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Abstract: Limited reports exist on the relationships between regulation of oxygen homeostasis and
circadian clock genes in type 2 diabetes. We examined whether the expression of Hypoxia-Inducible
Factor-1« (HIF-1«) and HIF-2« relates to changes in the expression of clock genes (Period homolog
proteins (PER)1, PER2, PER3, Retinoid-related orphan receptor alpha (RORA), Aryl hydrocarbon
receptor nuclear translocator-like protein 1 (ARNTL), Circadian locomotor output cycles kaput
(CLOCK), and Cryptochrome proteins (CRY) 1 and CRY2) in patients with type 2 diabetes. A total of
129 subjects were evaluated in this cross-sectional study (48% with diabetes). The gene expression
was measured by polymerase chain reaction. The lactate and pyruvate levels were used as surrogate
of the hypoxia induced anaerobic glycolysis activity. Patients with diabetes showed an increased
plasma concentration of both lactate (2102.1 + 688.2 vs. 1730.4 + 694.4 uM/L, p = 0.013) and pyruvate
(61.9 £ 25.6 vs. 50.3 £ 23.1 uM/L, p = 0.026) in comparison to controls. However, this finding was
accompanied by a blunted HIF-1o expression (1.1 (0.2 to 5.0) vs. 1.7 (0.4 to 9.2) arbitrary units (AU),
p < 0.001). Patients with diabetes also showed a significant reduction of all assessed clock genes’
expression. Univariate analysis showed that HIF-1x and almost all clock genes were significantly and
negatively correlated with HbAlc concentration. In addition, positive correlations between HIF-1«
and the clock genes were observed. The stepwise multivariate regression analysis showed that HbAlc
and clock genes independently predicted the expression of HIF-1a. Type 2 diabetes modifies the
expression of HIF-1a and clock genes, which correlates with the degree of metabolic control.
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1. Introduction

In recent years, increasing evidence supports the contribution of type 2 diabetes to the development
of sleep breathing disorders [1,2]. Thus, patients with type 2 diabetes experience higher rates of
microarousals and an increased sympathetic nerve activity during sleep in comparison to control
subjects, together with sleep quality reduction and excessive daytime sleepiness [3,4]. But more
important, type 2 diabetes appears as an independent risk factor for severe nocturnal hypoxia [5].
In healthy subjects, hypoxic conditions trigger Hypoxia-Inducible Factor (HIF)-1 gene activation to
stimulate angiogenesis and regulate cells to an anaerobic metabolism [6]. This major regulator of
oxygen homeostasis is a heterodimer transcription factor that combines a constitutively expressed
-subunit with an oxygen-regulated o-subunit [7]. There are two closely related nonredundant HIF-«
subunits (HIF-1 and HIF-2¢, the last also called Endothelial PAS Domain Protein 1 or EPAS1) with
capacity to activate hypoxia response elements under hypoxia conditions. However, tissues from
humans and animals with type 2 diabetes experience an altered cellular response to hypoxia that
reduces the relative expression of HIF-1«, modifies glycolytic flux, and affects insulin secretion [8,9].

Our circadian clock, a transcriptional and translational self-regulating feedback loop, is in the
suprachiasmatic nucleus. It works as a pacemaker that receives photic information conferring a 24-h
structure on processes at all levels, from behavior to gene expression [10]. In fact, clock genes participate
in important cellular processes such as cell proliferation or apoptosis in a wide variety of peripheral
tissues such as muscle, adipose tissue, liver, and pancreas [11,12]. Although less well-characterized in
humans than in rodents, there is clear evidence that metabolic pathways follow circadian rhythms,
including glucose and lipid metabolism, energy expenditure, fasting and appetite [13,14]. In this way,
the endocrine pancreas has an intrinsic self-sustained clock that controls not only the secretion and
signaling of insulin and glucose uptake but also the proliferation and 3 cells growth [15]. Therefore,
changes in the circadian rhythm derived from our lifestyle, such as nighttime work and meals, have
also been associated with an increased incidence of metabolic disorders including insulin resistance,
type 2 diabetes and excess body weight [16,17].

Until now, there have been limited reports on the relationships between regulation of oxygen
homeostasis and circadian clock genes in type 2 diabetes [18,19]. To further increase our knowledge in
this emerging field, we have designed a study to examine whether the expression of HIF-« subunits
(HIF-1x and HIF-2«x) is connected with changes in the expression of eight core circadian clock genes
according to the presence of type 2 diabetes.

