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Abstract: Soil nutrients are essential factors that reflect farmland quality. Nitrogen, phosphorus, and
potassium are essential elements for plants, while silicon is considered a “quasi-essential” element.
This study investigated the spatial distribution of plant nutrients in soil in a hilly region of the Pearl
River Delta in China. A total of 201 soil samples were collected from farmland topsoil (0–20 cm)
for the analysis of total nitrogen (TN), available phosphorus (AP), available potassium (AK), and
available silicon (ASi). The coefficients of variation ranged from 47.88% to 76.91%. The NSRs of
TN, AP, AK, and ASi were 0.15, 0. 07, 0.12, and 0.13, respectively. The NSRs varied from 0.02 to
0.20. All variables exhibited weak spatial dependence (R2 < 0.5), except for TN (R2 = 0.701). After
comparing the prediction accuracy of the different methods, we used the inverse distance weighting
method to analyze the spatial distribution of plant nutrients in soil. The uniform spatial distribution
of AK, TN overall showed a trend of increasing from northeast to southwest, and the overall spatial
distribution of AP and ASi showed that the northeast was higher than the southwest. This study
provides support for the delimitation of basic farmland protection areas, the formulation of land use
spatial planning, and the formulation of accurate farmland protection policies.

Keywords: cultivated land; geostatistical methods; Pearl River Delta; soil nutrients; spatial distribu-
tion

1. Introduction

Soil nutrients are important indicators of cultivated land quality, which is determined
by two aspects: soil fertility and spatial location [1]. Soil fertility, which is closely related to
the concentrations of soil nutrient elements, is the foundation of soil productivity [2]. Soil
nutrient elements can be classified into essential, beneficial, and toxic elements. Essential
elements are critical for all plants under all growth conditions, and can be divided into two
categories on the basis of their essentiality: (1) macro elements that are required in high
amounts, e.g., nitrogen (N), phosphorus (P), and potassium (K), and (2) micro elements
that are required in lower amounts, e.g., zinc, manganese, copper, and nickel [3]. Beneficial
elements, which usually include sodium, silicon (Si), and cobalt, are vital for some specific
plant species growing under certain environmental conditions [4]. A sufficient supply of
soil nutrients allows plants to grow and develop normally, and the abundance and chemical
form of nutrients directly determines whether the soil is fertile [5]. Therefore, it is essential
to measure the concentrations of soil nutrient elements to estimate farmland quality.
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Geostatistical methods as a predictive tool have been extensively utilized [6]. There
have been many studies of soil nutrient properties in recent years. For example, some
studies have assessed soil nutrient conditions in the northeast region of India [2], and
predicted their spatial distribution in farmland in Croatia [7]. Similar studies have been
conducted in China in Yunnan Province [8], Beijing [9,10], and Shanxi Province [11], as
well as in hilly areas of Guangdong [12], Sichuan [13], and Hebei Province [14]. Some
researchers have attempted to analyze the spatial variability of soil nutrient properties
in farmland in New Zealand [15] and India [16], or in a sandy loam soil in Croatia [17].
In these studies, although different factors were chosen for the evaluations to address
different research purposes, the indexes generally included soil organic matter, mineral
nutrient elements, and other soil properties, such as pH. Among the mineral nutrient
elements, macronutrients have been studied more than micronutrients, especially the
essential elements N, P, and K, which are among the most important indicators commonly
used to analyze soil fertility.

Silicon is the second most plentiful element in the Earth’s crust, accounting for nearly
29% of the total content of the crust [18]. Generally, Si plays an important role in soil. In
aquatic ecosystems, Si along with N and P are the main biogenic elements that maintain
net primary productivity (NPP) [19]. Silicon also has a great impact on the growth and
development of plants in natural ecosystems due to its unique function of alleviating the
deleterious effects of abiotic and biotic stresses in plants [3]. In modern agriculture, Si
is recognized as a functional nutrient for rice, sugar cane, etc., and plays an especially
important role in the growth and development of Gramineae crops [20]. Within the Poaceae
family, rice is the staple food for more than half of the world’s population. Rice plants
are Si accumulators and are a high Si demanding crop, usually absorbing Si in greater
quantity than essential nutrients such as N, P, K, and Ca [21]. The relationship between
increasing rice yield and Si depletion has attracted increasing attention from agricultural
scientists [18]. The area studied in the present research has a rich rice yield but is relatively
lacking in soil nutrients, partially due to the effects of acid rain, and the absence of Si and
various macronutrients (N, P, and K) may limit the rice yield [22].

