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Abstract: Corn yields vary spatially and temporally in the plots as a result of weather, altitude, variety,
plant density, available water, nutrients, and planting date; these are the main factors that influence
crop yield. In this study, different multispectral and red-green-blue (RGB) vegetation indices were
analyzed, as well as the digitally estimated canopy cover and plant density, in order to estimate corn
grain yield using a neural network model. The relative importance of the predictor variables was
also analyzed. An experiment was established with five levels of nitrogen fertilization (140, 200,
260, 320, and 380 kg/ha) and four replicates, in a completely randomized block design, resulting in
20 experimental polygons. Crop information was captured using two sensors (Parrot Sequoia_4.9,
and DJI FC6310_8.8) mounted on an unmanned aerial vehicle (UAV) for two flight dates at 47 and
79 days after sowing (DAS). The correlation coefficient between the plant density, obtained through
the digital count of corn plants, and the corn grain yield was 0.94; this variable was the one with the
highest relative importance in the yield estimation according to Garson’s algorithm. The canopy
cover, digitally estimated, showed a correlation coefficient of 0.77 with respect to the corn grain yield,
while the relative importance of this variable in the yield estimation was 0.080 and 0.093 for 47 and 79
DAS, respectively. The wide dynamic range vegetation index (WDRVI), plant density, and canopy
cover showed the highest correlation coefficient and the smallest errors (R = 0.99, mean absolute
error (MAE) = 0.028 t ha−1, root mean square error (RMSE) = 0.125 t ha−1) in the corn grain yield
estimation at 47 DAS, with the WDRVI index and the density being the variables with the highest
relative importance for this crop development date. For the 79 DAS flight, the combination of the
normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), WDRVI,
excess green (EXG), triangular greenness index (TGI), and visible atmospherically resistant index
(VARI), as well as plant density and canopy cover, generated the highest correlation coefficient and
the smallest errors (R = 0.97, MAE = 0.249 t ha−1, RMSE = 0.425 t ha−1) in the corn grain yield
estimation, where the density and the NDVI were the variables with the highest relative importance,
with values of 0.295 and 0.184, respectively. However, the WDRVI, plant density, and canopy
cover estimated the corn grain yield with acceptable precision (R = 0.96, MAE = 0.209 t ha−1,
RMSE = 0.449 t ha−1). The generated neural network models provided a high correlation coefficient
between the estimated and the observed corn grain yield, and also showed acceptable errors in
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the yield estimation. The spectral information registered through remote sensors mounted on
unmanned aerial vehicles and its processing in vegetation indices, canopy cover, and plant density
allowed the characterization and estimation of corn grain yield. Such information is very useful for
decision-making and agricultural activities planning.

Keywords: vegetation indices; UAV; neural network; corn plant density; corn canopy cover;
yield prediction

1. Introduction

Corn is one of the main food crops for the population, and together with wheat and rice, it is one
of the most important cereals in the world. According to the United States Department of Agriculture
(USDA), in 2019, a global area of 192.21 million hectares was estimated, with China and the United States
being the countries with the largest sown area [1]. In Mexico, 7.4 million hectares of corn was sown in
2018, with a national production of 27.7 million tons and a mean yield of 3.83 t ha−1 [2]. For the Mexican
population, it constitutes the basis for alimentation, providing energy and proteins [3]. In Mexico,
86% of the surface is cultivated under rainfed conditions in plots of less than 5 ha. Some of these
producers use the agroecosystem called “milpa”, in which several species (beans, pumpkins, and others)
are grown on the same plot of corn [4]. Meanwhile, according to Food and Agriculture Organization
(FAO), the world population will increase by 35% by 2050, reaching 9100 million inhabitants, mainly in
developing countries [5]. To feed this population, food production must sustainably increase by 70%,
considering the safety and conservation of natural resources. Some studies indicate that corn yield
could decrease in the coming years as a result of anthropogenic climate change [6–9]. There are three
main impacts of climate change on agriculture: (a) deterioration in crop yields; (b) effects on production,
consumption, and commercialization; and (c) effects on per capita caloric consumption and child
nutrition [10]. Corn crop yield is directly related to many factors like the environment, management
practices, genotype, and their interactions [11]. The influence of regional climate patterns and large-scale
meteorological phenomena can have a significant impact on agricultural production [12]. Genotypes
have improved significantly over the years, and important technological developments have been
made in the machinery used in management practices. Under these circumstances, yield prediction can
be important data for food production, making well-informed and timely economic and management
decisions. Correct early detection of problems associated to crop yield factors can help increase the
yields and subsequent incomes of farmers. Accurate, objective, reliable, and timely predictions of crop
yields in large areas are fundamental to help guarantee the adequate food supply of a nation and assist
responsible politicians to make plans and set prices for imports/exports [13].

Yields in corn crops vary spatially and temporally in the plots, according to the conditions present
in each site such as weather, altitude, variety, planting density, available irrigation or the amount of
rain (water supply), the available nutrients for the plant (soil plus fertilizer), and the date of sowing,
which are the main factors that influence the yield of a plot. In recent decades, corn yield has increased
as a result of genetic improvement and agronomic management. Increases in plant density and the use
of synthetic fertilizers have been the main factors responsible for increases in corn yields. Plant density
(number of plants per unit area) is one of the components of grain yield (number of ears per unit
area, number of grains per ear, grain weight) that has an impact on the final corn yield [14]; however,
its accurate measurement after plant emergence is not practical in large-scale production fields owing
to the amount of labor required [15].

