology adoption in the agriculture
sector of Pakistan [13,34–37] is not readily available and most studies focused on analyzing
the impact of agriculture inputs on value addition. This unique study comprehensively
measured agriculture TFP growth and investigates the dependency relationship between
technology adoption and absorptive ability factors on TFP growth. Fifth, simultaneously,
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numerous diagnostic tests were applied for quantitative results, and the problem of en-
dogeneity was detected through a different sort of analysis. To avoid the endogeneity
problem, two stage least square (TSLS) regression analysis was adopted to provide an
instrumental specification to resolve the endogeneity problem.

At the beginning of the twenty-first century, R&D innovation revolutionized the agri-
culture production process and social well-being of the farmers. Globally, the increasing
role of R&D in economic performance of agriculture sector is a key motivation of this
research. R&D contributes through potential and intensive utilization of resources, increas-
ing efficiency of human resources, availability, and adoptability of internal and external
innovation. Agriculture R&D spending has a negligent share in the GDP of Pakistan,
which is creating the potentiation gap in agriculture TFP growth. Existing literature sug-
gested that agriculture performance of developed and developing countries is dependent
on R&D spillovers, knowledge shocks, adoption of innovation, and farmers absorptive
ability [38–40]. However, current studies have presented an overview of R&D spillover,
but empirical studies are very rare in the case of Pakistan and not focused on farmers
absorptive ability. The role of R&D spillovers in agriculture productivity growth in the
context of empirical manners is missing in case of Pakistan. At present, the existing litera-
ture is unable to answer the following questions: Does technological adoption perform a
productive role in agriculture output in Pakistan? Does the agriculture investment affect
the volatility of TFP growth? Does the R&D innovation adoption perform a significant
role in the agriculture TFP of Pakistan? Does the climatic variation affect the agriculture
TFP growth in Pakistan? Does the human capital perform a fruitful role in agriculture
TFP? Do the farmers have the absorptive capacity to adopt the agriculture innovation
for higher output? By keeping in mind such research questions and gaps in the existing
literature, this research comprises the following objectives: calculating the TFP growth in
Pakistan and investigating the impact of technological adoption on agricultural TFP. The
purpose of this research is to explore the role of R&D adoption in agriculture TFP growth in
Pakistan. This study investigates the farmers absorptive ability regarding R&D innovation
in the agriculture sector. This research also examines the effects of climatic variation in
agriculture TFP.

2. Materials & Methods

The agriculture R&D investment and innovation adoption performs a productive role
in agriculture output. Agriculture R&D brings innovative seed varieties, new sowing and
harvesting techniques and technologies, and product efficiency to boost the agriculture
output. R&D innovation enhances the irrigated water efficiency and protects the crops from
climatic vulnerability. In this adoption, farmers’ education, management skill, ground-level
experience, willingness, and financial capacity to opt for the innovation and absorptive
ability are crucial factors. The evidence shows that agriculture R&D has a higher rate
of return and the adoption of agriculture technology, fertilizers, and innovative seeds
has a significant impact on agriculture TFP growth [22,23]. Numerous approaches are
available to compute the TFP growth, such as index numbers, stochastic frontiers, ordinary
least square, etc. However, such approaches are not applicable in this circumstance and
considering the availability of data [41]. The agriculture TFP growth is measured through
the Cobb Douglas and translog production functions due to data constraints. In addition,
the Cobb Douglas-based production function measures the TFP at the aggregate level,
which is appropriate to compute the TFP growth from conventional time-series data for
labor and capital inputs, in addition to climatic variations. The essential assumption for the
Cobb Douglas production function includes a constant return to scale in respective labor,
capital, land, and climate factors in both production and input processes [42,43].

In this research, the Cobb Douglas production function is modified, according to the
input requirements for agriculture cultivation and introduced climatic factors to quantify
the agriculture TFP growth over the traditional production function. The purpose of
incorporating climatic factors into agriculture production function is that the climatic
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factors are as important as capital, land, technology, and labor inputs, which are all
essential for agriculture output. The adapted form of the agriculture production function is
expressed as follows:

Yt = AtKα
t Lβ

t CFδ
t (1)

In Equation (1), Yt is agriculture output, Kt is net capital stock, Lt is agriculture labor,
CFt representing the climatic factors, and At is representing agriculture TFP (ATFP). ‘t’
represents time period, and α, β, and δ represent the shares of net capital stock, agriculture
labor, and climate factors, respectively. Through inverting Equation (1) into input-output ra-
tio and applying the logarithm with its properties on both sides, ATFPt growth is calculated
as follows.

ATFPt =
Yt

Kα
t Lβ

t CFδ
t

(2)

lnATFPt = ln Yt − (αlnKt + βlnLt + δlnCFt) (3)

As a result, Equation (3) demonstrates ATFPt growth, which is measured through
agriculture inputs, such as capital stock, labor, and climatic factors. To measure the net
capital stock Kt in agriculture, the perpetual inventory method was adopted [44,45].