Soil nutrient properties can vary spatially due to many factors, such as pedogenic
processes, climate, parent material, topography, and human influences [15]. When the soil
nutrient content exhibits high spatial variability, it is difficult to estimate soil nutrient status
among regions based directly on the different geographical features [23]. This study tries
to use geostatistics and inverse distance weighting (IDW) methods to explore the problem
of soil high spatial. Geostatistics have been widely used to explore spatial uncertainty in
recent decades [24]. They can be used to describe the spatial distribution of a variable
and to predict its value between sampling points [25]. The IDW method is also commonly
used to predict the spatial distribution of soil nutrients. It is a moving weighted-average
method that has its optimum effect under conditions in which the sampling points are
evenly distributed and not clustered in the sampling area.

In this study, we analyzed the spatial distribution of soil N, P, K, and Si in farmland in
Conghua District, Guangzhou, China, using geostatistics and the IDW method. The main
objectives of the study were to (i) measure the total nitrogen (TN), available phosphorus
(AP), available potassium (AK), and available silicon (ASi); (ii) determine the optimal
model fitted and its parameters; and (iii) assess the spatial variability of the selected soil
nutrient elements and analyze their spatial distribution.

2. Materials and Methods
2.1. Study Area, Soil Sampling, and Analysis

The study area was located in the northeast of Guangzhou, in the transition zone from
the Pearl River Delta to the mountainous area of northern Guangdong Province, South
China (Figure 1). The terrain is tilted from north to south, and the total area of the study
area is 1985.3 km2. The climate of the study area is Subtropical Monsoon Climate. The
mean annual temperature ranges from −1.6 ◦C in winter to 36.7 ◦C in summer, and mean
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annual precipitation is 1930.8 mm. Generally, the soil types can be divided into sandy
soil, clayey soil and loam. The United States Department of Agriculture (USDA) Textural
Triangle has 12 classes according to the proportion of sand content, viscosity and loam.
The study area is located in the plain area of the Pearl River Delta, where the soil has less
sediment content, fine particles, slow water seepage rate and general aeration performance.
Therefore, the soil types are mainly clay and loam. Due to the cropping system of three
crops a year, frequent tillage and high intensity development and utilization activities, the
overall situation of soil nutrients in this region is not optimistic.

Figure 1. Location of the study area and sampling point distribution.

A total of 201 topsoil samples (0–20 cm) were collected from farmland in the study
area for the analysis of their soil nutrient properties. In the sampling: (i) select a large
area of farmland; (ii) the sampling point is more than 100 m away from the highway and
railway; (iii) avoid the composting edge, irrigation mouth and other places that affect the
soil properties [26]. The sample locations were selected according to topography and land
use. The sampling density was approximately one sample per 1.07 km2 cultivated land.
After the weeds and plant roots in the soil had been removed, the topsoil was collected
with a small wooden shovel. At each site, five small sub-samples were evenly mixed to
create one large composite sample. Finally, the composite sample was placed into a plastic
bag, and the condition of the surrounding environment, vegetation, and geographical
position was recorded. All specimens were transported to a laboratory for the analysis of
soil properties.

The samples were air dried and sieved through a 2-mm sieve for the analysis of
soil nutrient elements. The indicators tested included TN, AP, AK, and ASi. TN was
determined using the semi-micro Kjeldahl method, AP was extracted with the sodium
bicarbonate extraction/molybdenum antimony colorimetric method (Olsen), AK was
estimated via ammonium acetate extraction/flame photometry, and ASi was analyzed
using a colorimetric method [10].