Precision agriculture (PA) is a management concept based on observation, measurement,
and response to variability of the crops in the field [16]. PA technology allows farmers to recognize
variations in the fields and apply variable rate treatments with a much finer degree of precision
than before. Identifying spatial and temporal variability within the field shows the potential to
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support crop management concepts to satisfy most of the growing environmental, economic, market,
and public pressures on agriculture [17]. Remote sensing is generally considered one of the most
important technologies for precision agriculture and intelligent agriculture; it can monitor many crops
and vegetation parameters through images at various wavelengths [18]. With the development of
unmanned aerial systems (UAS), their use in remote sensing and precision agriculture offers the
possibility of obtaining field data in an easy, fast, and profitable way, resulting in images with high
spatial and temporal resolution. The successful adoption of remote sensing based on unmanned aerial
vehicles (UAV) depends on changes in sensitivity on vegetation indices (VI) and growth stages [19].
Processing different vegetation indices has been associated with physiological parameters of the plant,
such as plant pigments, vigor, aerial biomass, yield estimation, plant physiology, and stress. Xue and
Su in 2017 [20] reviewed the developments and applications of 100 vegetation indices (VIs) in remote
sensing; some VIs employ a range of reflectance values in a narrow band of the electromagnetic
spectrum for more precise measurements correlating them with the grain yield, providing reliable
information for yield forecasting [21,22], but they require more technologically advanced sensors. As a
low-cost alternative, there are VIs that are obtained from red-green-blue (RGB) images calculated
from commercial cameras. These have shown in some studies their ability to predict grain yield,
quantify nutrient deficiencies, and measure the impact of diseases [23–25].

The factors that affect crop yields, such as soil, climate, and management, are so complex that
traditional statistics cannot give accurate results. Various machine learning techniques have been
used for yield prediction, such as decision trees, self-organizing maps (SOMs), multivariate regression,
support vector machines, association rule mining, and neural networks [26–31]. As a machine learning
tool, the artificial neural network (ANN) is an attractive alternative to process the massive data set
generated by production and research in precision agriculture [11]. The models used in machine
learning relate crop yield, as an implicit function of input variables, for example, climate variables,
soil, and water characteristics, which can be a very complex function, not necessarily linear. Recently,
different types of neural networks have been used to predict yield in wheat, soybean, rice, corn,
and tomato, using databases of genotypes, environment, management practices, and multispectral
images, obtaining acceptable results [32–37].

Studies have been carried out to estimate corn yield, using data obtained from remote sensors
and ANN. Fieuzal et al. [38] use multi-temporal data from satellites and radar, as well as a neural
network in the estimation of maize yield with an R2 of 0.69. On the other hand, in another study [39],
polarimetric synthetic aperture radar (PolSAR) and neural network data are used in the estimation
of corn biomass, obtaining good results with an R = 0.92. Han et al. [40] estimate the aerial biomass
of corn from spectral information, plant height, and structural information using data from remote
sensors and unmanned aerial vehicles with machine learning regression algorithms, obtaining good
results (R2 = 0.69). Michelon et al. [41] use ANN and chlorophyll readings to estimate corn productivity,
resulting in a correlation coefficient of 0.73 in stage V6. Olson et al. [19] related vegetation indices and
crop height with maize yield, finding high correlations; another approach uses yield data from parents
to predict maize yield in plant breeding using neural networks [42]. Canopy cover, plant density,
and vegetation indices calculated from data collected by remote sensors can be used to forecast corn
grain yield using neural networks. As far as we know, this is the first study where canopy cover,
plant density, and various vegetation indices are estimated from images obtained by UAVs to forecast
corn grain yield using a neural network.

In this study, the corn grain yield was estimated through the use of a neural network for a
corn crop established under different doses of nitrogen fertilization from multispectral and digital
images acquired by sensors mounted on an unmanned aerial vehicle. The images were processed
and vegetation indices, canopy cover, and plant density were extracted. A neural network was
designed having the following input parameters: vegetation indices (normalized difference vegetation
index, NDVI; normalized difference red edge, NDRE; wide dynamic range vegetation index, WDRVI;
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excess green, EXG; triangular greenness index, TGI; visible atmospherically resistant index, VARI),
canopy cover, and plant density.

2. Materials and Methods

2.1. Study Site

An experiment was established in a plot on 5 April 2018 at the Colegio de Postgraduados,
Campus Montecillo, located on the Mexico-Texcoco highway, km. 36.5 Montecillo, Texcoco, State of
Mexico (19◦27′40.58” N, 98◦54′8.57” W, 1250 m above sea level). Soil texture is sandy, bulk density of
1.45 g cm−3, organic matter of 1.59%, pH of 9.1, and electrical conductivity of 1.72 dS m−1. Five nitrogen
levels (140, 200, 260, 320, and 380 kg ha−1) were evaluated in a completely randomized block
experimental design with four replicates, resulting in 20 experimental units (120 m2 per unit), using the
Asgrow Albatross corn variety. A drip-band irrigation system with drippers at 20 cm separation and a
flow of 1.6 L/h was designed to irrigate each experimental unit. The five nitrogen levels were applied
to the irrigation water at dose intervals of 30% for the first 40 days, 50% of the dose at 40–80 days,
and 20% after 80 days. The sowing was done by hand with a distance of 80 cm between rows and 30 cm
between plants, with three seeds per hole. Weeds were controlled manually. A mean temperature
of 16.9 ◦C was present during the experiment period, and a total precipitation of 470 mm occurred,
with these conditions being very close to the normal conditions.

The experimental units were harvested at the end of September 2018, harvesting the entire area
of the experimental unit, so the total weight harvested corresponded to an area of 120 m2 (0.8 m
separation × 6 rows × 25 m long) for all replicates of each treatment in the experiment. The harvested
ears and grains were dried at approximately 14% humidity, so grain yield (t ha−1) was calculated
according to the following:

Gy =
X

120
× 10, (1)

Grain yield per plant (g plant−1) was calculated according to the following:

Gyp =
X× 1000

Np
, (2)

where X represents grain weight per experimental area (kg m−2), Gy is grain yield, Gyp is grain yield
per plant, and Np is the number of plants present in the area.