2. Material and Methods

2.1. Statement on Ethics

The human ethics committee of the Arnau de Vilanova University Hospital approved the study
(CEIC-1516, 2 June 2016), which was steered according to the ethical guidelines of the Helsinki
Declaration. Informed written consent was obtained from all individual participants included in
the study.

2.2. Design of the Study and Description of the Study Population

The study examined patients of Caucasian origin from March 2018 to October 2018 attending to
the outpatient Endocrinology Clinic. Patients that fulfilled the following inclusion criteria were invited
to participate in the study: type 2 diabetes with at least 5 years of known duration, age between 18 and
70 years, no medical history of lung disease and/or heart failure, a body mass index (BMI) of less than
40 kg/m?, and a nighttime sleep pattern of at least 6 h. Among the 243 patients who met the inclusion
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criteria, we excluded 114 for the following reasons: unwillingness to participate in the study (n = 47),
treatment with continuous positive airway pressure (CPAP, n = 22), active malignancy or malignancy
diagnosed within the previous five years (1 = 14), autoimmune diabetes including type 1 diabetes and
latent autoimmune diabetes in adult (n = 12), treatment with drugs with activity on the central nervous
system (e.g., hypnotics, antidepressants, sedatives, psycholeptics, anxiolytics; n = 9), history of alcohol
or caffeine abuse (n = 5), work night shifts (n = 4), and neuromuscular diseases (1 = 1). No pregnant or
lactating women were included in the study.

2.3. Gene expression by Real-Time Quantitative PCR.

After patients fasted overnight for 12 h (last meal before 21 h), venous blood was collected
from the antecubital vein. Samples were separated by centrifugation (2000x g at 4 °C for 20 min)
and peripheral blood mononuclear cells were stored until analysis. One microgram of ribonucleic
acid (RNA) was transcribed to complementary deoxyribonucleic acid (DNA) with random primers
using deoxynucleotyde (dNTP) Mix (100 mM), MultiScribe™ Reverse Transcriptase (50 U/uL)
(Applied Biosystems, Foster City, CA, USA) and RNase Inhibitor using High-Capacity cDNA Reverse
Transcription Kit with RNase Inhibitor. Thermal Cycler Conditions were as follows: 25 °C for 10 min,
37 °C for 120 min, 85 °C for 5 min, and 4 °C o according to the manufacturer’s protocol (Cat.No.
4374967 Applied Biosystems, Foster City, CA, USA). GeneAmp® PCR System 9700 Thermal Cycler by
Applied Biosystems was used (Applied Biosystems, Foster City, CA, USA).

Quantitative gene expression for HIF-1x, HIF-2x, Period homolog proteins (PER)1, PER2, PER3,
Retinoid-related orphan receptor alpha (RORA), Aryl hydrocarbon receptor nuclear translocator-like
protein 1 (ARNTL, also called Brain and muscle ARNT-like protein-1 or BMALL1), Circadian locomotor
output cycles kaput (CLOCK), and Cryptochrome proteins (CRY)1 and CRY2 genes were evaluated by
qPCR on a 7900HT Fast Real-Time PCR System using the TagMan Gene Expression Assay (Applied
Biosystems) based on TagMan® Assays QPCR Guarantee Program (Applied Biosystems, Foster City,
CA, USA) [20] The next Tagman probes were used: Hs00153153_m1, Hs01026149_m1, Hs00242988_m1,
Hs00256143_m1, Hs00213466_m1, Hs00536545_m1, Hs00154147_m1, Hs00231857_m1, Hs00172734_m1
and Hs00323654_m1, respectively. Results were calculated using the comparative Ct method (2744Ct),
normalized to the expression of the reference gene 18S (Hs 03928985_g1) and expressed relative to
a calibrator (a mix of samples). TagqMan™ Fast Advanced (ref 4444557 Applied Biosystems, Foster
City, CA, USA) was used. This master mix employs Applied Biosystems™ AmpliTaq™ Fast DNA
Polymerase (Applied Biosystems, Foster City, CA, USA), which has been engineered for enhanced
stability. Protocol used in 7900HT Fast Real-Time PCR System was as follows: 50 °C for 2 min, 95 °C
for 10 min, and 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Thermo Fisher Scientific supports MIQE
guidelines provide all information necessary to ensure MIQE compliance when publishing the results
of real-time PCR experiments [21]. All assays are inventoried assays and the assay probe spans an
exon junction. For 185 (Hs 03928985_g1) assay design, the assay primers and probes lie within a single
exon. This assay will detect gDNA.