2.1. Net Capital Stock

The rise in stock of capital is called gross capital formation and can be measured from
total investment expenditure on agriculture within the economy. The gross capital forma-
tion is known as net investment in the agriculture sector by excluding the depreciation and
inflationary effects. The net capital stock is a difference between gross capital formation
and fixed capital consumption (known as depreciation rate or capital consumption). De-
preciation rate refers to wear and tear expenditures from fixed capital to maintain capital
stock in its initial condition.

The perpetual inventory methodology (PIM) approach based on ref. [46] is applied
for calculating the net capital stock in agriculture [33]. In this approach, the approximation
of initial capital stock, growth rate, and depreciation was incorporated. The agriculture
GDP growth rate of the previous period is assumed as the current capital growth rate [41].
The estimated formulations are as follows:

Kt+1 = It + (1 − d)Kt (4)

In notation (4), ‘t’ represents the time, Kt+1 is net capital stock in the agriculture sector,
It is gross capital stock, and ‘d’ is the depreciation rate. However, the study focused on
measuring the net capital stock in the agriculture sector, which requires the initial capital
stock. For this purpose, the gross fixed capital formation is used to calculate the initial
capital formation. The method to measure the initial capital is as follows:

Io =
Ii

gi + d
(5)

Here, in notation 5, Io is the initial level gross fixed capital stock in agriculture, where
gi is average growth in capital formation. For this, the proxy of previous period agriculture
GDP growth was taken [41]. The data of depreciation are collected from the Panne world
table 10.1, to measure the net capital stock. Ref. [47] argued that depreciation is taken as
the average life span of machinery (capital equipment) and growth of capital stock ‘g’ must
be taken as the average growth of capital stock through the sample range.

2.2. Empirical Model

For agriculture productivity, the inclusive R&D factors, knowledge capital, labor
force, and climatic condition have a fruitful effect on agriculture output and promote
inclusive agriculture growth. Domestic R&D innovation is suitable because it matches with
country land requirement, soil fertility, climatic conditions, water sources availability, rural
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culture, social and politic norms, and economic conditions. Internal R&D in agriculture
has a compatibility with land requirement while internally developed innovative seeds,
irrigation techniques, and agriculture equipment and machinery are more appropriate
and productive than foreign imported technology [45,48]. The functional relationship of
ATFP growth is determined to investigate the R&D adoption indicators, climate factors,
and farmers absorptive ability as endogenous determinants of ATFP growth. Salim &
Islam [43] worked on the significance of technology adoption and its role in agriculture
ATFPt growth and concluded that the innovation adoption is an essential factor to increase
the ATFPt, which is largely influenced through climate factors and knowledge capital. The
technology adoption is highly productive and beneficial to improve internal innovation and
knowledge absorptive ability [44]. R&D innovation in the agriculture sector is measured
through the Cobb Douglas production function in the Translog form. The agriculture output
performance is dependent on ATFP, labor efficiency, net capital stock and cultivation land.
The domestic innovation spillover is essential to increase the agriculture ATFP growth,
which is largely influenced through technological spillovers, farmers’ willingness to adopt,
farmers’ absorptive capacity, and climate factors. The modified form of the Cobb Douglas
production function as follows:

Yt = ATFPtKα
t Lβ

t Mγ
t CFδ

t (6)

In Equation (6), Yt is agriculture output performance while ATFPt, Lα
t , Kβ

t , Mγ
t , and

CFδ
t are ATFP, agricultural labor force, net agriculture capital stock, agriculture land, and

climate factors, respectively. Here, ‘t’ represents time and α, β, γ, and δ represent the
respective weights of capital, labor, land, and climatic factor in agriculture. The ATFPt
growth is dependent on R&D adoption in agriculture, climate factors, and agrarians’
absorptive capacity.

ATFPt = AtRDtACtCFt (7)

In Equation (7), the dependent variable is ATFPt growth and independent variables
are (At, RDt, ACt, CFt) technical progress, R&D adoption, absorptive capacity (AC), and
climate factors (CF). Taking the natural log and adding intercept and residual terms in
Equation (7), the final estimated model is provided.

LnATFPt = α0 + α1At + α2RDt + α3ACt + α4CFt + εt (8)

Equation (8) is modified according to the availability of data and assumption concerns
with the agriculture growth model [43]. In the estimated model, the interactive term of
human capital is incorporated with R&D indicators to measure the farmers’ absorptive
capacity [44]. The estimated model to examine the role of R&D innovation adoption,
climatic factors, and absorptive capacity on ATFPt growth is as follows:

lnATFPt = a0 + a1lnAIt + a2lnAEMPt + a3lnHCt + a4lnRFt + a5lnATt + a6lnFCt + α7lnSDt + a8lnHCxRDt + πt (9)