2.2. Statistical Analysis

Descriptive statistics, including the mean, minimum, maximum, coefficient of varia-
tion (CV), and standard deviation, were calculated using SPSS 20.0 [27]. The distribution of
the data was tested for normality using the Kolmogorov–Smirnov test, kurtosis, skewness,
and percentile–percentile plots. The correlations among the variables were determined
based on Pearson’s coefficients, and the CV was used to describe the degree of variation
of soil nutrients. A CV of less than 10% indicated weak variability, a CV between 10%
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and 100% indicated moderate variability, and a CV of more than 100% indicated strong
variability [28].

2.3. Geostatistics

Geostatistics were used to analyze the spatial variability of plant nutrients in soil. The
approach consists of two stages: the calculation of an experimental variogram from the
data and model fitting, and predictions at unsampled locations [24]. A semivariogram is
used to measure the spatial variation of regionalized variables [25,29], and is expressed as:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (1)

In Equation (1), γ(h) is the semivariance at a given distance h; Z(xi) is the value of
the variable Z at location xi, and N(h) is the number of pairs of sample points separated
by the distance h. The variogram plot was fitted with a theorical model, i.e., spherical,
exponential, linear, or Gaussian models. The fitted model was selected based on it having
both the largest R2 and the smallest residual [30], and it could provide information about
the spatial structure and the input parameters for the kriging interpolation.

The kriging interpolation method is widely used to research spatial structure and
provide estimates of variation at unsampled locations [31]. It includes the concepts of
ordinary, simple, universal, probability, indicator, and disjunctive kriging, but the ordi-
nary kriging (OK) method is regarded as the best technique and is known as the linear
unbiased estimator.

2.4. The Inverse Distance Weighting Method

The IDW method assumes that a value of an attribute at an unsampled location is
a weighted average of known data points, within a local neighborhood surrounding the
unsampled location [32]. It is expressed as:

ẑ(x0) =
∑n

i=1 z(xi)dij−r

∑n
i=1 dij−r (2)

In Equation (2), Ẑ is estimate value of x0, which is the estimation point and xi are the
data points within a chosen neighborhood. The weights (r) are related to distance by dij,
which is the distance between the estimation point and the data points. Higher weights
indicate more influence points close to x0.

2.5. Accuracy Assessment

Cross-verify the accuracy of kriging interpolation using the hold-out method [33]
and to help determine the best parameters for the IDW test [31]. The indexes included
root-mean-square error (RMSE) and mean-absolute error (MAE), which are be calculated
as follows [11]:

MAE =

N
∑

i=1
|y(xi)− y ∗ (xi)|

N
(3)

RMSE =

√√√√√ N
∑

i=1
{y(xi)− y ∗ (xi)}2

N
(4)

where y(xi) is the measured value, y * (xi) is the predicted value, and N is the number
of samples. The best prediction model was obtained when the RMSE and MAE had the
smallest value.
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3. Results
3.1. Descriptive Statistics

As shown in Table 1, the average values of TN, AP, AK, and ASi were 842.48 ± 403.38,
43.41 ± 26.48, 77.80 ± 59.84, and 63.85 ± 33.61 mg kg−1, respectively. The CV of TN, AP,
AK, and ASi ranged from 47.88% to 76.91%, which indicated a moderate variability for all
variables in the study area. The CV values followed the order AK > AP > ASi > TN. TN,
AP, and AK displayed moderate variability similar to that found in Hebei [14], Yunnan
Province [8], and India [17]. The gradually decreasing trend in the CV among TN, AP, and
AK in the study area was similar to that reported in farmland of India [17].

Table 1. Descriptive statistics of N, P, K and Si in soils.

Variable Median Max Mini Mean Std. Dev Skewnss Kurtosis CV %

TN (mg kg−1) 782.00 2140.00 284.00 842.48 403.38 1.28 1.13 47.88
AP (mg kg−1) 35.30 140.80 4.60 43.41 26.48 1.20355 1.36355 60.99
AK (mg kg−1) 60.00 350.00 2.00 77.80 59.84 1.64 3.55 76.91
ASi (mg kg−1) 57.61 170.58 7.55 63.85 33.61 0.90 0.45 52.64

TN, total nitrogen; AP, available phosphorus; AK, available potassium; ASi, available silicon; Max, maximum; Mini, minimum; Std. Dev,
standard deviation.