2.4. Circulating Lactate and Pyruvate Measurement

The activity of anaerobic glycolysis was estimated indirectly through the measurement of
circulating plasma levels of lactate and pyruvate. Plasma lactate levels were measured using the
EnzyFluoTM L-Lactate Assay kit (BioAssay Systems, Hayward, CA, USA). The assay sensitivity was
1 umol/L and linearity up to 50 umol/L. Plasma pyruvate levels were measured using the EnzyChrom
TM Pyruvate Assay kit (BioAssay Systems, Hayward, CA, USA). The linear detection range was 0.2 to
50 pmol/L.

2.5. Statistical Analysis

A normal distribution of the variables was established using the Kolmogorov-Smirnov test,
and data were expressed as median (interquartile range), mean + standard deviation or percentage.
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The x? test was used to compare categorical variables, and Student’s t-test and Mann-Whitney
test were used to compare non categorical data according to their distribution. The relationship
between the variables was examined by Pearson’s and Spearman’s correlation tests. A stepwise
multivariate regression analysis was performed to explore the variables independently related to
HIF-1cc expression. Variables significantly associated with its measurement in the bivariate analysis
(i-e., glycated hemoglobin (HbAlc) values), together with clinically relevant variables with a potential
impact on sleep breathing (i.e., gender, body mass index (BMI), age) were included in the analysis
(model 1). Later, clock genes expression was also included (model 2). In a parallel way, 8 more stepwise
multivariate regression analyses were done to investigate the variables independently linked with the
different clock genes expression. All p values were based on a two-sided test of statistical significance
(two-tailed, 95% confidence interval). Significance was accepted at the level of p < 0.05. Statistical
analyses were performed using the SPSS statistical package for the Social Sciences software (IBM SPSS,
Statistics for Windows, Version 20.0. Armonk, NY, USA).

3. Results

The main clinical and anthropometric data of the 129 patients that were finally included in the
study are displayed in Table 1. Although both groups displayed a similar age, patients with type 2
diabetes showed a higher prevalence of women, a higher degree of obesity, a more atherogenic lipid
profile and a higher prevalence of hypertension than controls.

Table 1. Clinical and anthropometric data of the study population according to the presence of type

2 diabetes.
Type 2 Diabetes =~ Non-Type 2 Diabetes p
n 62 67 -
Age (Years) 57.3 +£10.0 58.8 +9.4 0.381
Women, n (%) 32 (51.6) 17 (25.3) 0.003
BMI (Kg/m?) 33.6 + 6.2 28.6 + 6.6 <0.001
Hbalc (%) 84+18 54 +0.3 <0.001
Hbalc (mmol/mol) 68.9 £19.8 35.6 £3.7 <0.001
Fasting Glucose (mmol/L) 8.6 +3.1 49+13 <0.001
Total Cholesterol (mmol/L) 45.7 £ 10.6 53.5+15.8 0.173
HDL Cholesterol (mmol/L) 11.7 £ 3.1 148 £5.2 0.018
LDL Cholesterol (mmol/L) 26.8 £9.1 353+75 0.426
Triglycerides (mmol/L) 21+1.2 1.3+0.7 0.006
Hypertension, n (%) 50 (80.6) 13 (24.0) <0.001
Smoking Habit, n (%) 23 (37.0) 22 (32.8) 0.348
Cardiovascular Disease, 1 (%) 1(0.01) 2 (0.002) 0.518
Retinopathy, 1 (%) 16 (25.8) - <0.001
Nephropathy, 11 (%) 20 (32.2) - <0.001
Lactate (uM/L) 2102.1 + 688.2 17304 + 694.4 0.013
Pyruvate (uM/L) 61.9 = 25.6 50.3 + 23.1 0.026

Data are means + SD, median (interquartile range) or n (percentage). BMI: body mass index; HbAlc: glycated
hemoglobin; HDL: high-density lipoprotein; LDL: low-density lipoprotein.