Equation (9) is the final estimated model to investigate the behavior of technology
adoption channels, absorptive ability, and climate factor in ATFPt growth in Pakistan.
Here, ATFPt is agriculture total factor productivity, which is a dependent variable, while
the independent variables AIt, AEMPt, HCt, RFt, ATt, FCt, SDt, and HCxRDt represent
agriculture investment, employment, human capital, rainfall, agriculture tractor, fertilizer
consumption, innovative seeds distribution, and interactive term to measure the absorptive
ability. The description and measurement units of variables are given in Table 1. In
Equation (9), alphas (α’s) represent the equation coefficients and π represents the residual
term. Initially, the ATFPt is considered as an exogenous variable and measured through the
growth accounting technique. At the second stage, ATFPt is regressed on the indicators of
technological adoption and climatic indicators. This research concerns the multicollinearity
and endogeneity problem caused by technological adoption (input) factors in the estimation
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of ATFP and interactive term to capture the absorptive ability. The endogeneity can be
overcome by including the interactive term and lagged instrumental variables in the
estimated model [41], which cause the multicollinearity problems. In the estimated model,
the interactive term of human capital with R&D incorporated in the model is used to
overcome the endogeneity problems and measures the absorptive ability. For final analysis,
the dynamic autoregressive distributed lag (ARDL) model and TSLS instrumental variable
approach is applied.

Table 1. Variables and Description.

Abbreviation Variables Measurement Units

TFPt Total Factor Productivity Measured through Cobb Douglas
and Translog Production Function

AIt Agriculture Investment Million Rupees
AL Agriculture Land Percentage share in total Land
ATt Agriculture Tractor Total in numbers

AEMPt Agriculture Employment Percent share in total
Employment

HCt Human Capital index Index developed by panne world
table 10.1

RFt Average Annual Rainfall Millimeter

FCt
Fertilizer Consumption in

(000) tons 000 Tonnes

SD Innovative Seeds Distribution Tonnes

INTt

Interactive term of Human capital
with Agriculture Tractors, Seed

Distributions, and Fertilizers
Consumptions

To Capture the Absorptive Ability

2.3. Data and Data Sources

The TFP growth of agriculture sector is accessed through time series data. The annual
data were collected for the period of 1973–2020 from different sources. The secondary data
were collected from domestic and foreign sources. The foreign sources consist of World
Development Indicators (WDI) and Food and Agriculture Organization (FAO). Meanwhile,
information from domestic sources is taken from Pakistan Meteorological Department
(PMD) Pakistan Agricultural Research Council (PARC), Ministry of National Food Security
& Research, Ministry of Finance Pakistan, Economic Survey of Pakistan, and Pakistan
Bureau of Statistics. The secondary source data were collected from various issues of
economic surveys of Pakistan, reports issued by PMD [49], and different statistical books
issued by Pakistan Bureau of statistics.

3. Results and Discussion

The purpose of this research is to examine the impact of R&D adoption, climatic
factors, and absorptive ability on ATFP growth. Time-series data are utilized for long-run
analysis, namely, to assess trending behavior and causes of spurious analysis. To avoid
spurious analysis through the data cleaning process, the problem of multicollinearity and
endogeneity is detected. The problem of multicollinearity existed due to interactive terms,
and for this purpose, different models are estimated through incorporating the proxies of
R&D adoption. Three models are estimated to avoid the multicollinearity in the dynamic
autoregressive distributive lag (ARDL) approach, while the TSLS instrumental variable
technique is applied as a remedy to endogeneity problems and to investigate the behavior
of coefficient cleaning in the endogeneity problem.

3.1. Agriculture TFP Growth

The calculated value of ATFPt is given in Figure 1. The estimates show positive and
upward trending behavior of ATFPt in Pakistan. The average ATFPt growth remains at
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1.29 percent in Pakistan from 1972 to 2020. The ATFPt growth was 1.45% in 2020, which
is less than the world agriculture TFP growth that was 1.63% in 2020 [1]. To ensure
food security in Pakistan, it is necessary to increase ATFP growth at least at the rate of
population growth, which was 1.95% in 2020 [50]. The ATFPt growth was high from 2000
to 2008 because of government structural improvement, e.g., cemented canals, agriculture
credit structure, etc. especially in Punjab, Pakistan. This was the season that the average
agriculture growth remained at 4.83% from 2003 to 2008 in Pakistan [51]. During this period,
the government focused on the agriculture sector in different ways, such as agriculture
research, improving the water use efficiency, agriculture institutional development, and
extension services to educate the farmers about agriculture innovation [23,51,52].
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Figure 1. Agriculture Total Factor Productivity in Pakistan. Source: Author’s Calculation.

3.2. Stationarity Results

In nature, time series data are used to assess trending behavior, which may cause the
problem of spurious analysis. To avoid the spurious analysis, it is important in investigate
the stationarity behavior. For this instance, the augmented Dickey–Fuller (ADF) unit
root test is applied, and the results are given in Table 2. The ADF test findings indicate
that all variables are stationary at first, except rainfall (RFt) and agriculture land (ALt).
This clearly indicates that ATFPt growth in Pakistan is highly dependent on previous
period R&D adoption, skills, and experience based human capital. Additionally, for ATFPt
growth, the climatic factors and under cultivation land constitute an important matter in the
present period.

