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Abstract: Estimation of the canopy water content (CWC) is extremely important for irrigation
management decisions. Machine learning and hyperspectral imaging technology have provided
a potentially useful tool for precise measurement of plant water content. The tools, however, are
hampered by feature selection as well as an advanced model in itself. Therefore, this study aims
to propose an efficient prediction model and compare three feature selection methods including
vegetation indices (VI), model-based features (MF), and principal component analysis (PCA). The
selected features were applied with a back-propagation neural network (BPNN), random forest
(RF), and partial least square regression (PLSR) for training the samples with minimal loss on a
cross-validation set. The hyperspectral images were collected from rice crops grown under different
water stress levels. A total of 128 images were used to evaluate our proposed methods. The results
indicated that the integration of PCA and MF methods can provide a more robust feature selection
for the proposed prediction model. The three bands of 1467, 1456, and 1106 nm were the supreme
variants of CWC forecasting. These features were combined with an optimized BPNN model and
significantly improved the foretelling accuracy. The accuracy and correlation coefficient of the
advanced BPNN-PCA-MF model are close to 1 with an RMSE of 0.252. Thus, this study positively
contributes to plant water content prediction researchers and policymakers so that well in advance
and effective steps can be taken for precision irrigation.

Keywords: water content; hyperspectral imaging; feature combination; feature selection; optimal
predictive model

1. Introduction

Agriculture consumes 70–90% of global water resources [1]. As well, the excessive
water consumption in the agricultural sector leads to water shortage in arid and semi-arid
regions [2]. Therefore, it is essential to enhance the water use efficiency of the plants by
designing a smart irrigation system for accurately and timely predicting crop water status.
Canopy water content (CWC) is a vital parameter that reflects plant physiological status
and health [3,4]. It is important in regards to water use efficiency of plants [5], a key input
variable in irrigation management decisions, drought assessment [6], and crop ripening
monitoring [7]. It is one of the commonly used indicators to evaluate the plant water
status [5,8] and is widely utilized to monitor vegetation water conditions [5,9].

Conventionally, there are several methods to monitor plant water status, such as
laboratory analysis of the leaf water content [10], sap-flow measurement [11], and stomatal
conductance [12]. Despite the high accuracy provided by these methods, they are time-
consuming, destructive, and laborious. Additionally, estimating the water content using
traditional methods prevents timely regulation of the water content of the plant. The
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interest in monitoring the plant water status has increased in the scientific community
through remote sensing, which is very widely used for accurate retrieval of leaf water
content [4,13]. This technology can be an easy tool to monitor the water status of plants
before reaching a critical level, a nondestructive and rapid way for timely crop water status
monitoring [14].

The success of a hyperspectral image-based regression technique depends on two main
factors; handcrafted feature selection and proper predictive model. Common methods
employed for feature selection include vegetation indices (VI), model-based features (MF),
and principal component analysis (PCA). Primarily, the VI that combined one or more
bands provides spectral responses to changes in water content and can reduce additive and
multiplicative errors associated with ambient environmental conditions [15]. It has been
demonstrated that the VI can provide a good indicator for many variants including canopy
moisture content [16,17], chlorophyll [18], nitrogen [19], and disease stresses [20]. Lately,
several pieces of research have shown the best wavebands that are sensitive to change
in the water content; one of them is 1450 nm [21]. The chosen wavebands within short-
wave infrared nearly 1400 nm and 1600 nm have also been correlated with the moisture,
cellulose, and starch absorption characteristics of the plant leaves [22]. As to [23], there is a
strong correlation between near-infrared spectral indices and crop water content. Some
studies have proposed that the weakly absorbing regions of 970 nm and 1200 nm provide
convenient wavebands for detecting plant canopy water content [24,25]. Reflectance spectra
present many possible water indices because there are several water absorption features
in the near- and far-infrared region [25]. Among these water indices are the water band
index (WBI) [3], three-band ratio indices (TBR) [26], the normalized difference water index
(NDVI) [27], and simple ratio index (SRI) [28].

In other feature selection techniques, the model-based features (MF) selection method
chooses a subset of features that have good discriminative ability and predictive informa-
tion [29]. The MF can improve model performance by getting rid of redundant features
and prevents the model from over-fitting and has the added advantage of keeping the
original feature representation, thus, offering better interpretability [30]. Feature selection
algorithms have become an apparent need for prediction and modeling [31]. Many studies
have explored the possibility of using different algorithms to reduce data dimensions. As to
partial least square regression (PLSR), the weighted regression coefficient of each variable
in the partial least squares (PLS) model indicates the significance of the wavelength in
the model [32]. At random forest (RF), all variables are ranked according to their impor-
tance [33]. A back-propagation neural network (BPNN), Glorfeld [34] concluded an index
that can be used for selecting the most important variables. The principal component anal-
ysis (PCA) is a suitable implement for decreasing the correlation among high-dimensional
data and selecting the most relevant features in the original variables [35]. The impor-
tance of hyperspectral bands is established based on high factor loadings (eigenvectors)
associated with these wavebands on the principal component axes of PCA [36].

Another factor that highly influences the efficiency of water content prediction is the
model selection and hyperparameter optimization. In this paper, we focus on innovative
algorithms for retrieving canopy water content from hyperspectral data, in particular
PLSR, BPNN, and RF. The PLSR has been successfully used with spectral data to forecast
relative water content [22], estimate leaf nitrogen content [37], and obtain leaf fuel moisture
content [38]. Neural networks have also been evaluated to develop water content prediction
models. The BPNN was used to forecast leaf water content and reported a satisfactory
coefficient of determination as 0.86 with a low RMSE (1.3%) [39]. The RF is robust against
the over-fitting and has been used effectively in regression problems even with dozens
of samples [40,41]. The main advantages of the RF algorithm are that it is not restricted
to variable distribution, nor susceptible to outliers and noises, and is a high-dimensional
data-sensitive method [42]. This model has been widely used in generating a regression
model and obtaining good prediction results [43]. Additionally, the performance of any
machine learning (ML) model is profoundly affected by hyperparameter selection, which
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has several benefits; it can increase the performance of ML algorithms [44] and improve the
reproducibility and fairness of scientific studies [45]. Moreover, it could perform a major
role in improving the prediction model because of the direct control of the behaviors of
training algorithms [46].