2.2. Acquisition and Analysis of Data from Remote Sensors Mounted on Unmanned Aerial Vehicles

Four orthomosaics were used in this work according to Table 1, which were acquired by a 72 g
Parrot Sequoia camera with a 16 Mpx RGB sensor. It also incorporates four single band sensors with a
spectral bandwidth in green (530–570 nm), red (640–680 nm), red edge (730–740 nm), and near infrared
(NIR) (770–810 nm) of 1.2 Mpx, and a 35 g solar sensor for real-time correction of lighting differences.
The Parrot Sequoia camera was attached to a 3 DR SOLO quadcopter (3D Robotics, Berkeley, CA,
USA) with flight autonomy of 20 min, with a horizontal precision range of 1–2 m. Two orthomosaics
used in this work were generated from a 20 Mpx DJI RGB sensor integrated into a DJI Phantom 4
quadcopter (DJI, Shenzhen, Guangdong, China), with a load capacity of 1.388 kg and autonomy per
flight of 30 min, equipped with a GPS/GLONASS satellite positioning system with a vertical precision
range ±0.5 m and horizontal precision range of 1.5 m.
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Table 1. Flight log, sensors, and orthomosaics on different days after sowing (DAS).

DAS Development Stage Date Sensor No. of Images Area (m2)
Ground Sampling

Distance (GSD) (cm)

47 V8 21 May DJI FC6310 272 10,067 0.49
47 V8 21 May Parrot Sequoia 752 9409 2.15
79 R0 22 June DJI FC6310 188 7720 0.49
79 R0 22 June Parrot Sequoia 752 9409 2.15

V8: Vegetative stage—eight leaves with collar visible; R0: Reproductive stage—anthesis.

The four flights were carried out in a period from 21 May to 22 June 2018, at a flight height
of 30 m. The images were acquired with 80% overlap and 80% sidelap, and the orthomosaic was
generated with the Pix4D software (Pix4D SA, Lausanne, Switzerland) using structure-from-motion.
The structure-from-motion processing technique searches for features in individual images that are
used to relate to features that match between overlapping images, called keypoints; using these key
points, camera parameters can be calibrated to external parameters (such as position, scale, and image
orientation) and a point correlation (matching) is performed based on the characteristics, identifying and
relating similar characteristics between images in common areas or overlapping areas. The calculated
3D position of the matched points is densified and textured with the corresponding images, from which
the orthomosaic is generated by projecting each textured pixel onto a 2D plane [43,44]. Ground control
points (GCP) were added for orthomosaic georeferencing according to Figure 1a. The required GCP
density depends on the required project accuracy, network geometry, and the quality of images [45,46].
Six marks were placed as ground control points (GCPs) distributed in the experimental plot for each
flight. A Global Navigation Satellite System (GNSS) Real Time Kinematics (RTK) V90 PLUS Hi-Target
system (Hi-Target Surveying Instrument Co., Ltd., Guangzhou, China) was used to record the center
of each control point with RTK precision, Horizontal: 8 mm + 1 Part Per Million (ppm) Root Mean
Square (RMS), and Vertical: 15 mm + 1 ppm RMS. Table 1 shows the summary of the images acquired
in each flight and the area covered for the four orthomosaics at 47 and 79 days after sowing (DAS).
Moreover, the corn growth stages for each flight are shown (V8 and R0). Generated orthomosaics
showed a ground sample distance (GSD) of 0.49 cm/pixel and a model RMS error of 5.6 cm for the
20 Mpx RGB sensor. The multispectral images obtained by the Sequoia camera were processed in
the Pix4D software, which integrates the camera’s light sensor to correct the estimated reflectance
and performs a radiometric calibration using a calibration panel image [47]. The multispectral Ag
template and the calibration panel by Airinov provided by the camera were used, defining the known
reflectance values for each spectral band of the panel equal to 0.171, 0.216, 0.268, and 0.372 for green,
red, red edge, and NIR, respectively. The obtained orthomosaics showed a ground sampling distance
of 2.15 cm/pixel.

Six vegetation indices were estimated based on the generated orthomosaics. Three vegetation
indices based on the reflectance of the visible spectrum (RGB): TGI (triangular greenness index),
EXG (green extraction index), and VARI (visible atmospherically resistant index), according to Table 2,
and three multispectral indices based on the reflectance in the near infrared, the red, and the red edge
bands: NDVI (normalized difference vegetation index), NDRE (green extraction index), and WDRVI
(wide dynamic range vegetation index). The calculation of the vegetation indices was done using
the raster calculator module of the Open Source program licensed under the GNU—General Public
License of the Geographic Information System (QGIS) software.
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Table 2. Vegetation indices estimated from multispectral and visible images. RNir, Rred, RRE, RGreen,
RRed, and RBlue are the reflectance values for the near infrared, red, red edge, green, red, and blue
bands, respectively.

Vegetation Index Formula Reference

Triangular greenness index TGI = RGreen − 0.39RRed − 0.61RBlue [48]

Excess green index EXG = 2 g − r − b [49]

Visible atmospherically resistant index VARI = (RRed − RGreen)/(RGreen + RRed − RBlue) [50]

Normalized difference vegetation index NDVI = (RNir − RRed)/(RNir + RRed) [51]

Normalized difference red edge NDRE = (RNir − RRE)/(RNir + RRE) [52]

Wide dynamic range vegetation index * WDRVI = (α·RNir − RRed)/(α·RNir + RRed) [53]

* WDRVI with an α coefficient value of 0.1 presented a good relationship with corn canopy cover [53].

The variables r, g, and b of the EXG index are normalized values of the red, green, and blue
channels, respectively, according to

r =
RN

RN + GN + BN
, g =

GN

RN + GN + BN
, b =

BN

RN + GN + BN
(3)

RN =
R

Rmax
, GN =

G
Gmax

, BN =
B

Bmax
(4)

where RN, GN, and BN are the normalized values of each band; R, G, and B are the non-normalized
values of the red, green, and blue channels, respectively; and Rmax = Gmax = Bmax are the maximum
digital numbers for each channel (255 on the 0–255 scale).