Table 2. The ADF Test Results.

Variables Level First Difference
T-Stat p-Value T-Stat p-Value

TFPt 0.0060 (0.6796) −6.1420 (0.0000) *
ALt 2.8426 (0.0236) * 5.1769 (0.0000)
AIt −1.3215 (0.1693) −3.2986 (0.0016) *

LAEMPt −1.1515 (0.6874) −8.2817 (0.0000) *
LHCt −1.2886 (0.6270) −6.6419 (0.0000) *
LRFt −5.4196 (0.0003) * −5.9350 (0.0001)
LATt 0.0791 (0.9607) −8.4761 (0.0000) *
SDt (1.3291) (0.4932) 6.1674 (0.0000) *

LFCTt −0.1679 (0.9345) −5.0333 (0.0002) *
* Indicates the integration level of all variables.
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3.3. ARDL Estimates

The ATFPt growth of Pakistan is measured through Cobb Douglas and Translog
production functions, and the estimated value of long-run analysis results are shown
in Table 3. For empirical analysis, three different models are estimated to captures the
role of R&D adoption and climatic sensitivity in ATFPt growth in Pakistan. The purpose
of pertaining different models is to avoid multicollinearity and endogeneity challenges
(results are given in Table 4. At the next stage, the endogeneity problem addressed through
the TSLS method by selecting the appropriate instrumental variables. In estimated models,
the dependent variable is ATFPt, while independent variables are AIt, ATt, SDt, FCt, and
interactive term (INT)t. The INTt is buoyed to capture the laborer absorptive ability. The
other control variables are ALt, AEMPt, HCt, and RFt. In all three models, the calculated
value of ARDL bound test is greater than the upper bound, which specifies the significant
rejection of the null hypothesis of no cointegration relationship among estimated variables.
The empirical results of the ARDL bound test show that all three estimated models have
long run cointegration association. The percentage share of control variables ALt, AEMPt,
AIt, and RFt in agriculture TFP growth is 26%, 8%, 19%, and 17%, respectively. The
contribution of R&D adoption variables ATt, SDt, and FCt to TFP growth is 28%, 24%, and
17%, respectively.

Table 3. ARDL Long Run Coefficient and Bound Test Results.

Model 1 Model 2 Model 3
Variables Coefficient Prob Coefficient Prob Coefficient Prob

C −5.6559 0.0000 *** 3.9484 0.0276 ** −2.3173 0.0000 ***
LALt 0.2625 0.0188 ** 0.1286 0.0292 ** 0.0727 0.2535

LAEMPt 0.08547 0.0921 * 0.0206 0.8421 0.1993 0.8016
LAIt 0.1914 0.0102 ** 0.0298 0.0001 *** 0.5134 0.0001 ***
LHCt 0.2876 0.4220 0.2560 0.1934 0.0591 0.3562
LRFt 0.0073 0.0146 ** 0.0102 0.7351 0.1726 0.0008 ***
INTt −0.06431 0.0515 * −0.0689 0.0066 ** −0.5887 0.0002 ***
LATt 0.2865 0.0086 ***
LSDt 0.2475 0.0282 **
LFCt 0.1769 0.0001 ***

ARDL
Bounds

Test
F-Statistic 5.1832 F-statistic 5.0530 F-statistic 16.7837

***, **, * represents the level of significance at 1, 5 and 10 percent respectively.

Table 4. Diagnostic tests results.

Endogeneity Test Prob-Value

J-statistic 25.436 (0.1466)
Instrument Rank 19

Difference in J-stats 3.4283 (0.9047)
Restricted J-statistic 31.460

Unrestricted J-statistic 28.032
Autocorrelation

Prob. Chi-Square 0.1830
Heteroscedasticity Test

F-Statistic 0.0524 (0.4225)
Normality Test

Jarque–Bera Test 2.004 (0.367)

In model 1, the calculated value of agriculture land (ALt) has positive and significant
impact on ATFPt growth with elasticity value of 0.2625. As cultivation land is increased
with other efficient input factors, the agriculture productivity will increase in long-term.
The computed coefficient of ALt shows a 1% increase in agriculture land increasing the
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ATFPt by 26%. The magnitude value ALt highlights that agriculture land holds a higher
share in ATFPt growth and reduction in cultivation land reduces the agriculture produc-
tivity. Urbanization is the reason for a reduction in cultivation land and lowering of the
agriculture share of GDP [53], creating food security challenges in Pakistan. The outcomes
of the study are consistent with the findings of Villoria [48], who empirically found the
increase in cropland area to be an agriculture productivity input to increase the ATFPt
growth. Land ownership policies play a key role and land inputs made a remarkable
contribution to agriculture output [54]. The coefficient value of AEMPt has a positive
and significant impact on ATFPt growth in Pakistan. The AEMPt coefficient value is
0.085, which is significant at the 10% level. The calculated value of AEMPt indicates that
agriculture labor has an 8% share in ATFPt growth. The AEMPt results illustrated that
agriculture labor has a productive contribution to ATFPt growth, and therefore the efficient
agriculture labor produces a fruitful effect on ATFPt growth. Further, the agriculture sector
of Pakistan disguises unemployment, which is a reason for lower labor productivity share
in agriculture output.