The multivariate techniques have been evaluated to estimate the biochemical and
biophysical parameters of the crop using spectral reflectance data. Very few studies have
verified the comparison among efficiency and precision of various multivariate models in
particular PLSR, RF, and BPNN to determine the crop water content from hyperspectral
data. Although these techniques are widely used for water content estimation and are
powerful in predicting, the best-performing algorithm should be explored. Thus, the main
objective of this study is to develop a model based on hyperspectral data to accurately esti-
mate the canopy water content of rice plants under actual growth conditions. Specifically,
we optimized and compared different feature selection methods with machine learning
algorithms to conclude the best-combined features to model that could be recommended
for further research about developing a smart irrigation system.

2. Materials and Methods
2.1. Experimental Design

In an outdoor experiment, 128 potted plants of rice were grown under natural con-
ditions at Zhejiang University (120◦09′ E, 30◦14′ N), Hangzhou City, Zhejiang Province,
P.R. China. Frequently, a plastic cover was installed over the plants during precipitation to
control the added water of plants, and obtain a heterogeneous water status of the tested
leaves. To prepare experiment samples, the rice seeds (Xiushui 134) were submerged in
the water for four days at a temperature of 28–30 ◦C, and the water was replaced twice a
day. After germination, the 10 rice plants were sown into individual polyvinyl chloride
(PVC) pots, which had dimensions of 140 × 95 × 125 mm. Each pot was filled with 300 g
of black peat moss (HAWITA Gruppe GmbH, Vechta, Germany), and was irrigated to
achieve saturation during the first growing month. The compound fertilizer treatment
was applied, N–P2O5–K2O (15–15–15), with a rate of 100 kg ha−1 at 10-day intervals
produced by Qingdao SONEF Chemical Company (Weifang, China). Potted rice plants
were transplanted on 10 July 2018 and divided into two groups, each with 64 pots. It
was harvested on 12 August and 30 August 2018 for the 1st and 2nd groups, respectively.
Table 1 shows summary statistics of air temperature, relative humidity and vapor pressure
deficit (VPD). The values of VPD were determined from the formula stated by [47]. In this
experiment, there were two different growth stages of the rice plants: tillering and stem
elongation. The water deficit was implemented within a time period of 27–34 days and
34–52 days of plant life for the 1st and 2nd groups, respectively. As displayed in Figure 1,
an experiment was conducted with a completely randomized block design in a factorial
experiment. The experimental design was divided into two groups, each comprising four
irrigation treatments; fully-irrigated (T1: 100%), mild (T2: 80–70%), moderate (T3: 60–50%),
and severe water stress (T4: 40–30% field capacity), respectively. The number of treatment
replicates (R1, R2, . . . , etc.) was 16 samples. Generally, the gravimetric method was used
to calculate the amount of water by weighing pots manually twice a day, followed by
replacing the water transpiration to keep the respective moisture stress conditions. Gross
water applied volumes were estimated for each group, 1st group values were 70.96, 66.64,
63.04, and 59.44 L (liter) for well-controlled, mild, moderate, and severe stress conditions,
respectively. In addition, their corresponding values at the 2nd group were 96.56, 90.16,
85.36, and 78.96 L, respectively.
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Table 1. Brief measurements of climate factors.

Date
Temperature (◦C) Relative Humidity (%)

VPD (Kpa)
Min. Max. Avg. Std. Min. Max. Avg. Std.

10 July to 12 August 24 38 31 5.29 41 95 68 20.10 1.44
13 August to 30 August 23 34 28.5 4.10 44 97 70.5 16.97 1.15

Where Min., Max., Avg., and Std. are the values of minimum, maximum, average, and standard deviation of the measured climate factors,
respectively.
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Figure 1. An experimental design layout.

2.2. Hyperspectral Images Acquisition

The rice plants were moved from the outdoor environment to the laboratory. The
spectral images were acquired by the near-infrared hyperspectral imaging system (874 to
1734 nm with 256 bands at each image). The system was integrated into a darkroom, which
included an imaging spectrograph (ImSpector N17E; Spectral Imaging Ltd., Oulu, Finland),
a 326× 256 pixels camera (Xeva 992; Xenics Infrared Solutions, Leuven, Belgium), a camera
lens (OLES22; Specim, Spectral Imaging Ltd., Oulu, Finland), two 150 W tungsten halogen
lamps (3900 Lightsource, Illumination Technologies Inc., Elbridge, NY, USA) located on
two sides of the camera at 45◦ angle, and a conveyer belt driven by a stepping motor (Isuzu
Optics Corp., Taiwan, China). This system was fixed using one platform and controlled by
a computer with preprocessing software (Spectral Image-VI0E, Isuzu Optics Corp., Taiwan,
China). The camera focus was set to get high-quality images. The exposure time of 8 ms,
the height between the samples and the lens, and the conveyor belt’s moving speed were
200 mm, and 30 mm/s, respectively. The imaging system in this study has previously
been used for predicting the internal quality of kiwifruits [48]. The hyperspectral images
were calibrated to decrease noise and avoid the influence of dark current [49] using the
following formula:

Ic =
Iraw − Idark
Iwhite − Idark

(1)

where Idark is the dark reference image, Iwhite is the white reference image with 99.9%
reflectance, Ic is the modified image, and Iraw is the raw image.