TGI index was normalized to have a value in the range of the others indices, between 0 and 1,
according to the following:

Ynor =
Y−Ymin

Ymax −Ymin
, (5)

where Ynor is the normalized index value, Y is the index value without normalizing, Ymin is the
minimum index value, and Ymax is the maximum index value.

2.3. Plant Count, Determination of Plant Density, and Estimation of Canopy Cover

The corn plants present in the study area were counted digitally according to García et al. [54].
The orthomosaics were transformed from the RGB color model to the CIELab model, where we only
worked on the channel a* to extract the vegetation. Corn plant samples were selected at 47 days
after planting, twelve of them for each experimental area. Through normalized cross-correlation with
the normxcorr2 command in Matlab (Mathworks, Natick, MA, USA), the corn plants present in the
binary image were classified and, using an image component labeling technique, assigning a label
(1 ... i), the pixels of each plant were grouped. The area of the plants selected in the correlation was
used as a criterion, counting plants with 20% less than the minimum area of the smallest selected
sample. The digitally counted plants were registered in a table. The plant density (plants m−2) in each
experimental area was calculated according to the following:

Pd =
Np
Ea

, (6)

where Pd is the plant density in plants/m2, Np is the number of plants present in the sampled area,
and Ea is the sampled area in square meters.

The canopy cover was calculated from the generated TGI vegetation index, using the Open
Source program licensed under the GNU—General Public License of the Geographic Information
System (QGIS) and System for Automated Geoscientific Analyses (SAGA) [55]. In QGIS, the K-Means
Clustering for Grids module was used to group the pixels into two classes: soil and vegetation,
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through the combined method of minimum distance and simple scaling [56]. The K-means method of
image segmentation is a technique that does not use the histogram for the segmentation process, so it
is not affected by the noise introduced in the image, evaluating and grouping the different pixels in
similar data sets, being suitable for large data sets. On the other hand, the K-means approach in image
segmentation is fast and efficient in terms of computational cost [57,58]. In the classification of pixels
into two classes in QGIS, a binary raster was generated, where pixels with a value of 0 belong to soil
and pixels with a value of 1 belong to vegetation, or vice versa. Thus, the estimation of the percentage
of canopy cover was obtained by the following:

Cc =
NP
TP

(7)

where Cc is the canopy cover, NP are the pixels corresponding to vegetation per unit area, and TP is
the total pixels per unit area.

Sampling was carried out in four 11 m2 polygons for each replicate, according to Figure 1a. In each
of them, the canopy cover (Figure 1b,c) and the plant density for the two flight dates were calculated.

2.4. Vegetation Pixels’ Segmentation and Extraction of the Indices Values

The images acquired through the sensors and the orthomosaics generated from them contain
reflectance corresponding to soil and vegetation, but only the reflectance corresponding to vegetation
was of interest to us. With the eCognition software and the object-based image analysis (OBIA)
technique, multi-resolution segmentation was realized. This combines pixels or adjoining objects
present in the image based on spectral and shape criteria. It also works according to the scale of the
objects present; large scale results in large objects, and vice versa [59]. The homogeneity criterion
measures how homogeneous or heterogeneous the object present in the image is, calculated from
a combination of object color and shape properties. Color homogeneity is based on the standard
deviation of the spectral colors. Shape homogeneity is based on the deviation of a compact (or smooth)
shape and can have a value of up to 0.9. In the segmentation process, a 10-scale value was used and the
homogeneity criteria like shape and compactness were 0.1 and 0.5, respectively. For the classification
of the segmented pixels in the image, three classes present in the image (Figure 2a,b) were determined:
soil, vegetation, and shadows. Supervised classification of the nearest neighbor was used to select
pixel samples for each class; they were compared with the other objects present with respect to the
mean and standard deviation of the supervised sample [60].
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Once the pixels present in the image were classified, we exported the pixels classified in the corn
class (Figure 3a,b) as polygons in shape file format, with the QGIS software. The mean values of the
indices calculated for each polygon of corn class were extracted through the zone statistics complement;
the values were stored in a shape file. The mean values obtained from the indices were extracted for 76
sampled polygons, 4 per replicate of the 5 treatments as the average of the mean values of all the pixels
classified as corn contained in each polygon. The sample polygon of each replicate on the edge of the
crop was discarded to eliminate edge effects.
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Figure 3. Segmentation and classification of objects present in the orthomosaics for the extraction
of pixels belonging to and classified as corn plants: (a) image of the crop without segmentation and
classification; (b) image of the crop with a shape of polygons generated from the segmented and
classified pixels of corn plants.

2.5. Development and Training of the Feed-Forward Neural Network

A multilayer perceptron type feed-forward neural network was developed using Matlab software
(Mathworks, Natick, MA, USA). A feed-forward neural network contains multiple neurons arranged
in layers: input, hidden, and output. The information goes in one direction, so there are no cycles or
loops [61]. The input layer receives values of the input variables (x1, x2, ..., xn); between the input
layer and the hidden layer are the weights (w1, w2, ..., wn) that represent the memory of the network;
and the output neurons return the output (y1, y2, .., yn) through the sum of all the inputs multiplied
by the weights plus a value associated with the neuron, called bias (b) [62].

y =
∑i=n

i=0
WiXi + b, (8)

The outputs of the neurons before passing to the other nodes are transformed through an activation
function f(x) to limit the output of the neuron. The precision in the prediction by a neural network
is related to the type of activation function used; the non-linear activation functions are the most
used (Sigmoid, Hyperbolic Tangent, Rectified liner Unit (ReLU), Exponential Linear Unit (ELU),
Softmax) [63,64], so the final output (a) will be as follows:

a = f
(∑i=n

i=0
WiXi + b

)
, (9)