The skewness values of TN, AP, AK, and ASi were 1.28, 1.20, 1.64, and 0.90, respectively.
The percentile–percentile plots showed that ASi(D1) was normally distributed, whereas
TN(A1), AP(B1), and AK(C1) were non-normally distributed. The Kolmogorov–Smirnov
tests demonstrated that all variables followed a normal distribution after logarithmic
transformation (Figure 2). There were no significant correlations among TN, AP, AK, and
ASi based on the Pearson coefficients.
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Figure 2. Maps of normal P-P Plot (probabilty probabilty plot). The upper picture (A1,B1,C1,D1) shows the data distribution
before transformation; the lower picture (A2,B2,C2,D2) shows the data distribution after logarithmic transformation.

3.2. Ordinary Kriging Results

As shown in Table 2, the optimal models were selected based on having the smallest
residual and largest R2 values. For TN, AK, and ASi, the R2 values are 0.701, 0.115 and
0.446, they are both larger than other models, so an exponential model was considered
the optimal model, whereas a spherical model was selected as the optimal model for AP
(Figure 3).
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Figure 3. Semivariogram of TN (A); semivariogram of AP (B); semivariogram of AK (C); and semivariogram of ASi (D).

The ranges of the variograms for AK, ASi, TN, and AP were 5530, 2400, 3300, and
2190 m respectively, which were lower than those reported previously on a similar regional
scale [10,11]. Based on the notion that the sampling interval should be less than half
the range of the variogram [34] and the principle that sample numbers are usually a
compromise between the accuracy required and the resources available for investigation,
these results indicated that the sampling design was adequate for determining the spatial
variability of soil nutrients in the study area [30].

The nugget (C0) and sill (C0 + C) values were used to reflect spatial heterogeneity. C0
ranged from 59 to 24,900 mg kg−1, whereas C0 + C varied from 724 to 171,200 mg kg−1.
All semivariograms were generally well structured with a small nugget effect, except for
TN, indicating that the sampling density was suitable for revealing spatial structures [35].
High C0 values tend to hide the spatial variation of soil structure [36], but the high nugget
effect for TN revealed an irregular distribution of spatial variability.

Table 2. Geostatistical analysis of N, P, K and Si in soils.

Variable Optimal
Model

Range
(m)

Nugget
(C0)

Partial Sill
(C)

Sill
(C0 + C) NSR(%) R2 Residual Spatial

Dependence

TN Sph 2620 12,200 158,100 170,300 0.08 0.641 4.56E + 08
Exp * 3300 24,900 146,300 171,200 0.15 0.701 3.81E + 08 weak
Gau 2269 30,200 140,100 170,300 0.20 0.642 4.55E + 08

AP Sph * 2190 59 666 725 0.07 0.220 12,154 weak
Exp 2040 101 623 725 0.13 0.205 12,408
Gau 1871 144 581 724 0.19 0.221 12,154

AK Sph 5877 644 2978 3622 0.06 0.095 2,683,579
Exp * 5530 403 3061 3464 0.12 0.115 2,091,059 weak
Gau 2934 407 3050 3457 0.15 0.089 2,260,214

ASi Sph 2270 113 939 1052 0.02 0.410 14,746
Exp * 2400 140 915 1055 0.13 0.446 13,809 weak
Gau 1890 103 965 1052 0.10 0.405 14,745

TN, total nitrogen; AP, available phosphorus; AK, available potassium; ASi, available silicon. Sph, spherical model; Exp, exponential model;
Gau, Gaussian model; R2, R-squared; NSR, nugget to Sill ratio [13,37]. * represents the best fitted model.