2.3. Image Preprocessing

The hyperspectral images preprocessing are necessary before data analysis to remove
defects that may be introduced during the imaging period or in the image processing
steps and facilities model training. It consists of such steps as image segmentation to
remove background, noise reduction to remove outliers, and transformation to re-scale
the features (normalization). Firstly, the region of green leaves in a pot was segmented
as the region of interest (ROI). This procedure was performed by the ROI tool in ENVI
4.6 software (ITT, Visual Information Solutions, Boulder, CO, USA). The mean spectra



Agriculture 2021, 11, 51 5 of 21

of the ROI were calculated for further analysis. The range of ROI size was from 18,500
to 19,200 pixels for all collected images. Secondly, the signal-to-noise ratio (SNR) was
estimated from the mean and standard deviation of sequential images, for each wavelength
band, at each pixel. The allowable values of SNR are between 0.5 and 2.0 [50]. In this work,
the bands with SNR lower than 2.0 were removed, such as the spectral range of 875–935 nm
and 1670–1734 nm. So, the spectral range of 935–1670 nm with a total of 219 bands was
considered for further analysis. Thirdly, normalization is transformed across individual
features (f) to adjust for differences in magnitude between different features. Feature
normalization (fnorm) is computed by subtracting the minimum image data (fmin) and by
dividing the difference between the maximum (fmax) and the minimum feature value as
shown by the following formula:

fnorm =
f− fmin

fmax − fmin
(2)

2.4. Canopy Water Content Computation

To provide a reference for data analysis, we collected the leaves of the ROI after taking
the hyperspectral images, and the CWC of rice was measured. These leaves were weighed
before drying. Then, the dry weight was obtained after drying the sample for 24 h in an
oven at a temperature of 70 ◦C. The percentage of canopy water content was estimated by
this formula:

CWC (%) = (FW − DW)/FW × 100 (3)

where FW and DW are the fresh and dry weight of the canopy, respectively.

2.5. Dataset and Data Analysis Software

A total of 128 images were split into training, validation, and testing, where 70%
(89 samples) was used for the training and validation process of the regression model, while
the other 30% (39 samples) was used to verify the model’s performance by comparing the
expected CWC values with the calculated CWC values. A leave-one-out cross-validation
(LOOCV) approach was utilized to train and validate the model. LOOCV excludes one
sample for validation and uses the rest of the samples for training in every trial. This
method can decrease over-fitting and permit a more accurate assessment of model predic-
tion strength [51,52]. The feature selection, model establishment, and data analysis were
implemented using Python 3.7.3. The PLSR, RF, and BPNN modules from the Scikit-learn
library version 0.20.2 were used for regression tasks. The software was run on a PC with
Intel Core i7-3630QM, 2.4 GHz CPU, and 8 GB RAM.

2.6. Overview of the Proposed Methods

In this work, we proposed to combine some feature selection methods (VI, MF, and
PCA) with machine learning regressors for the optimization of the prediction of water status
in rice crops. Specifically, the proposed framework includes sequential steps as described
in Figure 2: (a) spectra extraction from hyperspectral images; (b) split the dataset and train
different algorithms using proposed features that served as inputs to the models; (c) select
the best features, then check the model’s performance; (d) update hyperparameters in all
models to achieve minimum root mean squared error of cross-validation (RMSECV); (e) if
the model shows better performance, so we save the model; and (f) check the robustness of
the model on new samples.
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2.7. The Spectral Features
2.7.1. Vegetation Indices

There are several spectral vegetation indices (VI) that are sensitive to the water condi-
tion of the plant; selecting the most appropriate VI needs to be tested [53]. So, this study
involved examining the spectral VI potentials for estimating CWC of rice plants. According
to previous studies, we utilized various VI, which are related with CWC including SB, WBI,
NDVI, TBR, and SRI as shown in Table 2. Three indices were also adopted as new indices
for this study that are discussed in the results section.

Table 2. Spectral reflection indices used to assess water content in the canopy in this study.

Spectral Indices Formula Developer

SB-1 R1450 [54]
SB-2 R1600 [55]

WBI-1 R950/R970 [25]
WBI-2 R1150/R1260 [25]

NDVI-1 (R1094 − R1205)/(R1094 + R1205) [56]
NDVI-2 (R1094 − R983)/(R1094 + R983) [56]

TBR 2R1180−1220/(R1090−1110 + R1265−1285) [26]
SRI-1 R1058/R1148 [57]
SRI-2 R1070/R1340 [28]

Where R: the reflectance at the respective wavelengths (nm); SB-1 and SB-2: single bands; WBI-1 and WBI-2:
water band indices; NDVI-1 and NDVI-1: normalized difference vegetation indices; TBR: three-band ratio indices
at 1200 nm. R1180–1220: average spectral reflectance in the 1180–1220 nm region and other average reflectances in
the same formula have the same definition; SRI-1 and SRI-2: simple ratio indices.

2.7.2. Spectral Bands

The best spectral bands were designated by training three algorithms; PLSR, RF,
and BPNN. After optimizing hyper-parameters, all bands were arranged and the optimal
wavelengths were selected based on statistics of variables significance in the BPNN and
RF model or the coefficients of each feature in the PLSR model. There are more details on
picking the optimal wavebands in Section 2.8.

2.7.3. Feature Extracted from PCA

One hyperspectral image includes 219 bands and each band matches a gray image.
The textural characteristics set are enormous and hard to measure. The PCA strategy
is a suitable tool for decreasing the number of dimensions in the data to only use the
wavelengths that contribute most to machine learning regression tasks. It contains several
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principal components (PC) that have sufficient valid data instead of all spectra with the
whole dataset [58]. The first PC describes the biggest variance and subsequently reduces
the variables described in the following components. However, the inclusion of too many
latent variables led to over-fitting [37]. In this work, we estimated about six bands that
were the most contributing to the first two PC. Then, these wavebands were used as inputs
for the proposed models to check the performance of each model and select the best one.

2.8. Training Models Based on MF and Feature Selection

One of the purposes in this research was to compare different features with regression
models. The three types of the dataset (samples × features) for analysis were (89 × 12),
(89 × 219), and (89 × 6). These data were employed for training three regression models;
PLSR, RF, and BPNN. We optimized the models by selecting the best hyperparameters.
The parameters were an optimal number of latent variables (LVs) with PLSR, the number
of trees (ntree) and features (ntry) at every tree node for training RF model, number of
neurons in the hidden layer (nr), and activation function (f) in the BPNN model. The
main steps for training the models, and estimating the right parameters and features are
described in Figure 3. This figure illustrates the pseudo-code for each model in order to
achieve a combination of optimal features of at least 2 variables. The number of features in
each loop was at spectral bands; 256, 29, 28, . . . , 2, vegetation indices; 12, 11, 10, . . . , 2, and
PCA bands; 6, 5, 4, . . . , 2. During looping, the most important features were picked up
and the rest were excluded. Then, it was easy to compare all outputs to determine the best
features set that could improve the prediction of water content in rice.