As input parameters or variables, we used the mean value of the vegetation indices, the canopy
cover, and the plant density, as well as the yield in tons per hectare as labels and output parameters.
In total, 70% of the total data entered into the neural network was used for training, 15% for validation,
and 15% for testing using a random partition of the entire data set. For each combination of input
variables, the neural network was trained ten times using ten different random data sets. The training
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algorithm used was Levenberg–Marquart [65,66], which is a training function that updates the values
in the weights and bias according to the Levenber–Marquart optimization. Tan-sigmoid was used
as activation function, as it defines the behavior of the neurons in charge of calculating the degree or
state of activation of the neuron, according to the total input function [67]. The descending gradient
with momentum type was used as a learning rule, as it calculates the change in weight (W) for a given
neuron. On the basis of the weights of the input neurons and the error (E), the weight W, the learning
rate (LR), and the moment constant (MC) are calculated, according to the descent of the gradient with
momentum. The objective of training the neural network is to minimize the resulting errors for a
training data set by adjusting the weights (W).

2.6. Statistical Analysis

For the performance analysis of the estimated yields by the neural network, estimated yields were
compared to the observed yields, estimating the root mean square error (RMSE), the mean absolute
error (MAE), and the correlation coefficient (R) in the training, validation, testing, and total data entered
into the neural network. The correlation coefficient between the observed yields and the vegetation
indices, the plant density, and the canopy cover was also estimated.

Es = (EY−OY), (10)

MAE =
1
N

∑N

i=1

∣∣∣(Es)i

∣∣∣, (11)

RMSE =

√∑N
i=1(EY−OY)2

N
, (12)

where N is the number of the sampled polygon,
∣∣∣(Es)i

∣∣∣ is the absolute value of Es, EY is the estimated
yield, and OY is the observed yield.

2.7. Variables’ Relative Importance in the Yield Estimation Using Garson’s Algorithm

Neural network models are difficult to interpret and it is difficult to identify which predictors
are the most important and how they relate to the property being modeled. The weights connecting
neurons in a neural network are partially analogous to the coefficients in a generalized linear model,
and these weights combined with their effects on model predictions represent the relative importance of
predictors in their associations with the variable being predicted [68]. Garson’s algorithm discriminates
the relative importance of the predictor variables for a single response variable, that is, the force
with which a specific variable explains the predicted variable is determined by identifying all the
weighted connections between the nodes of interest, and identifying the weights that connect to the
specific input node that passes through the neural network and reaches the variable that is being
predicted. This allows to obtain a unique value for each descriptor variable used in the neural network
model [69,70]. To know the predictor variables’ relative importance (NDVI, NDRE, WDRVI, EXG, TGI,
VARI, canopy cover, and density) in the corn yield estimation, Garson’s algorithm was used.

3. Results and Discussion

3.1. Corn Plant Vegetation Indices

The segmentation and classification of objects into soil and vegetation allowed to filter mean
values of the vegetation indices with respect to the pixels belonging to corn plants. Table 3 shows the
mean values computed through segmentation and classification of the objects present in the image for
two dates in the corn crop development. Differences are observed in the mean values of the vegetation
indices for 47 and 79 days after sowing. The classification of the pixels captured in the sensors into
two classes allowed us to extract the values of the indices belonging to corn, so the result was a mean
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value of the vegetation. Contrarily, if the classification of the pixels into classes was not carried out,
there would be a bias when considering pixels belonging to soil and shadows in the mean computation
for the polygons taken as a sample, resulting in a mixed value of corn plants and soil pixels. Vegetation
indices values increased for 79 DAS with respect to the values shown for 47 DAS, except for the VARI
index, which did not present a wide variation with the crop development. Similar results were shown
in the studies carried out by Gitelson et al. [53,71]. Vegetation indices did not show differences for the
nitrogen treatments used; similar results are reported by Olson et al. [19].

Table 3. Mean values of the vegetation indices and yield for each replicate of the treatments under
different degrees of nitrogen fertilization.

DAS Treatment

Vegetation Index

NDVI NDRE WDRVI EXG TGI VARI Yield (g plant−1)

Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV

47

N140 0.46 0.05 0.19 0.02 −0.55 0.04 0.40 0.03 0.40 0.03 0.12 0.02 109.3 19.6
N200 0.48 0.04 0.19 0.01 −0.53 0.04 0.42 0.03 0.42 0.03 0.13 0.02 134.0 2.7
N260 0.46 0.05 0.18 0.02 −0.55 0.05 0.41 0.02 0.41 0.02 0.13 0.02 135.6 2.7
N320 0.46 0.04 0.18 0.01 −0.55 0.04 0.42 0.04 0.42 0.04 0.13 0.02 137.1 3.6
N380 0.47 0.05 0.19 0.02 −0.53 0.05 0.43 0.02 0.43 0.03 0.14 0.01 138.3 5.3

79

N140 0.90 0.02 0.26 0.02 −0.13 0.06 0.53 0.03 0.54 0.01 0.13 0.02 109.3 19.6
N200 0.91 0.01 0.26 0.03 −0.10 0.06 0.54 0.03 0.54 0.01 0.14 0.02 134.0 2.7
N260 0.90 0.01 0.25 0.02 −0.13 0.06 0.52 0.03 0.54 0.01 0.13 0.02 135.6 2.7
N320 0.90 0.01 0.25 0.02 −0.12 0.05 0.53 0.04 0.54 0.01 0.13 0.02 137.1 3.6
N380 0.90 0.01 0.25 0.02 −0.11 0.05 0.53 0.03 0.54 0.01 0.13 0.02 138.3 5.3