The nugget-to-sill ratio (NSR) describes the degree of spatial correlation [37]. An NSR
less than or equal to 0.25 indicates a weak spatial correlation; an NSR between 0.25 and
0.75 indicates a moderate spatial correlation; and an NSR greater than 0.75 indicates a
strong spatial correlation. However, a variable was still considered to have a weak spatial
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correlation when NSR ≤ 0.25. As shown in Table 2, the NSRs of TN, AP, AK, and ASi
were 0.15, 0. 07, 0.12, and 0.13, respectively. All variables had an R2 < 0.5, except for
TN (R2 = 0.701), therefore, they were considered to have weak spatial dependence. These
results were similar to previous findings. For example, the spatial correlations of TN and
AP in this study area were similar to those reported in a wastewater irrigation area of
Beijing and a hilly area of Santai County [10,13].

Spatial variation is generally divided into intrinsic variation and extrinsic variation.
Internal changes are caused by structural factors, while external changes are caused by
random factors [6,10,33]. The structural factors of internal change include soil texture,
soil particle, soil bulk density, etc. The spatial heterogeneity of soil organic matter, total
nitrogen, total phosphorus and total potassium was studied by geostatistics method,
and it was found that soil structural factors had great influence on soil organic matter,
total nitrogen and total potassium, and were simultaneously affected by structural and
random factors [13,38]. In general, variables with strong variability are mainly affected by
structural factors, while variables with weak variability are affected by random factors. The
driving factors of randomness are mainly human factors, such as agricultural irrigation,
fertilizer use, tillage measures, etc. In studying the influence of land use change on spatial
heterogeneity of soil nutrients in forests in southern Appalachia, Fraterrigo et al. found
that land use had a persistent influence on spatial heterogeneity of soil nutrients [33]. All
variables in this study belong to moderate variation. Spatial variation of soil nutrients
is influenced by both structural and random factors, and has different characteristics in
different regions.

3.3. Inverse Distance Weighting Results

In the inverse distance weighting method, root mean squared error (RMSE) indicates
that the smaller the values, the better the model prediction. The minimum RMSE was
observed when p = 1, and the maximum when p = 3 (Table 3). When p = 1, the RMSEs of
TN, AP, AK, and ASi were 404.51, 26.85, 58.63 and 31.50, and when p = 3 the RMSEs of TN,
AP, AK, and ASi ranged from 28.63 to 440.41, respectively. The RMSE values followed the
order TN > AK > ASi > AP.

Table 3. Inverse distance weight analysis of N, P, K and Si in soils.

Indicator Model TN AP AK ASi

RMSE
p = 1 404.51 26.85 58.63 31.50
p = 2 419.06 27.60 61.38 32.26
p = 3 440.41 28.63 64.30 33.51

TN, total nitrogen; AP, available phosphorus; AK, available potassium; ASi, available silicon. RMSE, root mean
squared error. p = 1, 2, 3, represent different expectations.

3.4. Evaluation of Prediction Methods

Cross-validation was used to validate the accuracy of spatial interpolation. The best
prediction models for the variables were selected based having the lowest RMSE and MAE
values (Table 4). Thus, the exponential model was selected for TN, AK, and ASi, whereas
the spherical model was selected for AP. The mean errors of TN, AP, AK, and ASi were
0.57, 0.23, −1.19, and −0.57, respectively; the negative values indicated that the predicted
values of AK and ASi were less than the experimental values. Based on their having the
lowest RMSE and MAE, the best prediction models were selected when p = 1 using IDW.
The mean errors of TN, AP, AK, and ASi were −0.68, 0, 0.01, and 0.15, respectively; the
negative value indicated that the predicted value of TN was less than the experimental
value.
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Table 4. Modeling precision of OK and IDW methods for N, P, K and Si in soils.