2.8.1. Partial Least Square Regression (PLSR)

The parameter of LVs was determined according to the lowest value of the root mean
squared error of cross-validation (RMSECV) using the leave-one-out validation method
(LOOV). We followed the same procedure proposed by the Backward Variable Selection
method for PLS regression (BVSPLS) to identify the optimal features [59]. After calculating
LVs, the model was refitted again to get the final model. Then, the features were sorted
out ascendingly based on the coefficients for the studied features in the PLSR model. At
each iteration, the number of features was gradually reduced. The best LVs value and the
highest features were chosen based on the lowest RMSECV.

2.8.2. Random Forest (RF)

It is a bagging method based on the classification and regression tree (CART). It uses
recursive partitioning to split the data into many homogenous subsets known as regression
trees (ntree) and then averages the results of all trees. Each tree is separately grown to its
maximum size based on a bootstrap sample from the training data set without stopping
the picking of the input variables at each node. In each tree, RF uses randomness in the
regression process by selecting a random subset of variables (mtry) to determine the split
at each node [60]. In this model, the two parameters (mtry and ntree) were optimized with
less RMSECV using the LOOV method. The ntree value was tested in the range from 1 to
30, and the mtry value was evaluated by a different number of features. After training the
model with optimal parameters, all features were arranged and the finest features were
selected based on variable importance statistics [33]. The outputs were collected during all
iterations and different alternatives for the best features combination were examined to
select the best one that achieved the lowest RMSECV.

2.8.3. Back-Propagation Neural Network (BPNN)

This network uses the Multi-Layer Perceptrons (MLPs) as a supervised learning
algorithm that includes a flexible function to train a specific data set [61]. MLPs is one of
the neural network models, has the same architecture of back-propagation for supervised
training. Back-propagation is typically used for training of feed forward. The neural
net is structured from three types of layers: (1) the input layer is primary data for the
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neural network; (2) the hidden layer is an intermediate layer between independent inputs
layer and dependent output layer, and (3) the output layer produces the results of the
specified inputs. Figure 4 displays the architecture of the neural artificial network is
a class of machine learning algorithms that uses multiple layers to gradually extract
high-level features from the raw input. Five circles as input layers are noted as vector I.
The network contains one hidden layer, the number of nodes determined according to
regression accuracy. Four circles with one hidden layer represent the “activation” nodes
and are usually noted as weight (W). The final circle refers to the output layer that shows
the predicted value of canopy water content. The bias neuron (B) is a special neuron added
to each layer in the neural network, which is usually taken to be 1 [62]. The artificial neural
network models are generalized mathematical models that use a series of neurons or nodes
interlinked by weighted connections to simulate human cognition as it applies to pattern
identification and prediction [63,64].

Agriculture 2020, 10, x FOR PEER REVIEW 8 of 22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pseudo-code to train each algorithm and select the top variables. 

2.8.1. Partial Least Square Regression (PLSR) 

The parameter of LVs was determined according to the lowest value of the root 

mean squared error of cross-validation (RMSECV) using the leave-one-out validation 

method (LOOV). We followed the same procedure proposed by the Backward Variable 

Selection method for PLS regression (BVSPLS) to identify the optimal features [59]. After 

calculating LVs, the model was refitted again to get the final model. Then, the features 

were sorted out ascendingly based on the coefficients for the studied features in the PLSR 

Training proposed algorithms 

Input: dataset with p* variables. 

p ← p*; 

while p ≥ 2 do 

   if model=="PLSR" then 

      for LVs = 1 to p 

          PLSRp ← fit PLSR with LVs values for the p variables; 

          Calculate RMSECV with model parameters; 

      endfor; 

   elsif model==“RF” then 

       for ntree = 1 to 30 

          for ntry = 2 to p 

              RFp ← fit RF with ntree and ntry values for the p variables; 

              Calculate RMSECV with model parameters; 

          endfor; 

       endfor; 

   elsif model==“BPNN” then 

       f := [“identity”, “logistic”, “tanh”, “relu”]; 

       for nr = 1 to 30 

          for k = 0 to 3 

              f:= f[k]; 

              BPNNp ← fit BPNN with nr and f values for the p variables;  

              Calculate RMSECV with model parameters;   

          endfor; 

       endfor; 

   endif; 

   Min.RMSECV ← select the corresponding model parameters; 

   Fit the model again with selected parameters; 

   Evaluate model training;  

   Test model performance; 

   Rank.criteria p ← the most important variables; 

   Save super variables; 

   if p==219 then 

     p ← p-190;   

   else 

     p ← p-1;  

   endif;  

endwhile; 

Return (Rank2….Rankp*) 

 

 
Figure 3. Pseudo-code to train each algorithm and select the top variables.



Agriculture 2021, 11, 51 9 of 21

Agriculture 2020, 10, x FOR PEER REVIEW 10 of 22 
 

 

the predictive capacity of the regression model and reduce hyperspectral image dimen-

sionality, the following formula was used to determine the most informative features 

[34]: 

M = 
∑ [(|𝐼| 𝑃𝑗

∑  |𝐼| 𝑃𝑗,𝑘
 

𝑛𝑝
𝑘=1⁄ )|𝑂|𝑗]

𝑛𝐻
𝑗=1

∑ (∑ [(|𝐼| 𝑃𝑖,𝑗
∑  |𝐼| 𝑃𝑖,𝑗,𝑘

 
𝑛𝑝
𝑘=1⁄ )|𝑂|𝑗]

𝑛𝐻
𝑗=1 )

𝑛𝑝
𝑖=1

 (6) 

where M is the important measure for the input variable, 𝑛𝑝 is the number of input 

variables, 𝑛𝐻 is the number of hidden layer nodes, |𝐼| 𝑃𝑗
 is the absolute value of the 

hidden layer weight corresponding to the pth input variable and the jth hidden layer, and 
|𝑂|𝑗 is the absolute value of the output layer weight corresponding to the jth hidden 

layer. 

 

Figure 4. Architecture of neural artificial network. 