Agriculture investment is considered in the model to capture the as proxy of innova-
tion adoption ratio, the result of agriculture investment (AIt) shows significantly positive
effect on ATFPt growth. The coefficient value of AIt is 0.1914, which is significant at 5%.
AIt result indicates that one percent increase in agriculture investment increases the ATFPt
growth by 19%. The positive impact of AIt highlights that, in agriculture, investment
in innovation adoption has a key contribution to agriculture output. The outcomes are
consistent with the results of Ahmed & Javed [52], who argued that timely agriculture
investment and innovation adoption as inputs perform a productive role in agriculture
output. In addition, Aslam [55] highlights that lower agriculture investment in inno-
vative technology represents a fundamental constraint, including advanced technology
availability, institutional support, and socio-economic conditions for agriculture sector.

The variable rainfall is used as proxy of climatic sensitivity to check the effectiveness
in ATFP growth. The moderate level of rainfall has a crucial role in agriculture production.
The rainfall in detrimental conditions causes the climate vulnerability, which affects the
agriculture production directly. The estimated value of rainfall (RFt) has a significantly
positive impact on agriculture TFPt. This shows that effective RFt and its proper utilization
have an advantage to accelerate the ATFPt by 0.7%. The RFt results indicate that sustainable
rainfall with managerial efficiency has a positive role in agriculture productivity. Therefore,
the adoption of climatic smart agriculture induces the agriculture output, which can
be achieved through proper utilization and mechanism for rainwater. For better use
of rainwater, the government water policies and farmers efficiency are very important.
These findings are consistent with Olayide et al. [56], who argued that directly rain-fed
irrigation has a limited impact on output, whereas the appropriate utilization of rainwater
has a positive and long-term impact on agriculture production. The estimated result of
human capital (HCt) shows an insignificant impact, while the interactive term (HC*ATt)
has a negative and significant influence on ATFPt growth. The insignificant results of
HCt and negative outcome of the interactive term highlight that the agriculture labor
force has less absorptive ability about technological innovation. The estimated results
are similar to the findings of dos Santos et al. [57] who found that the farmers who
have high absorptive ability are those who are closer to research institutions and they
have higher networking, while the lower networking farmers have less absorptive ability.
Similarly, Onegina et al. [58] concluded that the labor productivity in the agriculture sector
is dependent on capital spent to increase the labor efficiency. The agriculture human
capital will be more efficient if government focused on the knowledge capital and skill
development of the agriculture labor.

To capture the impact of R&D innovation adoption on ATFPt, different proxies are
taken, such as agriculture tractors, innovative seed distribution, and agriculture fertilizer
consumptions. The coefficient value of the agriculture tractor (ATt) has a positive and
significant effect on ATFPt. The results of ATt highlight that a 1% increase in the number
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of tractors in the agriculture sector increases the ATFPt by 28%. This indicated that tech-
nological adoption in agriculture performs an essential role in agriculture productivity.
The estimated value of LATt indicates that R&D expenditure on agriculture technology
performs fruitful role in enhancement of ATFPt. Estimates directed that farmers should
be a focus of LATt to increase the production efficiency and ATFPt growth. Based on
outcomes, it is recommended that the farmers should focus on R&D innovation adoption
to enhance their production and profitability. Additionally, the government should support
the farmers to speed up the R&D innovation adoption and spillover process to enhance
agriculture productivity. Similar results were found by Cavallo et al. [59] who argued
that farmers with agriculture tractor adoption increase output, while the contract and
large-scale farmers are more up to date in the adoption of innovations in agriculture.

In model 2, the policy variables ATt and interactive term are replaced with innovative
seed distribution variable, while taking the control variables constant. The estimated
behavior of all other variables are alike to the estimated model 1, except for the minor
change in magnitude of the coefficients and the RFt variable behavior. The RFt variable has
an insignificant impact on ATFPt growth. The innovative seed distribution (SDt) is utilized
to capture the R&D innovative adoption in the agriculture sector. The coefficient value of
SDt in agriculture has a positive and significant impact on ATFPt growth in Pakistan. This
illustrated that innovative seed distribution has a dynamic role in agriculture output. The
estimated value of SDt shows that a 1% increase in innovative seed adoption in agriculture
increases ATFPt growth by 24%. The innovative seeds perform a crucial role in agriculture
output and hybrid seed technologies are more disease secure, climatic resilient, drought
resistant, etc. through which farmers can attain higher output. Similarly, Adolwa et al. [60]
concluded that the agriculture productivity is low where the access to innovative seeds is
low, and heterogeneity exists in seed distribution among farmers. The coefficient value of
the interactive term of seeds distribution and human capital has a negative and significant
impact. The negative coefficient of INTt infers that the knowledge capital about innovative
seed adoption has less absorptive ability, farmers have weak knowledge about innovative
seed distribution, and its early adoption is neglected.