Variable Method Model ME MAE RMSE

TN OK Sph −0.01 163.90 15.49
Exp * 0.57 154.47 14.64
Gau −0.20 175.67 16.57

IDW p = 1 * −0.68 9.21 4.25
p = 2 −1.49 16.76 4.37
p = 3 −3.87 91.72 9.33

AP OK Sph * 0.23 10.96 14.30
Expl 0.25 12.25 15.99
Gau 0.26 12.17 15.90

IDW p = 1 * 0.00 0.45 0.15
p = 2 0.01 1.08 0.18
p = 3 0.04 6.70 0.65

AK OK Sph −1.35 25.31 32.70
Exp * −1.19 21.71 28.18
Gau —— —— ——

IDW p = 1 * 0.01 1.03 0.34
p = 2 0.12 2. 42 0.40
p = 3 0.31 13.96 1.41

ASi OK Sph −0.86 18.30 23.52
Exp * −0.57 13.87 17.98
Gau −0.90 18.96 24.35

IDW p = 1 * 0.15 0.44 0.18
p = 2 0.15 1.22 0.23
p = 3 −0.02 7.68 0.77

TN, total nitrogen; AP, available phosphorus; AK, available potassium; ASi, available silicon. Sph, spherical
model; Exp, exponential model; Gau, Gaussian model; * represent the best predicted model; ME, mean error; MAE,
mean absolute error; RMSE, root-mean-square error; OK, ordinary kriging; IDW, inverse distance weighting.

The estimation of soil properties is one of the most challenging problems in geo-
science [39]. Studies have found that using the RMSE as an indicator can have disadvan-
tages, especially in the process of verifying the models generated by different interpolation
methods [40]. In this study, we selected the RMSE and MAE as indicators to assess the
interpolation accuracy when the same method was applied to the data, e.g., OK or IDW,
and used the indicators of optimal accuracy (IOA) and imprecision (IP) to evaluate the pre-
dicted accuracy when different interpolation methods were applied to the same data [41];
the formulas are as follows:

IOA =

∣∣∣∣∣∣∣∣
n
∑

i=1
(Zi− Ẑi)2

n
∑

i=1

(∣∣Zi− X
∣∣+ ∣∣Zi−Y

∣∣)
∣∣∣∣∣∣∣∣ (5)

IP(x0) = RMSE2(x0)−ME2(x0) (6)

As shown in Table 5, the IOAs of TN, AP, AK, and ASi obtained from IDW were 6.07,
0.11, 0.26, and 0.13, respectively. The IOAs of TN, AP, AK, and ASi obtained from IDW were
less than those obtained from OK, indicating that the predicted accuracies of IDW were
higher than those of OK. The IPs of TN, AP, AK, and ASi obtained from OK were 214.13,
0.96, 2.54, and 1.29, respectively. The IP values of TN AP, AK, and ASi obtained from OK
were larger than those obtained from IDW, indicating that the predicted accuracies of IDW
were higher than those of OK. Therefore, we concluded that the prediction accuracy of TN,
AP, AK, and ASi obtained from IDW was higher than that obtained from OK. Therefore,
we used IDW to analyze the spatial distribution of soil nutrient elements.
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Table 5. Comparison of interpolated accuracy of different interpolation methods.

Methods Indicator TN AP AK ASi

IDW IOA 6.07 0.11 0.26 0.13
IP 17.56 0.02 0.12 0.01

OK IOA 87.74 6.27 10.79 7.67
IP 214.13 0.96 2.54 1.29

TN, total nitrogen; AP, available phosphorus; AK, available potassium; ASi, available silicon; IP, imprecision; IOA,
index of optimal accuracy; IDW, inverse distance weight; OK, ordinary kriging.

3.5. Spatial Distribution of Soil Nutrient Elements

The spatial distributions of TN, AP, AK and ASi were plotted using the ArcGIS 10.2
software, and the results are shown in Figure 4. TN displayed an overall increasing trend
from the northeast to southwest in the range of 493.28 to 1529.56 mg kg−1. The TN content
was generally low (<700 mg kg−1) to moderate (700–1100 mg kg−1) in most areas, and
it was only high (>1100 mg kg−1) in some scattered locations that represented 6.65% of
the total area. It may be due to the influence of topographic factors. In northeast China,
most areas are mountainous with high altitude and steep slope, while in southwest China,
there are plain areas with low altitude. The AP content was low (25–40 mg kg−1) to
moderate (40–55 mg kg−1) in most regions, and was generally higher in the northeast than
the southwest. This is because areas with high total nitrogen content are located around
urban areas, and the use of human factors on land is significantly higher than other areas.
The AK content exhibited an even distribution across the study area, with no significant
regional features. The AK content varied from 21.30 to 244.26 mg kg−1, and was very low
(<108 mg kg−1) in 99.66% of the total area. ASi exhibited a similar spatial distribution
as AP. The ASi content was moderate (60–85 mg kg−1) to low (35–60 mg kg−1) in most
regions, and most soils in the study area showed ASi deficiency. The overall low content of
AK and ASi may be due to the fact that frequent human land use activities have destroyed
the soil cultivation layer, resulting in the lack of soil nutrients, especially in the urbanized
areas of the southwest, where the more intense land development and utilization activities,
the more obvious.