2.9. Model Evaluation 

To measure the performance of a regression model, the following statistical indica-

tors have been chosen: root mean square error (RMSE), mean absolute percentage error 

(MAPE), prediction accuracy (Acc), and coefficient of determination (R2) [66,67]. All pa-

rameters are explicated as follows: CWCact is the actual value that was estimated from 

laboratory calculations, CWCp is the predicted or simulated value, CWCave is the average 

value, and N is the total number of data points. 

MAPE = 100 × 
1

𝑁
∑

|(𝐶𝑊𝐶 𝑎𝑐𝑡 − 𝐶𝑊𝐶 𝑝)|

𝐶𝑊𝐶 𝑎𝑐𝑡

𝑁
𝑖=1  (7) 

Acc = 1− 𝑎𝑏𝑠 (𝑚𝑒𝑎𝑛 
𝐶𝑊𝐶 𝑝 − 𝐶𝑊𝐶 𝑎𝑐𝑡

𝐶𝑊𝐶 𝑎𝑐𝑡
) (8) 

3. Results and Discussion 

3.1. Effects of Water Deficit Stress on Spectral Reflectance Pattern 

The average reflectance spectra under different water stress conditions during two 

growth stages of rice plants are explained as shown in Figure 5. The values of mean soil 

water content in the 1st stage (tillering) were 88, 78, 66, and 49% for well-controlled, mild, 

moderate, and severe stress conditions, respectively. Moreover, their corresponding 

values in the 2nd stage (stem elongation) were 85, 72, 60, and 40%, respectively. At the 

band of 1450 nm, the figure shows that the height of the valley decreases as water content 

decreases where there is strong water absorption. A greater increase in canopy reflec-

tance was observed in the NIR region for the control treatment and low reflectances for 

Figure 4. Architecture of neural artificial network.

In this research, the input variables involve 12 VI, 219 spectral bands, and 6 PCA
bands. A mathematical model is given in the following equation, where y is the output
value, I1, I2, . . . , In signifies the nth input variables, W1, W2, . . . , Wn indicates the nth
weights of the combination which produces the output, θ is the unit step function, W is the
weight-related with the Ith input and µ is the average.

y = (θ) .
n

∑
I=1

(W I − µ) (4)

The generalized weight W is realized as the contribution of the Ith covariate to the
log-odds, and the equation below defines the generalized weight:

W =
∂ log

(
o(x)

1−o(x)

)
∂X

(5)

The network was trained for at least 1000 iterations or until the error measurement
approached (10−4). To choose the number of neurons in the hidden layer for this model,
the cross-validation technique with the LOOV method was performed on the training
dataset. The parameter of limited memory Broyden–Fletcher–Goldfarb–Shanno (lbfgs) was
used as a weight optimizer to implement the algorithm efficiently [65]. To improve the
predictive capacity of the regression model and reduce hyperspectral image dimensionality,
the following formula was used to determine the most informative features [34]:

M =
∑nH

j=1

[(
|I| Pj / ∑

np
k=1 |I| Pj,k

)
|O|j

]
∑

np
i=1

(
∑nH

j=1

[(
|I| Pi,j / ∑

np
k=1 |I| Pi,j,k

)
|O|j

]) (6)

where M is the important measure for the input variable, np is the number of input variables,
nH is the number of hidden layer nodes, |I| Pj is the absolute value of the hidden layer
weight corresponding to the pth input variable and the jth hidden layer, and |O|j is the
absolute value of the output layer weight corresponding to the jth hidden layer.

2.9. Model Evaluation

To measure the performance of a regression model, the following statistical indicators
have been chosen: root mean square error (RMSE), mean absolute percentage error (MAPE),
prediction accuracy (Acc), and coefficient of determination (R2) [66,67]. All parameters
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are explicated as follows: CWCact is the actual value that was estimated from laboratory
calculations, CWCp is the predicted or simulated value, CWCave is the average value, and N
is the total number of data points.

MAPE = 100× 1
N

N

∑
i=1

∣∣(CWC act − CWC p
)∣∣

CWC act
(7)

Acc = 1− abs
(

mean
CWC p − CWC act

CWC act

)
(8)

3. Results and Discussion
3.1. Effects of Water Deficit Stress on Spectral Reflectance Pattern

The average reflectance spectra under different water stress conditions during two
growth stages of rice plants are explained as shown in Figure 5. The values of mean
soil water content in the 1st stage (tillering) were 88, 78, 66, and 49% for well-controlled,
mild, moderate, and severe stress conditions, respectively. Moreover, their corresponding
values in the 2nd stage (stem elongation) were 85, 72, 60, and 40%, respectively. At the
band of 1450 nm, the figure shows that the height of the valley decreases as water content
decreases where there is strong water absorption. A greater increase in canopy reflectance
was observed in the NIR region for the control treatment and low reflectances for soil
moisture stress treatments. Besides, the rice water content in the 2nd stage is greater than
the 1st stage, and the spectrum at the 2nd stage was showing a higher reflection trend.
These results are in agreement with Carter [68,69] who explained that the absorption by
pigments and water in the range of near-infrared (NIR; 700–1300 nm) is relatively low, thus,
the reflectance is relatively high. In addition to [70], higher absorption of infrared radiation
resulted in leaf heating and transpiration. Hence, the lower reflectance in the NIR region
further confirmed the soil moisture stress-induced reduction in transpiration and stomatal
conductance in the rice canopy at its vegetative stage. The pattern of the reflectance curves
is close to that for other green plant leaves such as maize [71].
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3.2. The Features
3.2.1. Vegetation Indices (VI)

The contour map as shown in Figure 6 presents more reliable and strong relation-
ships with rice water content based on the coefficient of determination (R2) for all dual
wavelength combinations. The contour plotting using the simple ratio index (SRI) was
done in all possible combinations within 935–1670 nm and their correlations with CWC
were quantified to identify the best index. We adopted about 3 indices as a case study;
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SRI#1 (R1426/R1480), SRI#2 (R1480/R1429), and SRI#3 (R1433/R1477), which their values
at R2 were 0.777, 0.762, and 0.759, respectively. The new spectral indices formula in this
study was R1/R2 through water stress treatments. The R2 values between the suggested
spectral indices in this analysis and the CWC for rice were 0.945 (SB-1), 0.969 (SB-2), 0.442
(WBI-1), 0.265 (WBI-2), 0.012 (NDVI-1), 0.462 (NDVI-2), 0.039 (TBR), 0.463 (SRI-1), and
0.027 (SRI-2), respectively. The best prediction indices were chosen after training different
models according to the model performance.
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3.2.2. Model-Based Features (MF)