In model 3, the R&D innovation adoption is captured through fertilizer consumption
by taking the control variables as in the first model. The coefficient value of fertilizer
consumption has a positive and significant impact on ATFPt growth in Pakistan. This
indicates that farmers FCt for high yield has a key contribution to increasing FCt, optimally
increasing the ATFPt by 17% annually. The findings are inconsistent with the outcomes
of Raza et al. [36], who found an insignificant impact of fertilizers on agriculture output
with a lower adaptive rate. The coefficient value of the interactive term of FCt and HCt
has negative and significant impact. The negative coefficient of INTt supports that the
knowledge capital about optimal fertilizers utilization has less absorptive ability and
farmers have weak knowledge to gain the actual outcome of fertilizer consumption.

The ARDL short-run estimates are given in Table 5 where the short-run coefficients
have an insignificant impact on ATFPt growth in Pakistan. In all three models, the co-
efficient value of short-run control variables ALt, AEMPt, AIt, HCt, and RFt and their
lag coefficients demonstrate similar behavior as in the long run and mostly have an in-
significant impact on ATFPt growth. The lag coefficient value of HCt has a significantly
positive impact on ATFPt. The lag value of HCt indicated that education with field expe-
rience positively contributes towards ATFPt growth. Additionally, the R&D innovation
indicators show a positive and significant impact on ATFPt growth in the short run. In
the multivariate time series model, the convergence behavior, stochastic trend, and speed
of adjustment of the dependent variable are attained through the error correction model
(ECM). The ECMt(−1) coefficients values in all three models are negative and statistically
significant, showing that the estimated models have convergent behavior towards equi-
librium. The higher value of ECM (−1) revealed that if there is a disequilibrium in R&D
input, adoption and input shocks can be adjusted with higher speed during the given
period. The agriculture R&D innovation inputs perform an essential role in bringing ATFPt
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into its steady-state position [53]. The ECMt (−1) coefficient value is higher due to two
cropping seasons (Rabi and Kharif) in Pakistan, with heterogeneously located areas, so if
the production of one crop is lower, its production deficiency will recover either during the
same crop or during the next crop [53,61].

Table 5. Short Run and cointegration coefficient.

Model 1 Model 2 Model 3
Variables Coefficient Prob Coefficient Prob Coefficient Prob

D(LTFP(−1)) 0.0953 0.5436 0.3232 0.6231 0.5219 0.2710
D(LAL) 0.2542 0.0494 ** 0.2524 0.0917 * −0.0702 0.2808

D(LAL(−1)) 0.0437 0.7240 0.2115 0.7429 −0.0226 0.6749
D(LAEMP) 0.0409 0.1120 −0.0114 0.8399 0.0271 0.5102

D(LAEMP(−1)) 0.3826 0.3411 −0.0435 0.4813 −0.1038 0.0067 ***
D(LAI) 0.0182 0.8102 −0.0002 0.9475 0.1297 0.2510

D(LAI(−1)) 0.0767 0.4268 0.0147 0.0255 ** −0.0861 0.4476
D(LHC) 0.7468 0.1356 0.0142 0.0717 * 0.0106 0.3214

DLHC(−1)) 0.7219 0.1317 0.0185 0.0743 * 0.0491 0.0018 ***
D(LRF) 0.0045 0.0251 ** 0.0056 0.7457 0.4705 0.1002

D(LRF(−1)) −0.0015 0.2216 0.0054 0.7366 −0.6895 0.0131 **
D(INT) −1.4814 0.1305 −0.0310 0.0684 * −2.4624 0.0077 ***

D(INT(−1)) −1.4169 0.1264 −0.0450 0.0552 * −0.0815 0.9539
D(LAT) 0.9725 0.3580

D(LAT(−1)) 0.4962 0.0842 ***
D(LSD) 0.1592 0.0083 ***

D(LSD(−1)) 0.1700 0.0136 ***
D(LFCT) 0.6958 0.3146

D(LFCT(−1)) −0.8848 0.2822

ECM (−1) −1.2128 0.0001 *** −0.5536 0.0019 *** −1.1577 0.0000 ***

Autocorrelation (Breusch–Godfrey) 0.0862
(0.9176)

0.5222
(0.5983)

2.2928
(0.1376)

Heteroskedasticity
(Breusch–Pagan–Godfrey)

1.2323
(0.3035)

1.3594
(0.2341)

0.3984
(0.9840)

Normality (Jarque–Bera) 2.6202
(0.2697)

4.3351
(0.1035)

1.8697
(0.3925)

