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Abstract: Ph+ chronic myeloid leukemia (CML) is a clonal myeloproliferative disease whose clinical
course is characterized by progression disease from the early chronic phase (CP) to the fatal blastic
phase (BP). This programmed course is closely related to the translocation t(9;22)(q22;q11) and the
resulting BCR-ABL1 fusion protein (p210) that drives the leukemic transformation of hematopoietic
stem cells. Therefore, the cure of CML can only pass through the abrogation of the Ph+ clone.
Allogeneic stem cell transplantation (allo-SCT) and interferon-alpha (IFNα) have been proven to
reduce the Ph+ clone in a limited proportion of CML population and this translated in a lower
rate of progression to BP and in a significant prolongation of survival. Tyrosine-kinase inhibitors
(TKIs), lastly introduced in 2000, by preventing the disease blastic transformation and significantly
prolonging the survival in up to 90% of the patient population, radically changed the fate of CML.
The current therapy with TKIs induces a chronicization of the disease but several criticisms still
persist, and the most relevant one is the sustainability of long-term therapy with TKIs in terms of
compliance, toxicity and costs. The perspectives concern the optimization of therapy according to
the age, the risk of disease, the potency and the safety profiles of the TKIs. The prolongation of
survival is the most important end point which should be guaranteed to all patients. The treatment
free remission (TFR) is the new goal that we would like to give to an increasing number of patients.
The cure remains the main objective of CML therapy.

Keywords: prognosis; therapy guidelines; tyrosine kinase inhibitor; MRD monitoring; quantitative
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Philadelphia-positive (Ph+) chronic myeloid leukemia (CML) is a clonal myeloproliferative
disease marked by chromosome translocation t(9;22) (q22;q11) that leads to the BCR-ABL1 fusion
gene. The resulting BCR-ABL1 fusion protein (p210), is a constitutively activated tyrosine kinase that
drives the leukemic transformation of hematopoietic stem cells, and induces the progression of the
disease from the early chronic phase (CP) to the blastic phase (BP) which fatally close the course of the
disease [1–4].

Over the past century, the treatment of CML has moved from observation alone to chemotherapy
(mainly busulfan and hydroxurea) and from allogeneic stem cell transplantation (allo-SCT) or
interferon-alpha (IFNα) to tyrosine-kinase inhibitors (TKIs), lastly introduced in 2000 [5].
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The main teaching of the countless clinical and biological studies conducted over all these years is
that the cure of CML can only pass through the abrogation of the Ph+ clone, which can be detected and
monitored by cytogenetics (chromosome banding analysis (CBA), or fluorescent in-situ hybridization
(FISH)) or by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) [6–8].

At the turn between the 1980s and 1990s, allo-SCT and IFNα proved to reduce the Ph+ clone
down to achievement of complete cytogenetic response (CCyR) which means the disappearance of Ph+

metaphases by CBA, although this occurred in a minority of patients. This translated to a lower rate of
progression to BP and in a significant prolongation of survival. However, the benefit was limited to no
more than 10% of young (<50 years) CML patients suitable to be allo-transplanted in CP and to less
than 10%–15% of IFN-treated patients achieving CCyR [5,6,9,10].

The evidence of a potential eradication of the Ph+ clone was a great success, but the overall benefit
for CML patients was limited. However, by demonstrating the effectiveness of the targeting BCR-ABL1
clone, the route towards the cure of the disease had been traced.

In the same years, many studies on CML prognosis were done. They were equally relevant and
have had the merit of teaching us other important things.

The risk of disease progression is not the same in all newly diagnosed patients and intensification
of therapy through transplantation or testing new therapeutic approaches had to be primarily reserved
for patients with high-risk disease or negative prognostic factors, able to predict earlier blastic
transformation [11].

The Sokal score, generated in the 1980s, still represents the reference for defining the risk of
disease progression at diagnosis. The Sokal score has been paired, but not replaced, by the Euro score
generated and adapted for patients candidated to receive IFNα therapy and, more recently, by the
EUTOS score for patients receiving TKIs. Although it is based on simple clinical and hematologic
parameters (age, spleen size, platelet and blast cells count), it is still used as it remains a fundamental
tool for planning the therapeutic strategy [12–15].