Patients with type 2 diabetes showed an increased plasma concentration of both lactate
(2102.1 + 688.2 vs. 1730.4 + 694.4 uM/L, p = 0.013) and pyruvate (61.9 + 25.6 vs. 50.3 + 23.1 uM/L,
p = 0.026) in comparison to the control group. However, subjects with type 2 diabetes showed a
significantly reduced HIF-1oc (1.1 (0.8 to 1.7) vs. 1.7 (1.1 to 2.8) arbitrary units (AU), p < 0.001) expression
compared to the control group, without differences in HIF-2« expression (0.9 (0.6 to 1.2) vs. 1.0 (0.7 to
1.5) AU, p = 0.096) (Figure 1).Patients with type 2 diabetes also exhibited a significant reduction in the
expression of all assessed clock genes: PER1 (1.0 (0.7 to 1.9) vs. 1.7 (0.9 to 3.4) AU, p = 0.003), PER2 (1.1
(0.7 to 1.6) vs. 1.6 (1.2 to 2.7) AU, p < 0.001), PER3 (0.9 (0.6 to 1.2) vs. 1.1 (0.8 to 1.7) AU, p = 0.004),
RORA (1.1 (0.7 to 1.6) vs. 1.3 (0.9 to 3.0) AU, p = 0.032), ARNTL (1.1 (0.7 to 1.5) vs. 1.2 (0.9 to 1.9) AU,
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p = 0.013), CLOCK (1.1 (0.8 to 1.5) vs. 1.5 (1.1 to 2.3) AU, p = 0.001), CRY1 (1.0 (0.8 to 1.3) vs. 1.2 (0.9 to
1.8) AU, p = 0.003) and CRY2 (1.1 (0.8 to 1.3) vs. 1.2 (0.9 to 1.8) AU, p = 0.018) (Figure 2).
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Figure 1. Relative HIF-1oc and HIF-2x gene expression based on the presence of type 2 diabetes. Data
are presented as median and interquartile. *** p < 0.001; ns = non-significant. HIF: Hypoxia-Inducible
Factor; T2D: type 2 diabetes; mRNA: messenger ribonucleic acid.
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Figure 2. Relative gene expression of the clock genes evaluated in the study according to the presence of
type 2 diabetes. Data are presented as median and interquartile. *** p < 0.001; ** p < 0.01; * p < 0.05. PER:
Period Homolog Proteins; RORA: Retinoid-related Orphan Receptor Alpha; ARNTL: Aryl hydrocarbon
Receptor Nuclear Translocator-Like protein-1; CLOCK: Circadian Locomotor Output Cycles Kaput;
CRY: Cryptochrome proteins; T2D: type 2 diabetes.

In the entire population, univariate analysis showed that expression of HIF-1« but no HIF-2«,
as well as clock genes such as PER1, PER2, PER3, RORA, ARNTL, CLOCK, CRY1 and CRY2 were
significantly and negatively correlated with HbAlc concentration (Table 2). In addition, positive
correlations between HIF-1x gene expression and all the assessed clock genes were also observed
(Table 2).

Finally, the stepwise multivariate regression analysis performed in the entire population showed
that HbAlc (but not age, gender, or BMI) independently predicted the gene expression of HIF-1x
(R? = 0.114) (Table 3). In addition, when clock genes were introduced in the multivariate regression
analysis (model 2), PER1, PER2, PER3, CLOCK and CRY2 gene expression (but no age, gender, BMI or
HbAc) independently predicted the expression of HIF-1a (R? = 0.924) (Table 3).
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Table 2. Linear correlations between the expression of the 8 clock genes assessed in our study and
glycated hemoglobin and HIF-1«x gene expression.

HbA1lc HIF-1x

r p r p

HIF-1«a -0.358 <0.001 - -
HIF-2ac  —0.168 0.058 0.615 < 0.001
PER1 -0.313 <0.001 0.833 <0.001
PER2 —0.438 <0.001 0.868 <0.001
PER3 -0.328 <0.001 0.657 <0.001
RORA —0.256 0.003 0.758 <0.001
ARNTL  -0.293 0.001 0.776 <0.001
CLOCK -0.327 <0.001 0.814 <0.001
CRY1 —-0.301 0.001 0.834 <0.001
CRY2 —-0.279 0.001 0.817  <0.001

HIF: Hypoxia-Inducible Factor; PER: period homolog proteins; RORA: Retinoid-related orphan receptor alpha;

ARNTL: Aryl hydrocarbon receptor nuclear translocator-like protein-1; CLOCK: Circadian locomotor output cycles
kaput; CRY: Cryptochrome proteins; HbAlc: glycated hemoglobin.

