
Journal of

Clinical Medicine

Article

Multi-Platform Characterization of Cerebrospinal
Fluid and Serum Metabolome of Patients Affected by
Relapsing–Remitting and Primary Progressive
Multiple Sclerosis

Federica Murgia 1,†,*, Lorena Lorefice 2,†, Simone Poddighe 1 , Giuseppe Fenu 2,
Maria Antonietta Secci 2, Maria Giovanna Marrosu 2, Eleonora Cocco 2,† and Luigi Atzori 1,†

1 Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, 09121 Cagliari, Italy;
simopodd@gmail.com (S.P.); latzori@unica.it (L.A.)

2 Multiple Sclerosis Centre, Department of Medical Sciences and Public Health, Binaghi Hospital, University
of Cagliari, via Is Guadazzonis 2, 09126 Cagliari, Italy; lorena.lorefice@hotmail.it (L.L.);
giusefenu@gmail.com (G.F.); mariaantonietta.secci@atssardegna.it (M.A.S.); gmarrosu@unica.it (M.G.M.);
ecocco@unica.it (F.C.)

* Correspondence: federica.murgia@unica.it
† These authors contributed equally to this work.

Received: 24 February 2020; Accepted: 17 March 2020; Published: 21 March 2020
����������
�������

Abstract: Background: Multiple sclerosis (MS) is a chronic immunemediated disease of the central
nervous system with a highly variable clinical presentation and disease progression. In this study,
we investigate the metabolomics profile of patients affected by relapsing–remitting MS (RRMS)and
primary progressive MS (PPMS), in order to find potential biomarkers to distinguish between the two
forms. Methods: Cerebrospinal Fluid CSF and blood samples of 34 patients (RRMS n = 22, PPMS
n = 12) were collected. Nuclear magnetic resonance (1H-NMR) and mass spectrometry (coupled with
a gas chromatography and liquid chromatography) were used as analytical techniques. Subsequently,
a multivariate statistical analysis was performed; the resulting significant variables underwent
U-Mann–Whitney test and correction for multiple comparisons. Receiver Operating Characteristic
ROC curves were built and the pathways analysis was conducted. Results: The analysis of the
serum and the CSF of the two classes, allowed the identification of several altered metabolites
(lipids, biogenic amines, and amino acids). The pathways analysis indicated the following pathways
were affected: Glutathione metabolism, nitrogen metabolism, glutamine–glutamate metabolism,
arginine–ornithine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis etc. Conclusion:
The analysis allowed the identification of a set of metabolites able to classify RRMS and PPMS patients,
each of whom express different patterns of metabolites in the two biofluids.

Keywords: multiple sclerosis; metabolomics; nuclear magnetic resonance; mass spectrometry;
biomarkers; pathways analysis

1. Introduction

Multiple sclerosis (MS) is a chronic immunemediated disease of the central nervous system (CNS),
characterized by different levels of structural damage to the brain and spinal cord, including focal
demyelinating lesions, axonal loss, and gliosis [1].
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Notoriously, MS is characterized by a great heterogeneity in clinical course, neuro-radiological
features of the lesions and response to therapy. It affects about 2.5 million people worldwide and is
the most common cause of neurologic disability in young and middle-aged adults. MS is twice as
common in women as in men. The onset of the disease usually occurs between 20 and 40 years of age
with a peak at about 30 years [2].

Clinical presentation and course of the disease are highly variable, and several disease types can
be recognized: Most patients (85%–90%) with MS begin with a course of relapses and remissions
(RRMS) that can evolve in secondary progressive disease (SPMS). Approximately 10 to 15% of patients
experience a progressive disease course from onset without any relapses or remissions. These patients
are classified as primary progressive MS (PPMS) [3]. A more recent classification re-examined the 1996
clinical course descriptions, categorizing MS patients as relapsing or progressive and active or not
active based on clinical relapse rate and MRI findings [4].

To date, there is no single clinical manifestation or diagnostic test that is sufficient to diagnose MS:
The diagnostic criteria of MS are based on clinical symptoms, MRI features of the demyelinating lesions
and paraclinical laboratory tests like laboratory ones (positive oligoclonal bands in the cerebrospinal
fluid (CSF) or a raised immunoglobulin G) [5]. Moreover, difficulties in the diagnosis of PPMS, both
in terms of distinguishing it from other progressive neurological disorders and excluding patients
with previous relapse activity, have recently become an important question in the management of
MS patients [6–8]. The lack of a single predictive or diagnostic test at most stages of MS disease
remains a major obstacle in their phenotypic classification as to personalized MS care. From this
perspective, it would be highly beneficial to identify circulating molecules that are highly correlated
with inflammatory activity or the severity of neurodegeneration, that can be easily measured with a
simple biofluid test and could serve as a biomarker of the disease course, phase, and evolution.

Metabolomics is based on the systematic study of the complete set of small molecules (metabolites)
in a biological system [9]. Metabolites represent the final product of the interaction between gene
expression and environmental stimuli, allowing recognition of phenotypic signatures and the possibility
of new biomarker targets. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the
most commonly used techniques for measuring the metabolome [10] in CSF [11] and blood samples [12].