This technique was employed with spectral wavelengths to choose the optimal bands
after training the models. Three regression models (PLSR, RF, and BPNN) were optimized
with the best parameters. During the 1st loop, the number of variables needed for water
content prediction in rice was substantially reduced from 219 to 29 bands. The selection
of the most important bands varies with the different regression models as exhibited in
Figure 7. Optimized models were established using these wavelengths as displayed in
Table 3. At PLSR-MF model, the ideal number of LVs with the lowest value of RMSECV
(0.914) was estimated by six factors. The prediction ability of this model with the se-
lected wavelengths increased equivalent to the model with full spectra, with prediction
R2 (0.928 vs. 0.918), and RMSECV (0.867 vs. 0.914). At RF-MF model, the ntree and mtry
for expecting CWC were recorded with 40 trees and 38 features, respectively. This model
was improved with prediction R2 (0.997 vs. 0.996) and RMSECV (0.193 vs. 0.212). At
BPNN-MF model, the excellent performance was verified for estimating the water content
by 28 neurons in a single hidden layer and logistic as an activation function. The prediction
R2 increased from 0.879 to 0.996 and RMSECV decreased from 0.329 to 0.286.

Table 3. Ranking of features in order of importance for different regression models during the 1st loop.

Models The Best Selected Features

PLSR-MF 935, 945, 1666, 1416, 1369, 1025, 1022, 938, 1035, 1015, 995, 1032, 1056, 1029, 962, 1052, 1046, 1426, 1177, 1072, 1049,
1187, 992, 1099, 1214, 1069, 1670, 1423, 1200 nm

RF-MF 1126, 965, 1244, 1002, 1670, 1160, 948, 985, 1663, 1639, 1396, 1029, 1473, 1595, 1237, 1565, 1062, 975, 1133, 1130, 1140,
1575, 1609, 1504, 1649, 1298, 1359, 1440, 1156 nm

BPNN-MF 935, 938, 941, 1670, 1663, 945, 1666, 948, 1653, 1656, 952, 1413, 1409, 1423, 1402, 1659, 1416, 958, 1406, 955, 1426, 1429,
1419, 1433, 1399, 972, 968, 1446, 1440 nm
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3.2.3. The Best Bands Extracted from PCA

The optimal bands were selected in which 99.87% of the variance was described by the
first two of PC and accounted for 98.37% and 1.5% of the total spectral variation at PC1 and
PC2, respectively. The loadings caused by PCA were explained as an indication of effective
wavelengths, which were responsible for the specific characteristics of the respective
scores, contributing to the prediction of CWC. In those specific principal components, the
wavelengths corresponding to the tops and valleys were chosen to be ideal wavelengths as
displayed in Figure 8. The most significant wavebands were 1106, 1217, 1456, 1653, 1274,
and 1467 nm. The PCA analysis was based on eigenvectors with the highest sensitivity
to water content and later, it can be used to identify CWC in rice instead of the entire
spectrum. These results are close to previous reports; the reflectance at 1450 nm is sensitive
to water status in leaf [68]. In addition, the wavelengths related to a range of 1500–1750 nm
have been known to be necessary to observe the water status of the plant [72]. Besides, the
1200 nm wavelength represents an absorption feature and indicates a robust prediction for
CWC and the leaves [73].
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3.3. Assessment of Regression Models

There are three types of features for predicting the water content in rice: (1) the
best bands selected from PCA; (2) picking the optimum bands after training variables,
that is model-based features (MF), and (3) vegetation indices (VI). These features were
trained with different models (PLSR, RF, and BPNN) and the less important features were
excluded. Al Iqbal [74] explained that some features are less important, however, some are
very significant. The superlative model and the ideal combination of features were chosen
when a minimum RMSECV value was reached.

From the results, the model prediction accuracy depends on the value and number
of features. Various options for combining features and models were collected as shown
in Figure 9. This figure explicates that there are specific features of training the models
that have the lowest RMSECV value and are excellent in forecasting. These features are
presented in Table 4, which are the highest contributing variables for the CWC prediction
in rice. The RMSECV value decreased with these selected features depending on the
model applied. The lowest and largest RMSECV values were 0.183 and 1.063, which were
obtained with the superb model of BPNN-PCA-MF-3 and the less accurate prediction
model of PLSR-PCA-MF-5, respectively.

The performance of the generated models was compared based on full and optimal
features as shown in Table 5. This table illustrates the number of proposed features, best
parameters, Acc and model outputs for RMSE, MAPE, and R2 via training, cross-validation,
and test set. Outcomes of advanced models after adopting the best features were optimized.
The ranking of high-performance models based on the lowest RMSECV is as follows: Firstly,
the VI-based models were BPNN-VI-MF-11, RF-VI-MF-3, and PLSR-VI-MF-3, respectively.
The BPNN-VI-MF-11 model was superior in the prediction of CWC and was built with
10 hidden neurons and logistic function. This model enhanced R2, RMSE, MAPE, and Acc
to 0.981, 0.736, 0.610%, and 0.994, respectively. The PLSR-VI-MF-3 model achieved a high
expectation at LVs of 3. The performance rose to 0.943, 1.265, and 1.349% for R2, RMSE,
and MAPE, respectively. The value of Acc was 0.986. Secondly, the MF-based models were
RF-MF-7, BPNN-MF-3, and PLSR-MF-8, respectively. The RF-MF-7 model was established
through 20 ntree and 3 ntry. The R2 increased to 0.997, while RMSE and MAPE decreased to
0.299 and 0.259%, respectively. The score of Acc was 0.997. At PLSR-MF-8 model, the cross-
validation at LVs of 5 was optimized by 8 bands. Model behavior improved with R2 (0.932),
RMSE (1.376), MAPE (1.440%), and Acc (0.986), respectively. Thirdly, the PCA-based
models were BPNN-PCA-MF-3, RF-PCA-MF-5, and PLSR-PCA-MF-5, respectively. The
BPNN-PCA-MF-3 model contained the top variables for predicting the water content of rice
and was constructed using 28 hidden neurons and logistic function. The performance of
this model with R2, RMSE, MAPE, and Acc was 0.998, 0.252, 0.259%, and 0.998, respectively.
The PLSR-PCA-MF-5 model was created with LVs of 5. Its outputs with R2, RMSE, MAPE,
and Acc were 0.919, 1.504, 1.634%, and 0.983%, respectively.