3.2. Plant Density, Canopy Cover, and Yield

Figure 4 shows the correlation coefficient at 47 and 79 days after sowing between the canopy
cover, plant density, and yield; it also shows the correlation coefficient between the applied nitrogen
dose and grain yield per plant. The canopy cover calculated through the TGI index is closely related to
the density and grain yield of corn; the higher the density, the higher the cover and yield for 47 and 79
DAS. Therefore, corn yield has a direct response to canopy cover and planting density. For the period
from 47 to 79 DAS, the canopy cover increased by an average of 15% with a standard deviation of 5%.
The correlation coefficient for canopy cover was similar for both flight dates, around 0.76. Plant density,
according to Figure 4c, showed a high correlation with a coefficient of 0.94; thus, at a higher density,
an increase in grain yield is expected. This means that plant density explained 94% of the yield.
Positive yield responses have been reported with an increase in planting density, a significant increase
of 4.5–6, moderate of 6–7.5, and low of 7.5 to 9 plants per square meter [14]. The different nitrogen
treatments applied to the experiment influenced grain yield per plant; as the nitrogen dose increases,
there is a positive gain in grain yield per plant, as observed in Figure 4d, with mean grain weight yield
per plant of 109.3, 134.0, 135.6, 137.1, and 138.3 g per plant for 140, 200, 260, 320, and 380 kg ha−1,
for the conditions of the experimental site and the variety used.

3.3. Vegetation Indices and Yield

For flights at 47 DAS and 79 DAS, six vegetation indices (NDVI, NDRE, WDRVI, EXG, TGI, VARI)
were generated; three multispectral indices and three indices in the visible spectrum (RGB). Figure 5
shows the correlation coefficient between the vegetation indices corresponding to the corn class and the
observed grain yield at 47 DAS. During the 47 DAS, the WDRVI index presented values ranging from
−0.45 to −0.63 with a correlation coefficient of 0.54, thus presenting the highest correlation at this crop
stage. Meanwhile, the NDRE index showed a low correlation of 0.23 with values ranging from 0.15 to
0.24. The NDVI ranged from 0.36 to 0.55. In the study carried out by Maresma et al. [72], they found
that the WDRVI better explained the corn grain yield with different nitrogen treatments; on the other
hand, the index is reported to be sensitive to the leaf area index (LAI) and the canopy cover [53].
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Figure 4. (a) Correlation between the canopy cover at 47 days after sowing (DAS) and yield;
(b) correlation between the canopy cover at 79 DAS and yield; (c) correlation between plant density
and yield; (d) correlation between the applied nitrogen dose and grain weight per plant.

At 72 DAS, the correlation coefficient of the vegetation indices with respect to the observed corn
grain yield increases slightly for all the indices, which is related to the increase in canopy cover and the
presence of more pixels in the corn class and fewer pixels in the soil category. In Figure 6, the NDVI,
NDRE, and WDRVI showed correlation coefficients of 0.68, 0.31, and 0.65, respectively, and the indices
values resulted in ranges of 0.86–0.92, 0.21–0.31, and −0.241 to 0.003, respectively. These increases in the
vegetation indices are related to the increase in biomass, leaf area index (LAI), leaf chlorophyll content
(LCC), canopy cover (CC), and yield [23,50,72–74]. The NDVI can explain 0.68 of the corn grain yield.
Figure 6 shows a proportional relation between an increase in grain yield and an increase in the NDVI
index; the same is true for the NDRE and WDRVI. Regarding the normalized EXG, TGI, and VARI
indices computed in the visible spectrum (RGB) for 47 DAS, Figure 5d,e show that EXG and TGI
presented low correlation coefficients, 0.22 and 0.23, respectively. The VARI in Figure 5f showed a better
fit regarding to these indices, with a correlation coefficient of 0.52. In Figure 6, the values of the indices
were found between 0.338–0.503, 0.335–0.501, and 0.02–0.19 for EXG, TGI, and VARI, respectively,
according to the sampled polygons. In Figure 6 at 79 DAS, 0.71 of the yield can be explained by the
EXG index, while VARI showed a value of 0.67. TGI showed a low correlation coefficient. The values of
the indices ranged as follows: 0.47–0.60, 0.51–0.55, and 0.10–0.18 for EXG, TGI, and VARI, respectively.
Some research works indicate that the VARI has a high correlation with grain yield, chlorophyll content,
and the fraction of photosynthetically active radiation intercepted [75,76].
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Figure 5. Correlation of vegetation indices and yield at 47 DAS. (a) Normalized difference red edge
index (NDRE); (b) normalized difference vegetation index (NDVI); (c) wide dynamic range vegetation
index (WDRVI); (d) excess green (ExG); (e) triangular greenness index (TGI); (f) visible atmospherically
resistant index (VARI).
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Figure 6. Correlation of vegetation indices and yield for 79 DAS for corn crops. (a) Normalized
difference red edge index (NDRE); (b) normalized difference vegetation index (NDVI); (c) wide
dynamic range vegetation index (WDRVI); (d) excess green (ExG); (e) triangular greenness index (TGI);
(f) visible atmospherically resistant index (VARI).

3.4. Training, Validation, and Testing of the Artificial Neural Network for Estimating Yield

A feed-forward neural network was created with 2 layers and 40 neurons, where a combination of
the normalized vegetation indices, plant density, and canopy cover, according to Table 4 for 47 DAS,
was entered as input parameters. Another neural network for 79 DAS was created to estimate the
corn grain yield of 76 sampled polygons obtained from all of the experimental treatments. The results
are shown in Table 4; in column one, we have the combination of input parameters: NDVI, NDRE,
WDRVI, EXG, TGI, VARI, canopy cover (C), and plant density (D). The correlation coefficient for
training, validation, testing, and total entered data is also presented, as well as the mean absolute error
(MAE) and the root mean square error (RMSE).
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Table 4. Training, validation, and testing of the artificial neural network with different input variables from vegetation indices, plant density, and canopy cover for the
estimation of corn grain yield at 47 and 79 days after sowing (DAS).