In recent decades, a high number of biological studies have been done to elucidate the molecular
mechanisms of CML pathogenesis and progression [16–18]. The results of these studies were
fundamental to understand how and why the p210 tyrosine kinase protein is able to drive the leukemic
transformation of Ph+ hematopoietic progenitors by altering cell proliferation, apoptosis, adhesion
and inducing genomic instability [1,2]. Now, we can say that these studies paved the way for the
current target therapy [19].

The advent of TKIs in the 2000s radically changed the fate of CML, since imatinib (IM), before,
and nilotinib (NIL), dasatinib (DAS) or bosutinib (BOS), after, showed to be able to prevent the disease
blastic transformation and significantly prolong the survival [20–23]. Achieving such a goal in up to
90% of the patient population treated first line with TKIs could mean that cure of CML have been
finally achieved, but this is not completely true.

Several criticisms persist, and the most relevant one is the sustainability of long-term therapy
with TKIs in terms of compliance, toxicity and costs [19,24].

Indeed, to prolong survival, all patients should take any TKI, at the standard dose, daily and
lifelong. The adherence and tolerance to chronic treatment, the onset of late and unexpected side
effects, the worsening of quality of life, and the high costs of therapy are still open questions.

Since the median age of CML is 60 years, approximately 50% of patients are younger and have a
life expectancy of 25–30 years [19]. Thus, can TKI treatment be continued for such a long period of
time? The other 50% of CML patients are older than 60 years [25]. Considering that tolerance and
adherence to TKI therapy progressively decrease by time and by age, do low compliance and treatment
adherence compromise therapy effectiveness in the elderly?

These questions are clinically and socially relevant, because it is known that the incidence of CML
progresses with age and, in the next years, the prevalence of CML in the elderly population is expected
to increase two- or three-fold. Therefore, for different reasons, it is clear that a long-term therapy with
TKIs is not easily sustainable for the great majority of patients.
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Furthermore, considering that the cost of TKI therapy/year may range from 10,000 to 42,000 Euros,
we can easily understand the huge amount of money that the National Healthcare Systems have to
sustain for many years [24].

Unfortunately, neither IM nor the more potent second-generation TKIs (e.g., NIL or DAS) are able
to eradicate the Ph+ leukemic stem cells (Ph+ LSC) and allow a “biological cure” of the disease [26–28].
However, the observation that a limited number of patients can achieve a level of molecular minimal
residual disease so low that the treatment can successfully be discontinued has opened to the possibility
of obtaining an “operational cure”, and considering the treatment free remission (TFR) as a goal of
CML therapy [29].

The most recent recommendations on the CML management highlight to achieve the treatment
discontinuation (TD) and maintain TFR but, at the same time, they do not clarify if TFR is a cost-effective
strategy and right for all CML patients [5].

In several trials, hundreds of patients aged up to 75 years receiving IM, NIL or DAS have been
selected for TD after achieving a deep (≥MR4.0, defined as 4-log decrease in BCR-ABL1 transcript levels
from the standardized baseline) and durable (2 or 3 years) molecular response (DMR). Out of these,
40%–50% maintain TFR, while the remaining 50%–60% of patients losing major molecular response
(MMR or MR3.0) can safely regain the previous DMR by reassuming the daily therapy, without any
risk of disease progression [30].

However, the current TKI discontinuation strategies are still too far from being considered optimal
because the definitions of “deep” and “durable” MR are uncertain and inaccurate and the selection of
patients is thus not reliable.

Assessing DMR through the molecular measurement of BCR-ABL1 transcript levels in the
peripheral blood by RT-qPCR is necessary for addressing the patient to TKI discontinuation but,
unexpectedly, a tight correlation between the depth and duration of DMR, and the rate of TFR
maintenance does not exist. The reason might be sought in the intrinsic limitations of RT-qPCR,
mainly consisting of lack of precision in the quantification of the low levels of the target (BCR-ABL1
transcript) [31,32]. Thus, the great majority of patients who undergo the treatment discontinuation are
preferably selected among those with undetectable levels of BCR-ABL1 transcript by RT-qPCR [33,34].
Despite this restrictive selection, 50%–60% of patients with undetectable MR by RT-qPCR lose MMR
within the first year of discontinuation [30,35,36]. Therefore, the benefit of TD and TFR policy is
restricted to no more than 15%–25% of all CML patient population. This rate is quite similar to the
proportion of patients who have benefited from transplantation or IFNα in the past.