Table 3. Variables independently related to HIF-1x gene expression in the multiple regression
analysis (stepwise method) without (model 1) or with (model 2) the inclusion of clock genes as
independent variables.

Model 1 B Beta 95% CI P
Hbalc (%) -0.226  —0.323 (-0.344 to —-0.109)  <0.001
Gender (Female/Male) 0.069 - 0.433
BMI (Kg/m?) 0.041 - 0.635
Age (Years) 0.013 - 0.878
Constant - 3.363 (2.523 to 4.204) <0.001

R? =0.104

Model 2 B Beta 95% CI P
PER1 0.519 0.307 (0.262 to 0.351) <0.001
PER2 0.254 0.345 (0.125 to 0.566) 0.002
CRY2 0.227 0.540 (0.198 to 0.882) 0.002
CLOCK 0.192 0.328 (0.075 to 0.580) 0.011
PER3 —-0.160  —0.363 (—0.581 to —0.145) 0.001
Gender (Female/Male) 0.051 - 0.058
RORA -0.075 - 0.221
Hbalc (%) —-0.033 - 0.245
CRY1 —0.084 - 0.372
BMI (Kg/m?) -0.008 - 0.750
ARNTL -0.017 - 0.823
Age (Years) 0.000 - 1.000
Constant - —0.223 (—0.429 to —0.017) 0.034

R? =0.920

f3: standardized coefficient; Beta: non-standardized coefficient; HbAlc: glycated hemoglobin; BMI: body mass index;
CI: confidence interval; HIF: Hypoxia-Inducible Factor; PER: period homolog proteins; RORA: Retinoid-related
orphan receptor alpha; ARNTL: Aryl hydrocarbon receptor nuclear translocator-like protein-1; CLOCK: Circadian
locomotor output cycles kaput; CRY: Cryptochrome proteins.

In addition, the stepwise multivariate regression analysis showed that HIF-1« relative expression
(but not age, gender, BMI or Hbalc) independently predicted the expression of PER1 (R? = 0.784;
p = <0.001), PER2 (R? = 0.739; p = <0.001), RORA (R? = 0.622; p = <0.001), ARNTL (R? = 0.569;
p = <0.001), CLOCK (R? = 0.551; p = <0.001), CRY (R? = 0.703; p = <0.001) and CRY2 (R? = 0.732;
p = <0.001).
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4. Discussion

To the best of our knowledge, this is the first study to offer clinical evidence that HIF-1a and
a wide range of clock genes expression are strongly associated in humans. Although there is still a
wide gap of knowledge about the mechanisms that support this relationship, the molecular interaction
between hypoxia-inducible factors and circadian clock transcription has been previously described in
animal models and in vivo studies [22]. In this regard, in mice, hypoxia upregulates protein levels of
PER1 and CLOCK genes decreasing its proteolytic degradation through a protein-protein interaction
between HIF-1a and PER1 [23]. Similarly, HIF-1x cooperates with BMAL1/MOP3 and CLOCK to
regulate gene expression in a cell line of mouse neuroblastoma [24]. On the other hand, the negative
circadian regulator CRY1, but not CRY2, reduces HIF-1c half-life and affects the hypoxia response in
mice [25]. Our data reinforce the hypothesis that a crosstalk between hypoxia and circadian signaling
pathways exist in a HIF-1oc dependent fashion [26]. Reciprocally, PER2 and CRY1 are capable to
periodically inhibit the transcriptional upregulation of vascular endothelial growth factor during
hypoxia, contributing to the daytime circadian fluctuation of anaerobic glycolysis in muscle mice [27,28].
This data also explains the daily rhythms in tissue oxygenation detected in the blood and tissues from
rodents [29]. Altogether, our results also support the existence of a hitherto little-known interconnection
that affects metabolic function in stressed conditions such as continuous nocturnal hypoxia.

The impaired HIF-1o gene expression in patients with type 2 diabetes in comparison with controls
merits further attention. Previous experimental data has revealed a compromised cellular response to
hypoxia in type 2 diabetes [8,9]. In our study, the decrease in HIF-1x gene expression observed in type
2 diabetes was exacerbated in those patients with worse metabolic control. This data is relevant for
those who take care of patients with type 2 diabetes, as diabetes has been established as an independent
risk factor for higher rates of sleep apnea leading to nocturnal hypoxemia [3,4]. Although mechanisms
contributing to this negative effect are unknown, it is palpable that the proper operating oxygen-sensing
pathways are critical for adaptation to variations in oxygen availability. Therefore, our results may
suggest the existence of a vicious circle in which poor metabolic control and nocturnal sleep breathing
disorders collaborate to promote hypoxic dependent complications in type 2 diabetes (Figure 3).