 
Figure 3 

 

 
Figure 4 Figure 4. Spatial distribution of TN (A), spatial distribution of AP (B), spatial distribution of AK (C), and spatial distribution

of ASi (D).
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4. Discussion

The purpose of this paper was mainly to discuss the spatial distribution features
of soil nutrients at the county scale, so that to understand the spatial variation of soil
nutrients and master the influencing factors in the evolution process, to provide a scientific
proof for formulating reasonable plan of land use management and a technical support for
precision agriculture.

In this paper, kriging and inverse distance weight interpolation methods were used to
analyze the spatial distribution features of plant nutrients in soil, and the optimal model
and the optimal parameters of different methods were obtained in the study area. Based
on these, a series of quantitative indicators were used to discuss the forecast results of
different models. That was an innovative attempt in the thinking of plant nutrients in soil
analysis because of many studies focus only on one method in the past [6,9,10,13]. The
results showed that TN is moderately enriched and AP is deficient in the study area, which
was consistent with the geochemical survey results. Secondly, in the selection of research
objects, there are few studies on discussing ASi together with AN, AP and AK. In this
study [42], the spatial distribution features of these soil nutrients were discussed according
to the characteristics of regional natural geography and crop planting in the studied area,
which was helpful to fully understand the soil nutrients and make a measure for precision
agriculture [3,6].

Plant nutrients content in soil is caused by both natural and human factors. Most
researches showed that parent material has the most significant effect on soil formation
and soil nutrient content, and soil nutrient content is also closely related to climate, rainfall,
vegetation, land use types and agricultural production measures [43]. It is well known that
soil parent materials are the material carriers and there are differences in soil nutrients for
the difference of parent materials [2,19,43]. It commonly existed a significant correlation
between parent material and soil nutrients, that is, the higher the mineral element content
of soil parent material, the higher the content of plant nutrients in soil in the corresponding
area. Soil types are mainly caused by different parent materials. The influences of hu-
man activities on soil nutrients are mainly showed in agricultural production, the spatial
distribution of soil nutrients will be affected by different fertilization methods and land
use types.

The study area is located in the hilly area of Southeast China, granite is the main soil
parent material, and the soil types are mainly clay and loam [44]. Many paddy fields are
planted with rice, and dry lands are planted with dry crops such as peanuts. Located in
the edge of Pearl River Delta urban agglomeration, land value is very high and land use
is frequent, so that the spatial variability of plant nutrients in soil were simultaneously
affected by structural and random factors [13,37]. In this paper, the soil sampling was
selected according to topography, land use types and vegetation conditions, and the
sampling points covered the main soil types. The analyzed conclusions were consistent
with the geochemical survey results.

5. Conclusions

Results showed that the overall content of the spatial distribution of TN, AP, AK, ASi
in the study area is relatively low. In addition to the uniform spatial distribution of AK, TN
overall showed a trend of increasing from northeast to southwest, and the overall spatial
distribution of AP and ASi showed that the northeast was higher than the southwest.
Therefore, measures should be taken to increase the content of TN, AP, AK, ASi in the
soil of the study area. According to the requirements of different crops for the content of
TN, AP, AK, and ASi, it can be planted in districts according to local conditions. Thus,
understanding of the spatial distribution characteristics of soil nutrient content in the study
area can not only adapt to local conditions and promote the development of agricultural
production, but also provide guidance for the delineation of basic farmland protection areas,
land use spatial planning and the formulation of accurate farmland protection policies.
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