Even if no more than 50% of patients achieving a DMR (less than 25% of the overall CML
population) maintain the TFR after TKI discontinuation, this policy has become common clinical
practice during the last years [37–40].

At present, several trials are challenging a second TFR in those patients who failed the first one,
by using different and more potent TKIs, or experimental combinations including new drugs with
different mechanisms of action [41,42]. These exploratory studies aimed to get a second TFR suggest
that the first line TFR strategy may be very fascinating but largely bankrupt. Consequently, the great
majority of CML patients (>60%–70%), at present, do not have any valid alternative other than to
continue the standard TKI treatment, daily and lifelong.

Looking at the patients undergoing TKI discontinuation, there is a tendency to reserve the TFR
strategy for the youngers and to use the more potent 2nd generation TKIs first-line, in order to obtain
the DMR. However, the indications for the TFR strategy have been recently re-discussed and the
use of the second generation TKIs has been considered not cost-ineffective [43]. In light of the latter
considerations, pursuing the TFR strategy in all CML patients, regardless of age and type of TKI,
appears questionable. In almost all diseases, the age is one of the most important factors when care
must be provided and goals are often very different in the youngers and in the elderly. The reasons
why different age-related strategies are not considered in the case of CML need to be further discussed.
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Other strategies rather than TD have been investigated during the last years: this is the case of
intermittent TKI therapy. This strategy has been carried out in two Italian prospective multicenter
trials: the INTERIM phase II and the ongoing OPTkIMA phase III trials [44–46]. In the first study,
IM was given intermittently [44,45], one month on and one month off, in elderly (>65 years) patients
with long lasting (>2 years) MR3.0/MR4.0. In the second study, IM, NIL or DAS are being progressively
de-escalated in a randomized phase III trial (fixed arm: one month on and one month off versus
progressive arm: one month on and one month off for the 1st year, one month on and two months off

for the 2nd year, one month on and three months off for the 3rd year) [46].
The aim of these studies is to maintain at least the MMR (MR3.0) with a decreased TKI dose (50%

less or more), possibly reducing the long-term toxicity and improving the quality of life (QoL). The first
experience on the intermittent IM administration (INTERIM) showed that 60% of patients remain on
trial and in MMR (MR3.0) after 7 years of follow-up, with saved costs and toxicity [44].

Many physicians consider this approach a rearguard strategy but, since the large majority
(>60–70%) of CML patient are excluded from TFR, a policy based on the use of the minimal effective
dose to maintain at least the MMR should be considered a pragmatic and sustainable treatment option.

More recently, Clark et al. indicated that a 1-year de-escalation of treatment (IM 200 mg/day)
could be a useful strategy for a better selection of the candidates to the following TD [47]. This “clinical”
selection based on the maintenance of MR at the 12th month may be improved by monitoring strictly
the slope of the MR and by selecting for TD those patients with a MR slope showing a stability of
BCR-ABL1 transcript levels.

Despite all the strategies mentioned above, it is crucial to remember that the main goal in CML is
still to avoid potential progressions to advanced phases. Failure of second generation TKIs is a quite
common risky situation. A recent study showed that 13% of patients treated with second-generation
TKIs first line in clinical practice discontinue treatment. Similarly to data in second line, the most
common causes of failure are resistance and intolerance [48]. The last update of ELN recommendations
are in favor of the use of ponatinib in cases of resistance to second generation TKIs due to a presumably
higher response rate compare to bosutinib and other second generation TKIs [20]. When considering
treatment options in this situation, is it vital to take into consideration the probabilities of suffering
from potential severe side effects, in order to avoid them. The use of ponatinib in high cardiovascular
risk patients is a challenging situation. Ponatinib dose reductions in patients achieving response have
been related to less side effects. Nevertheless, at present, the best starting dose, or the benefits of
concomitant antiaggregants, remain uncertain [49]. New TKIs are being tested in this group of patients.
Asciminib is a new BCR-ABL1 inhibitor that differs from previous TKIs approved in CML in that
it does not bind to the ATP-binding site of the Kinase. Recent published data showed high rates of
patients achieving optimal responses, with a favourable safety profile in previous heavily pre-treated
populations [50]. Of interest, this compound is the first TKI that can be combined with “classical TKIs”,
which could be of interest in patients harboring different resistant mutations, as well as to prevent the
outgrowth of novel ones. Data from ongoing clinical trials will determine whether asciminib will be a
new treatment option to manage our patients.