The results suggested that robust prediction accuracy for CWC could be achieved if suit-
able algorithm and higher variables were assigned. This was similar to Krishna et al. [75],
who exhibited a comparison of various regression models for relative water content moni-
toring in rice based on spectral data. They selected the best bands by the PLSR model. The
prediction model performance was arranged based on R2 and RMSE as follows: PLSR-MLR
> PLSR-BPNN > SVR > RF > PLSR > BPNN; where MLR and SVR are multiple linear
regression and support vector machine regression models, respectively. The performance
of the PLSR-MLR model was (R2 = 0.98 and RMSE = 3.19 for calibration and R2 = 0.97 and
RMSE = 5.06 in validation). Compared to previous research, an advanced model of PBNN-
PCA-MF-3 in this work performed more accurately than the PLSR-MLR model. Moreover,
the outputs of the developed models are very precise compared to Sun et al. [71] who
indicated that an acceptable model for estimating CWC in wheat based on Ratio Vegetation
Index (RVI; 1605 and 1712 nm) and Normalized Difference Vegetation Index (NDVI; 1712
and 1605 nm) having the highest R2 and lowest RMSE in model calibration and validation
(R2

c = 0.74 and 0.73; RMSEC = 0.026 and 0.027; R2
v = 0.72 and 0.71; RMSEV = 0.028 and
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0.029). Furthermore, these results were better than Ge et al. [76] who concluded leaf water
content in maize at a pot-scale is successfully predicted with the hyperspectral images
using the PLSR model for two genotypes in model cross-validation (R2 = 0.81 and 0.92;
RMSE = 3.7 and 2.3; MAPE = 3.6 and 2.2). Besides, the proposed models achieved high
performance compared with Pandey et al. [77] who showed that PLSR analysis can be
modeled to predict leaf water content for potted corn and soybean plants with the highest
accuracy (R2 = 0.93, RMSE = 1.62, and MAPE = 1.6%) in the validation set.
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Table 4. The best selected features with different regression models after completing all loops.

Model FSM Optimum Features Rank

PLSR
VI-MF-3 NDVI-1, WBI-1, SB-1 8

MF-8 R1426, R1406, R1187, R1035, R1032, R1177, R962, R1022 7
PCA-MF-5 R1653, R1467, R1274, R1106, R1217 9

RF
VI-MF-3 SRI#3, SB-1, SB-2 6

MF-7 R1359, R985, R1565, R1649, R1062, R1140, R1244 2
PCA-MF-5 R1467, R1653, R1106, R1217, R1274 3

BPNN
VI-MF-11 NDVI-2, WBI-1, SRI-1, SRI#2, TBR, SRI#1, NDVI-1,

SRI#3, WBI-2, SB-1, SB-2 5

MF-3 R938, R1663, R1656 4
PCA-MF-3 R1467, R1456, R1106 1

Where FSM denotes the feature selection method and a number of best-combined features.
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Table 5. Evaluation of different regression models with all proposed features and best-specified features.

Model FSM n
Optimum

Parameters
Training Cross Validation Test

Acc
RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

All suggested features

PLSR

VI 12 LVs = 5 1.215 1.319 0.934 1.067 1.455 0.909 1.285 1.392 0.941 0.986

MF 219 LVs = 6 1.026 1.095 0.953 0.914 1.240 0.914 1.508 1.570 0.918 0.984

PCA 6 LVs = 4 1.272 1.378 0.928 1.079 1.471 0.917 1.469 1.609 0.922 0.984

RF

VI 12 ntree = 50, mtry = 8 0.221 0.216 0.998 0.387 0.529 0.986 0.435 0.432 0.993 0.995

MF 219 ntree = 40, mtry = 38 0.134 0.117 0.999 0.212 0.291 0.996 0.311 0.289 0.996 0.997

PCA 6 ntree = 20, mtry = 6 0.141 0.121 0.999 0.217 0.297 0.995 0.314 0.282 0.996 0.997

BPNN

VI 12 nr = 24, f = Tanh 0.265 0.264 0.997 0.379 0.502 0.989 0.783 0.818 0.978 0.992

MF 219 nr = 28, f = logistic 0.183 0.192 0.998 0.329 0.444 0.978 1.836 0.708 0.879 0.978

PCA 6 nr = 26, f = logistic 0.222 0.215 0.998 0.207 0.283 0.996 0.552 0.373 0.989 0.996

High-level features

PLSR

VI-MF 3 LVs = 3 1.212 1.325 0.935 1.026 1.398 0.927 1.265 1.349 0.943 0.986

MF 8 LVs = 5 1.020 1.063 0.954 0.833 1.138 0.945 1.376 1.440 0.932 0.986

PCA-MF 5 LVs = 5 1.250 1.341 0.931 1.063 1.448 0.918 1.504 1.634 0.919 0.983

RF

VI-MF 3 ntree = 40, mtry = 3 0.201 0.184 0.998 0.361 0.495 0.987 0.401 0.388 0.994 0.996

MF 7 ntree = 20, mtry = 3 0.126 0.113 0.999 0.189 0.261 0.996 0.299 0.259 0.997 0.997

PCA-MF 5 ntree = 50, mtry = 2 0.118 0.103 0.999 0.197 0.269 0.996 0.312 0.275 0.997 0.997

BPNN

VI-MF 11 nr = 10, f = logistic 0.146 0.160 0.999 0.256 0.347 0.994 0.736 0.610 0.981 0.994

MF 3 nr = 20, f = logistic 0.189 0.191 0.998 0.207 0.338 0.996 0.304 0.279 0.997 0.997

PCA-MF * 3 nr = 28, f = logistic 0.143 0.148 0.999 0.183 0.249 0.997 0.252 0.259 0.998 0.998

Where n represents a number of features, and * indicates the best results with this model.