***, **, * represents the level of significance at 1, 5 and 10 percent respectively.

3.4. Endogeneity and Diagnostic Test Results

The variables highly correlated with error create the endogeneity problem and the
chosen lag period value is used as the instrumental variable. After identifying the instru-
mental variables, the endogeneity test for the validation of unbiased selection instruments
was applied. As the estimated variables are first order stationary, to avoid the spurious
results, the endogeneity problem was initially detected through Hansen’s (1982) J-test [62].
The null hypothesis of the endogeneity test is that the variables behave endogenously. The
results of endogeneity test and residual diagnostic estimates are given in Table 5. The
estimated result of J-stat is insignificant, which is evidence of the endogeneity problem in
the estimates. Further, the selected instruments are uncorrelated with the residual term and
independent variable. This selection resolves the problem of non-stationarity, heteroscedas-
ticity, and autocorrelation in the estimated model [62,63]. To resolve the endogeneity
problem, a one-year lag of highly correlated variables was used as an instrumental variable
in the two stage least square (TSLS) approach [64]. Further, the interactive term is helpful
in resolving the endogeneity problem. The TSLS is an instrumental variables approach,
which efficiently handles the endogeneity and spurious regression problems [63]. The
residual diagnostic estimates highlight that there is no evidence of heteroscedasticity and
autocorrelation in the estimated model. Further, the data are normally distributed.
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3.5. Two Stage Least Square Results

The results of TSLS are given in Table 6, where the dependent variable is ATFPt, while
independent variables are AIt, AEMPt, ATt, SDt, FCt, HCt, and interactive term (HC *ATt).
The estimated value of the F-statistic is high and significant, which shows that model
is overall significant and likely useful for policy implication. The value of R-square is
0.93, which indicates that the estimated model is well-fitted, and 93% variation in ATFPt
growth is explained by the selected independent variables. In general, the TSLS analysis
shows that agriculture investment, agriculture land, seed distributions, tractors, fertilizer
consumption, and rainfall perform a positive and significant role in ATFPt. The estimated
value of agriculture employment and human capital has an insignificant impact on ATFPt,
whereas the calculated value of the interactive term have a negative and significant impact
on ATFPt. The agriculture labor is less efficient in R&D innovation absorption due to
over-employment and poor knowledge of R&D innovation.

Table 6. Results of Two Stage Least Square.

Variable Coefficient p-Values

C 1.8428 0.0138 **
LAIt 0.0161 0.0005 ***

LAEMPt −0.0883 0.4002
LALt 0.2151 0.0173 ***
LHCt 0.6950 0.3063
LRFt 0.0976 0.0000 ***
INTt −0.0453 0.0038 ***
LATt 0.0731 0.0637 *
LSDt 0.1209 0.0392 **

LFCTt 0.0718 0.0189 **
F-statistic 133.126 (0.000) ***
R-squared 0.93

***, **, * represents the level of significance at 1, 5 and 10 percent respectively.

Agriculture investment is considered as proxy of R&D capital. The result of agriculture
investment (AIt) shows significantly positive effect on agriculture productivity growth.
The coefficient value of AIt is 0.016, which is significant at 10%. This indicates that a 1%
increase in agriculture investment increases the ATFPt growth by 1.6%. The positive impact
of agriculture investment highlights that an increase in agriculture investment has key
contribution to productivity. The outcomes are consistent with the results of Ahmed &
Javed [52], who argued that timely agriculture investment and innovation adoption as
inputs performs productive role in agriculture output. The estimated value of AEMPt
has a negative and insignificant impact on agriculture ATFPt. The insignificant impact
on AEMPt on agriculture productivity may be due to overemployment in the agriculture
sector. Similarly, Onegina et al. [58] concluded that the labor productivity in the agriculture
sector is dependent on capital spent for increasing the labor efficiency.

The variable rainfall is used as proxy of climatic sensitivity, as a moderate level of
rainfall has a crucial role in agriculture production. The rainfall in detrimental condition
caused climate vulnerability, which directly affects the agriculture production. The esti-
mated value of rainfall (RFt) has a significantly positive impact on ATFPt. This shows
that effective RFt and proper utilization of rainwater led to more accelerated agriculture
productivity by 9.7%. The RFt results indicate that sustainable rainfall with manage-
rial efforts has a positive role in agriculture productivity. Therefore, the adoption of
climatic smart agriculture induces the agriculture output, which can be achieved through
proper utilization of rainwater. For the better use of rainwater, the government wa-
ter policies and farmer efficiency are very important. The findings are consistent with
Olayide et al. [56], who argued that directly rain-fed irrigation has a limited impact on out-
put, whereas the appropriate utilization of rainwater has a positive and long-term impact on
agriculture production.
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The coefficient value of the agriculture tractor (ATt) is positive and significant. The
ATt results highlight that a one percent increase in the number of tractors in agriculture
sector increase the ATFPt by 7.3% in Pakistan. This indicated that technological adoption in
the agriculture sector of Pakistan performs an essential role in agriculture productivity. As
a result, the farmers should focus on innovation adoption to enhance their production and
profitability. The farmers’ technological adoption behavior speeds up the spillover process
and agriculture output. Similar results were found by Cavallo et al. [59] who argued that
farmers’ agriculture tractors adoption behavior increases the spillover impact, while the
contract and large-scale farmers are more up to date in their adoption of innovation in
agriculture. The coefficient value of SDt in agriculture has a positive and significant impact
on ATFPt growth in Pakistan. The estimated value of SDt shows that one percent increase
in innovative seed in agriculture leads to increase the ATFPt growth by 12 percent. The
innovative seeds perform a crucial role in agriculture output and crops are more disease
protected, climatic resilient, drought resistant, etc. through which farmers can attain higher
output. Similarly, Adolwa et al. [60] concluded that the agriculture productivity in those
areas where there is access to innovative seeds is low, and heterogeneity exists in seed
distribution among farmers. The coefficient value of fertilizer consumption has a significant
impact on ATFPt growth in Pakistan. This indicates that farmers are willing to adopt the
fertilizers for higher agriculture output. The findings are consistent with the outcomes of
Raza et al. [36], who found significant fertilizers impact on agriculture output.