Input Variables
47 DAS 79 DAS

R
Training

R
Validation

R
Test

R
Total

MAE
(t ha−1)

RMSE
(t ha−1)

R
Training

R
Validation

R
Test

R
Total

MAE
(t ha−1)

RMSE
(t ha−1)

NDVI, NDRE, WDRVI, D, C 0.96 0.97 0.98 0.97 0.285 0.414 0.96 0.97 0.98 0.96 0.242 0.337
NDVI, NDRE, WDRVI, TGI, EXG, VARI, D, C 0.98 0.93 0.98 0.97 0.307 0.400 0.97 0.90 0.99 0.97 0.249 0.425

NDRE, D, C 0.97 0.99 0.95 0.97 0.256 0.365 0.97 0.88 0.97 0.96 0.278 0.437
EXG, D, C 0.97 0.98 0.99 0.98 0.252 0.354 0.95 0.97 0.99 0.96 0.280 0.431

TGI, EXG, VARI, D, C 0.97 0.94 0.96 0.96 0.331 0.470 0.92 0.97 0.96 0.94 0.292 0.562
C, D 0.97 0.93 0.95 0.96 0.298 0.441 0.96 0.92 0.95 0.96 0.298 0.441

NDVI, D, C 0.96 0.99 0.93 0.97 0.280 0.425 0.96 0.94 0.91 0.96 0.300 0.449
TGI, D, C 0.96 0.97 0.98 0.97 0.304 0.414 0.94 0.95 0.97 0.95 0.312 0.459

VARI, D, C 0.97 0.99 0.93 0.97 0.279 0.395 0.97 0.93 0.90 0.95 0.347 0.571
NDVI, NDRE, WDRVI, TGI, EXG, VARI, C 0.92 0.86 0.96 0.92 0.512 0.643 0.94 0.97 0.88 0.94 0.381 0.538

NDVI, NDRE, WDRVI, TGI, EXG, VARI 0.80 0.94 0.92 0.86 0.622 0.809 0.84 0.91 0.90 0.86 0.528 0.876
EXG, C 0.81 0.81 0.84 0.81 0.733 0.938 0.80 0.81 0.84 0.80 0.623 0.947

NDVI, NDRE, WDRVI 0.74 0.65 0.85 0.73 0.811 1.093 0.82 0.85 0.87 0.85 0.641 0.837
NDVI, C 0.83 0.82 0.90 0.84 0.597 0.883 0.80 0.86 0.88 0.82 0.649 0.884
VARI, C 0.86 0.94 0.51 0.85 0.604 0.836 0.86 0.79 0.92 0.86 0.653 0.917

NDVI, NDRE, WDRVI, C 0.81 0.93 0.83 0.84 0.618 0.874 0.87 0.87 0.62 0.84 0.672 0.856
WDRVI, C 0.87 0.62 0.95 0.87 0.584 0.784 0.82 0.64 0.56 0.79 0.689 0.971

TGI, EXG, VARI 0.69 0.64 0.82 0.67 0.908 1.189 0.83 0.72 0.72 0.80 0.720 0.951
TGI, EXG, VARI, C 0.86 0.90 0.87 0.86 0.629 0.817 0.78 0.93 0.71 0.78 0.746 1.015

WDRVI, D, C 0.99 0.99 0.99 0.99 0.028 0.125 0.96 0.99 0.89 0.96 0.209 0.449
NDRE, C 0.75 0.98 0.97 0.81 0.527 0.986 0.68 0.68 0.55 0.65 0.774 1.179

TGI, C 0.85 0.62 0.78 0.82 0.701 0.909 0.50 0.62 0.29 0.54 1.017 1.380

NDVI, normalized difference vegetation index; NDRE, normalized difference red edge index; WDRVI, wide dynamic range vegetation index; EXG, green extraction index; TGI, triangular
greenness index; VARI, visible atmospherically resistant index; C, canopy cover; D, plant density (plants * m−2); MAE, mean absolute error; RMSE, root mean square error.
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For 47 DAS, which is shown in Table 4 and Figure 7, the input parameters WDRVI, plant density,
and canopy cover showed the highest correlation coefficient and the smallest errors for the corn
grain yield estimation (R = 0.99, MAE = 0.028 t ha−1, RMSE = 0.125 t ha−1) when the total data
were used. Using the same parameters above, except plant density as input parameter in the neural
network, the correlation coefficient decreased, and the errors increased (R = 0.87, MAE = 0.584 t ha−1,
RMSE = 0.784 t ha−1), which indicates that plant density is an important parameter in estimating yield
for this flight date. A combination of six vegetation indices (NDVI, NDRE, WDRVI, EXG, TGI, VARI),
plant density, and canopy cover generates a model with high correlation in yield estimation (R = 0.97),
with a mean absolute error of 307 kg per hectare and a root mean square error of 400 kg per hectare.
Doing the same analysis, but without plant density, a lower correlation was obtained with the total data
(R = 0.92, MAE = 0.512 t ha−1 y RMSE = 0.643 t ha−1), having greater precision than the combination of
WDRVI and canopy cover. On the other hand, a combination of only six vegetation indices as input
parameters resulted in a correlation of 0.86 and an MAE of 0.622 t ha−1, with an RMSE of 0.809 t ha−1

when using the total data in yield estimation. This is good if we consider that there is a decrease
in computational cost in obtaining plant density and canopy cover. The EXG index, canopy cover,
and plant density showed a correlation coefficient of 0.98. In general, combinations that include
canopy cover presented high correlation coefficients (R ≥ 0.80), and incorporating plant density as an
input parameter increased the value of the correlation coefficient (R ≥ 0.95). The multispectral indices
without canopy cover and plant density as input parameters showed a good correlation (R = 0.73,
MAE = 0.811 t ha−1, RMSE = 1.093 t ha−1) in yield estimation. The RGB indices without canopy cover
and plant density showed a lower correlation than the multispectral indices, explaining 0.67 of the corn
grain yield. Plant density and canopy cover showed a high correlation (R = 0.96, MAE = 0.298 t ha−1,
RMSE = 0.441 t ha−1).