3.4. Neural Network Topology with Higher Variants

The neural network design after gathering senior features is presented in Figure 10.
This figure showed the best structure of the trained neural network with the variants
chosen. Neural network conveys basic information such as the trained synaptic weights, a
number of hidden neuron layers, steps for converging, and the overall errors. Network
topology is constructed with a specific combination of input variables with a number of
hidden neuron layers. For example, an eminent model of BPNN-PCA-MF contains an
input layer of 3 bands (1467, 1456, and 1106 nm) and a single hidden layer with 28 neurons
as shown in Figure 10. The presented planning depicts the neural network with prominent
bands; the training process needed 1000 steps to achieve less error function. The process
has an overall error of about 0.0189. Furthermore, before nominating the most influential
bands, the training process at 6 PCA bands needed 1000 steps with the process having an
overall error of about 0.0251.
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3.5. Canopy Water Content Prediction and Validation

From the findings, the best feature selection method for estimating the canopy water
content in rice was PCA combined with MF (PCA-MF). This was the premium integration to
filter out the super variables. Moreover, the MF approach was combined with VI (VI-MF) to
improve model performance. There are nine approaches as a new prediction methodology,
including the integration of PCA-MF, VI-MF, and MF with three models: PLSR, RF, and
BPNN. The regression models were trained with the uppermost features (independent
variables) for predicting the CWC (dependent variable). The projected CWC values were
then compared to the reserved values that were not implemented for machine learning.
Figure 11 illustrates the scatter plots of the observed and predicted CWC in rice through
integrating the proposed feature selection methods and the different models. This study
evaluated multivariate methods and compared the results clearly, so the use of multivariate
methods greatly enhances predictability. As well, independent validation can be considered
the most robust method for assessing the accuracy of a regression model, because validation
data are not involved in the process of model development. The BPNN-PCA-MF-3 was
the first best predictive model as evidenced by the performance and showed a stronger
relationship between the reflectance spectra and CWC. The predictability of this model was
developed by PCA that can select optimum wavebands and eliminate data redundancy and
outliers [78], then select the most critical bands on the basis of the MF. The values of R2 at
BPNN-PCA-MF-3 were 0.997 and 0.998 for cross-validation and test set, respectively. This
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model can reduce the regression error to a minimum (RMSE = 0.183 in cross-validation) for
predicting the water status. The three bands involved in this model are of great importance
in predicting water content. The RF-MF-7 model was the second-ranked according to
performance. The RMSE value in cross-validation was 0.189. Its outputs with R2 were
0.996 and 0.997 for cross-validation and test set, respectively. The third most reliable model
was RF-PCA-MF-5 with an RMSE of 0.197 in cross-validation. The R2 was 0.996 and 0.997
for cross-validation and test set, respectively. The results explained that the performance
of PLSR with VI-MF, MF, and PCA-MF was a less predictive model (R2 = 0.943, 0.932,
and 0.919 in prediction, respectively) compared to others to monitor the water condition
in rice. This is agreed with Krishna et al. [79] who described that each coefficient in the
PLSR model has an associated RMSE, making it more prone to deviation. As a result, the
combined model of PLSR with different feature selection approaches was less-performing
for predicting CWC.
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Otherwise, residual value plays a vital role to validate the obtained regression model.
The difference between the actual CWC and the predicted CWC is the residual. We
calculated the residual value with the first three higher models. At BPNN-PCA-MF-3
model, the residual was −0.637% and 0.492% for the lowest and highest residuals in
predicted CWC, respectively. The lowest residual of −3.046% and highest of 0.526% were
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calculated with the BPNN-PCA-6 model. At RF-MF-7 model, the lowest and highest
residuals were −1.023% and 0.753%, respectively, while the lowest residual of −1.053%
and highest of 0.732% were calculated with the RF-MF-219 model. The lowest and highest
residuals values were (−1.034% and 0.74%) and (−1.106% and 0.632%) with RF-PCA-MF-5
and RF-PCA-6 models, respectively.

Multivariate models have been applied with many studies to estimate different param-
eters in plant biochemical, i.e., chlorophyll [80], nitrogen [37], relative water content [22],
and leaf equivalent water thickness [81]. These approaches use all relevant water absorp-
tion bands that greatly increase model performance by improving sensitivity to changes
in the CWC. This work has been largely effective in increasing the model’s prediction
efficiency through a finite number of an appropriate set of features. The generated models
attained high correlation coefficients, high precision, and less deviation between the actual
CWC and the predicted values. Finally, the results have provided basic guidance for water
users and agricultural development planners for the optimal evaluation of the CWC that
can assist in an appropriate assessment of crop water needs.

4. Conclusions

The present study explored the ability to apply hyperspectral imaging with machine
learning algorithms to predict the canopy water content of rice. We evaluated some mul-
tivariate techniques including back-propagation neural network (BPNN), random forest
(RF), and partial least square regression (PLSR) with different feature selection approaches
such as vegetation indices (VI), model-based features (MF), and principal component
analysis (PCA). The crop spectral reflectance was applied with different levels of water
deficit to develop an algorithm that can predict the CWC. The regression algorithms have
been upgraded for robust prediction of rice water status through some actions including
high-level features nominating, hyper-parameters optimization, providing various alter-
natives for the most sensitive features, and integrating the model with the best-combined
features. Then, the performance findings were compared to define a good-quality model.
From experimental results, the supreme combinations for CWC prediction between re-
gression models and feature selection methods according to the highest performance were
BPNN-PCA-MF (R2 = 0.998 and RMSE = 0.252), RF-MF, (R2 = 0.997 and RMSE = 0.299),
and BPNN-VI-MF (R2 = 0.981 and RMSE = 0.736), respectively. These developed models
produced satisfactory outcomes with high accuracy and were adopted using 3, 7 bands,
and 11 VI, respectively. The fusion of PCA-MF-based features with the BPNN algorithm
achieved an excellent model for CWC prediction. At last, this tool is a rapid, convenient
technique, and can assist water managers to make effective decisions in real-time. In the
future, we recommend extending the use of the superlative model with other economic
crops such as corn and wheat to achieve sustainable agricultural water management.
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