Impaired Increased
metabolic nocturnal

control hypoxia

TYPE 2 DIABETES

Figure 3. Proposed vicious circle in the relation between nocturnal sleep breathing disorders and
disruption of circadian rhythmicity in patients with type 2 diabetes.

Type 2 diabetes was also associated with a significant reduction in the expression of a great variety
of clock genes. Our results are in concordance with those published by Ando H et al. in a smaller group
of patients, in which mRNA expression pattern of BMAL1, PER1, PER2 and PER3 were significantly
lower in patients with diabetes than in healthy controls [30]. In this study, the transcript expression of
the same genes was inversely correlated with HbA1lc levels [30]. It is well known, from the study of
work rotating night shifts, that the disruption of circadian rhythmicity is strongly associated with the
appearance of metabolic alterations such as obesity, hypertension, and metabolic syndrome [31,32].
Whether these metabolic disruptions are perpetuated by chronic hyperglycemia or sleep breathing
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disorders remains to be elucidated. Similarly, the combined downregulation in the expressions of
CRY1 and PER3 at midnight predicted the severity of the disease in patients with obstructive sleep
apnea/hypopnea syndrome [18]. Additionally, in patients with type 2 diabetes, those with the poorest
sleep quality showed a dampened mRNA expression of clock genes such as BMAL1 and PER1 [33].
Therefore, we propose that the disorder in nocturnal breathing that characterize the sleep of patients
with type 2 diabetes could alter the circadian rhythm (Figure 3). It is also important to emphasize
that these alterations are closely associated with the degree of metabolic control, leading to consider
the potential effect that the improvement of glycemic control can exert on the recovery expression of
HIF-1x and clock genes. Similarly, and following this bidirectional pattern, it is plausible to think that
the treatment of nocturnal hypoxemia with CPAP can partially restore the impaired hypoxic pathways
and improve the clock genes transcription. However, Moreira et al. failed to find improvement in
CLOCK expression with CPAP treatment in 17 men with severe SAHOS without type 2 diabetes [34].
This result could suggest that other mechanisms beyond hypoxia and hyperglycemia are involved in
the complex regulation of the clock gene system.

There are specific constraints that should be considered in evaluating the results of our study.
First, we have not measured the level of HIF protein. Therefore, our results showing the activation
of HIF depending on the level of mRNA should be taken with caution since the expression of HIF1
gene does not necessarily coincide with its activation [35]. While a variety of feedback loops have been
defined to enhance and ameliorate HIF signaling, the overall direction of the effect and its magnitude
are difficult to confirm without knowing the final protein concentration. Second, this is a cross sectional
study whereby causality cannot be determined. Third, we evaluated a relatively small number of
individuals with type 2 diabetes which means that no definite outcomes for daily clinical practice can
be extrapolated to the general population. Fourth, we have not considered the role of antidiabetic
therapies in our study. Metformin, the most widely prescribed insulin-sensitizing agent in current
clinical use, reverses the inhibitory effect of 11mM glucose on clock genes as BMAL1, CLOCK and
PER2a in pancreatic alpha-cells [36]. Similarly, Barnea M et al. have shown that metformin enhances the
CLOCK: BMALI1 expression in liver and muscle from young normoweight mice without diabetes [37].
Therefore, larger studies with a longer follow-up are required to confirm and extend our results, as well
as to go deeper in the potential impact of different antidiabetic drugs. Finally, data related to physical
activity were not specifically included in the analysis of the results. Since endurance training in skeletal
muscle attenuates HIF-1x response to exercise [38] it could influence our results. However, the high
proportion of sedentarism in patients included in the study makes this possibility negligible

5. Conclusions

In conclusion, this study demonstrates that type 2 diabetes alters the gene expression of HIF-1x
and clock genes, which correlates with the degree of metabolic control. Further studies to better
understand the link between oxygen homeostasis and chronobiological pattern may provide new
insights into the involved mechanisms and innovative therapeutic strategies for patients with type
2 diabetes.
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