For 79 DAS, which is shown in Figure 8 and Table 4, the six vegetation indices, canopy cover,
and plant density presented the highest correlation coefficient and the smallest errors (R = 0.97,
MAE = 0.249 t ha−1, RMSE = 0.425 t ha−1) when the total data were used. The EXG index, canopy
cover, and plant density also showed a good correlation coefficient and small errors (R = 0.97,
MAE = 0.280 t ha−1, RMSE = 0.431 t ha−1) in yield estimation. Vegetation indices and canopy cover
increased the correlation coefficient with respect to 47 DAS, while the indices without canopy cover
and plant density maintained a similar correlation coefficient for all the data. The TGI index and
canopy cover showed the lowest correlation and biggest errors (R = 0.54, MAE = 1.017 t ha−1,
RMSE = 1.380 t ha−1) in the yield estimate. The multispectral vegetation indices and the visible
vegetation indices presented a high correlation in the estimation of corn grain yield at 47 and 79 DAS
for the different nitrogen doses tested, presenting slightly higher correlations at 47 DAS.
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Figure 7. Yields estimated by the neural network during 47 DAS for all observed yield data. (a) Yield
estimated with the NDVI, NDRE, WDRVI, EXG, TGI, and VARI vegetation indices, as well as planting
density (D) and canopy cover (C); (b) yield estimated with the NDVI, NDRE, WDRVI, EXG, TGI, VARI
vegetation indices, as well as C; (c) yield estimated with the NDVI, NDRE, WDRVI, EXG, TGI, and
VARI vegetation indices; (d) yield estimated with the NDVI, NDRE, and WDRVI vegetation indices;
(e) yield estimated with EXG, TGI, and VARI vegetation indices; (f) yield estimated with the WDRVI
vegetation index, as well as D and C.
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Figure 8. Yields estimated by the neural network during 79 DAS for all observed yield data. (a) Yield
estimated with the NDVI, NDRE, WDRVI, EXG, TGI, and VARI vegetation indices, as well as plant
density (D) and canopy cover (C); (b) yield estimated with the NDVI, NDRE, WDRVI, EXG, TGI,
and VARI vegetation indices, as well as C; (c) yield estimated with the NDVI, NDRE, WDRVI, EXG,
TGI, and VARI vegetation indices; (d) yield estimated with the NDVI, NDRE, and WDRVI vegetation
indices; (e) yield estimated with EXG, TGI, and VARI vegetation indices; (f) yield estimated with the
WDRVI vegetation index, as well as D and C.
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3.5. Variables’ Relative Importance in the Yield Estimation Using Garson’s Algorithm

The importance of the predictor variables (NDVI, NDRE, WDRVI, EXG, TGI, VARI, density,
and canopy cover) with respect to the predicted variable (yield) is shown in Figure 9; this was calculated
using Garson’s algorithm. The results show that the density is the most important predictor for the 47
and 79 DAS with a relative importance of 0.269 and 0.295, respectively; the WDRVI index (0.175) was
the second best predictor in importance for the 47 DAS; while the NDVI index (0.184) for the 79 DAS.
The VARI index was the least important predictor in the yield estimation for the 47 and 79 DAS with
0.058 and 0.031 relative importance, respectively.
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4. Conclusions

In the present study, the corn grain yield was estimated designing a neural network model based
on vegetation indices, canopy cover, and plant density. The relative importance of the predictor
variables was also analyzed. The information obtained through the digital processing of images taken
by unmanned aerial vehicles allowed to monitor the crop development. The correlation coefficient
between the plant density, obtained through the digital count of corn plants, and the corn grain
yield was 0.94; this variable was the one with the highest relative importance in the yield estimation
according to Garson’s algorithm. The canopy cover, digitally estimated by object-oriented classification
and using the TGI index, showed a correlation coefficient of 0.77 with respect to the corn grain yield,
while the relative importance of this variable in the yield estimation was 0.080 and 0.093 for the 47 and
79 DAS, respectively. The WDRVI, plant density, and canopy cover showed the highest correlation
coefficient and the smallest errors (R = 0.99, MAE = 0.028 t ha−1, RMSE = 0.125 t ha−1) in the corn
grain yield estimation at 47 DAS, with the WDRVI and the density being the variables with the
highest relative importance for this crop development date. For the 79 DAS flight, the combination of
the NDVI, NDRE, WDRVI, EXG, TGI, and VARI indices, as well as plant density and canopy cover,
generated the highest correlation coefficient and the smallest errors (R = 0.97, MAE = 0.249 t ha−1,
RMSE = 0.425 t ha−1) in the corn grain yield estimation, with the density and the NDVI being the
variables with the highest relative importance with values of 0.295 and 0.184, respectively. However,
the WDRVI, plant density, and canopy cover estimated the corn grain yield with acceptable precision
(R = 0.96, MAE = 0.209 t ha−1, RMSE = 0.449 t ha−1). The generated neural network models provided a
high correlation coefficient between the estimated and the observed corn grain yield; it also showed
acceptable errors in the yield estimation. The spectral information registered through remote sensors
mounted on unmanned aerial vehicles and its processing in vegetation indices, canopy cover, and plant
density allow the characterization and estimation of corn grain yield. Such information is very useful
for decision-making and agricultural activities planning.

At the time of establishing agricultural crops, different techniques, tools, and management are
used during the crop development, so it is desirable to carry out future trials for different climates,
soils, management, and varieties to have a broader database and with greater parameters to be used in
the modeling of crop yields through the use of neural networks.
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