The estimated result of human capital (HCt) presents a insignificant and positive
effect, while the interactive term (HC*ATt) shows significant and negative effect on ATFPt
growth. The insignificant results of HCt and negative coefficient of the interactive term
highlights that agriculture labor has weak knowledge capital with lower R&D absorptive
ability. The results indicate that agriculture labor has less absorptive efficiency of innovative
technology at an early stage. The estimated results are similar to the findings of dos Santos
et al. [57] who found that farmers have high absorptive ability those who are closer to
research institutions have higher networking, while the lower networking farmers have
less absorptive ability. Onegina et al. [58] concluded that the government needs to focus
on agriculture knowledge capital, extension services to enhance the knowledge spillover
in agriculture, educate the farmers about earlier innovation adoption, and increase the
absorptive ability to gain high productivity. Farmer expertise, knowledge capital, and
best practices for technology absorption have an effective role to play in agricultural
development in Pakistan.

The authors in this study have used the time series data from 1973–2020 to assess
the impact of R&D on agricultural productivity growth in Pakistan. Authors had data
limitations as is true with many studies based on time series data. Meanwhile, these data
can also be split into two different periods (1973–2000 and 2001–2020) to investigate the
structural difference. The use of a structural break in data analysis can be more beneficial
to determine structural differences and investigate the before and after shocks of R&D.
However, the limited number of observations, 28 and 20, respectively, in the time series
data available for two structural breaks (1973–2000 and 2001–2020) may create the spurious
analysis problem as a normal distribution assumption may not hold and it may mislead
the analysis of structural difference and make the test invalid.

4. Conclusions and Recommendations

This study investigates the role of R&D adoption in agriculture TFP growth in Pakistan.
For the empirical analysis, the annual time series data were collected spanning from 1973
to 2020. The problem of multicollinearity existed due to interactive terms, and for this
purpose, different models were estimated through incorporating the proxies of the R&D
innovation adoption. Three models are estimated to avoid the multicollinearity in the
dynamic ARDL approach, while the TSLS instrumental variables technique is applied as
a remedy to the endogeneity problems and to investigate the behavior of the estimated
coefficient cleaned from the endogeneity problem. It can be concluded from the analysis
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results that R&D adoption presents a fruitful impact on agriculture TFP growth in Pakistan.
Agriculture innovation adoption spending, seed distribution, fertilizer consumptions,
and agriculture tractors each perform a positive role in agriculture TFP growth. This
indicates that the adoption of agricultural R&D innovation is a fundamental source of
higher agriculture productivity. However, the human capital and agriculture employment
show insignificant results, while interactive terms indicate a negative and significant impact
on agriculture TFP in Pakistan. This highlights that the agriculture labor force has less
innovation adoption knowledge and absorptive ability for R&D innovative in agriculture
sector of Pakistan. The results indicate that sustained rainfall with managerial efforts play
a productive role in agriculture productivity. Consequently, the adoption of climate smart
agriculture induces higher agriculture output, which can be achieved through the proper
utilization of rainwater. To improve agricultural output and farmers’ absorptive ability, the
following policy measures are required:

1. The government and research institutions should increase the agriculture R&D inno-
vation expenditures to increase agriculture productivity.

2. The research institutions and government should focus on innovative seed develop-
ment (like hybrid seeds) and its early spillovers for higher agriculture productivity.

3. Urbanization has caused a reduction in cultivation land and lowered the agriculture
output. So, the government should focus to enhance the under-cultivation of land to
avoid food security challenges in Pakistan.

4. The government must develop and implement the extension services to educate the
farmers about technological innovation and efficient resource utilization.

5. The government and technology developing agencies should focus on farmers’ ex-
pertise, knowledge-based training, skills-based workshops, capacity building, and
community-led experiences to improve the absorptive ability of new technology.

6. Farmers should also focus on the adoption of climate smart agriculture, which can be
achieved through a proper utilization of rainwater. For this purpose, the government
needs to develop small community dams and large-scale dams for the timely use
of rainwater.
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