In all patients who fail therapy, BCR-ABL1 kinase domain mutation profiling is recommended
since it may provide an important piece of information that complements safety considerations
in the therapeutic decision algorithm [51]. BCR-ABL1 kinase domain mutations are not the only
mechanism that may trigger TKI resistance but they are the only actionable one, since each first and
second-generation TKI is known to have a precise spectrum of resistant mutations—and ponatinib
might display reduced efficacy against some compound mutations [52]. A series of retrospective
studies and a recent large prospective study have shown that the use of next generation sequencing
(NGS) facilitates sensitive detection and quantitative assessment of mutations in patients with ’Failure’
and ’Warning’ responses [53–57]. NGS may identify and quantitate mutations in BCR-ABL1 transcripts
down to 1%–3% abundance and resolve the clonal architecture in the majority of cases harboring
multiple mutations, thus easily discriminating between compound mutations (two mutations in cis)
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and polyclonality (two mutations in trans) [58]. The ELN panel has incorporated the use of NGS in the
latest treatment recommendations [20].

What about the perspectives?
In the future, CML therapy will have to face the eradication of Ph+ LSC. At present, none of

the TKIs seems to be able to achieve this result, neither through a direct drug action nor through
a time-dependent mechanism sustained by continuous drug pressure and/or immune surveillance
effects leading to a progressive exhaustion of Ph+ LSC. Immunologic mechanisms are often invoked
but, at present, they remain hypothetical [59–61]. Some evidence on a specific role of lymphocyte sub
populations (NK) has been reported, but deeper studies of the immunologic mechanisms in CML
patients during TKI treatment should be addressed [62,63]. Combinations of TKIs with other drugs
having different mechanisms of action should be tested, even if no new effective molecules with this
potential are currently available and, in any case, the combinations tested “in vitro” must be safe
“in vivo”.

The current and the future CML therapy with TKIs would be really personalized and adapted to
the risk of the disease, the patients’ age, the TKIs’ potency and toxic profile, and the latency of the
molecular response.

Probably, proposing the TFR strategy to all patients by using any type of TKI is not recommendable.
As with the risk of disease, we believe that therapy and the goals of treatment should be different
and age-related. In the younger CML patients, it could be reasonable to pursue a TFR strategy by
employing upfront the more potent TKIs, aiming to quickly achieve a DMR for discontinuing the
treatment earlier. In the older patients, it could be reasonable to adopt a strategy of the minimal
effective dose to save toxicity and drug costs, and to improve the tolerance and QoL [64].

Having a precise and accurate methods for MR measurement is mandatory to better design the
future strategies, to optimize the CML therapy and to refine patient management, but it is difficult to
properly manage CML therapy when RT-qPCR provides results of MRD expressed as “undetectable
transcript” [32]. Digital PCR (dPCR) may overcome this intrinsic limit of RT-qPCR and is the only
feasible tool in the event of stopping TKIs for a better selection of CML patients eligible to treatment
discontinuation. By now, retrospective and prospective data [33,65–67] clearly confirm the high
sensitivity and accuracy [68–70] of dPCR for assessing the MRD in CML cases presenting undetectable
MRD by RT-qPCR and reinforce the evidences of dPCR capability in predicting TFR, after TKIs
discontinuation. The positive predictive value for dPCR ranges between 68 and 87% [33,66].

These considerations strongly support the usefulness of dPCR as the unique feasible alternative
to RT-qPCR to provide a robust, sensitive and accurate quantitation of BCR-ABL1 in routine clinical
practice. In the era of more potent TKIs, precision medicine and personalized treatment programs, it is
the time to introduce the dPCR in the management of the future CML therapy. Having an accurate
and precise method is essential if the eradication of the disease has to be measured. Additionally, as a
relatively simple and cost-effective approach allowing to obtain rapid results with no need of dedicated
bioinformatic skills, dPCR might in the future prove complementary to, or even compete with NGS,
at least for the detection of critical BCR-ABL1 mutations like the pan-resistant T315I.
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