To date, several studies have investigated the metabolic profile of MS patients compared to the
control patients [12,13] but few studies have investigated the metabolic differences in different subtypes
of MS such as RR and PP [14–16]. Additionally, no experimental study performed the analysis using
both CSF and blood samples while combining several analytical techniques.

In this study, we proposed the investigation of the metabolomics profile of a cohort of patients
affected by RRMS and PPMS in order to find potential biomarkers to distinguish between the two
forms of MS. For this aim, both CSF and blood samples were collected and 1H-NMR and MS (GC-MS
and LC-MS) were used as analytical techniques.

2. Materials and Methods

Thirty-four CFS and blood samples were collected at the Multiple Sclerosis Centre of the Binaghi
Hospital, Cagliari, from patients affected by MS (according to 2017 revisions of the McDonald
criteria) [17] with RR (22) and PP (12) course. The study included MS patients with relapsing remitting
and progressive course, whose CSF and blood samples were obtained at diagnosis time. Therefore,
no influence of DMDs drugs on the metabolite profile of MS patients occurred. In addition, all
patients exposed to steroid therapy in the previous 30 days were excluded to exclude this possible
confounding factor. Mean values for age and disease duration were 36.8 (SD ± 11.1) and 2.1 (SD ± 1.5)
years respectively, while mean expanded disability status scale (EDSS) [18] at sampling time was 1.5
(SD ± 1.1). Table 1 shows the demographic and clinical features of MS patients examined in the study.
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Table 1. Demographic and clinical features of multiple sclerosis (MS) patients included in the study.

MS Patients (34) Relapsing (22) Progressive (12) p-Value

Male Gender 14 (41.2%) 6 (27.2%) 8 (66.6%) ns
Age (mean ± SD) years 37.3 ± 12.8 32±8.4 47.1 ± 12.8 <0.05
MS Disease Duration

(mean ± SD) years 2.1 ± 1.5 1.2 ± 1.4 3.7 ± 1.2 <0.05

Expanded Disability Status
Scale (EDSS) score 2.1 ± 1.1 1.1 ± 1.5 3.9 ± 1.7 <0.05

Of the 22 patients with relapsing course, 12 had clinical or neuroradiology activity in the last
3 months, while no disease activity was observed in progressive patients. The study was conducted
in accordance with the principles of good clinical practice. The institutional ethics committee of the
University of Cagliari approved the study (n◦ 20/2015), and written informed consent was obtained
from each participant. Moreover, the study was conducted in accordance with the Declaration of
Helsinki. For each patient, one ml of CSF and 10 mL of blood were previously collected through lumbar
puncture and venous sampling at the time of diagnosis. The blood samples and CSF samples were
centrifuged at 2500 g for 10 min at 4 ◦C, and divided into different aliquots for the different analytical
analysis (1H-NMR, GC-MS and LC-MS). All the samples were stored at −80 ◦C until analysis.

2.1. BiocratesAbsoluteIDQ p180 Kit

CSF and serum samples were analyzed by BIOCRATES Life Sciences AG, Innsbruck, Austria as
follows. An aliquot of 50 µL of serum and 30 µL of CSF was analyzed using the Absolute IDQ p180 kit
Biocrates (BIOCRATES Life Sciences AG, Innsbruck, Austria). Samples were analyzed using all the
pre-analytical and analytical procedures documented and reviewed according to the ISO 9001:2008
certified in-house quality management rules and guidelines. For measuring metabolite concentrations,
samples were centrifuged, and the supernatant was used for the analysis. Metabolite concentrations of
each sample were determined in a single analysis and samples were placed randomly in the plates.
Biocrates commercially available KIT plates were used for the quantification of 180 metabolites in the
metabolite classes such as amino acids, acylcarnitines, sphingomyelins, phosphatidylcholines, hexoses,
and biogenic amines. The list of the metabolites were reported in Table S1. The fully automated
assay was based on PITC (phenylisothiocyanate)-derivatization in the presence of internal standards
followed by FIA-MS/MS (acylcarnitines, lipids, and hexose) and LC/MS (amino acids, biogenic
amines) using an AB SCIEX 4000 QTrap® mass spectrometer (AB SCIEX, Darmstadt, Germany) with
electrospray ionization. Isotope-labeled and chemically homologous internal standards were used for
quantification, and in total, 56 analytes were fully validated as absolutely quantitative. The amino
acids and biogenic amines were analyzed quantitatively by LC−ESI-MS/MS, with the use of external
calibration standards in seven different concentrations and isotope-labeled internal standards for
most analytes. The acylcarnitines, glycerophospholipids, sphingolipids, and sum of hexoses were
analyzed by FIA-ESI-MS/MS, using a one-point internal standard calibration with representative
internal standards (nine isotope-labeled acylcarnitines, one isotope-labeled hexose, one non-labeled
lyso-PC, two non-labeled PCs, one nonlabeled SM, a total of 14 internal standards). The experimental
metabolomics measurement technique is described in detail by patent US 2007/0004044 [19]. Accuracy
of the measurements (determined with the accuracy of the calibrators) was in the normal range of
the method (deviations from target ≤ 20%) for all analytes. For sample analysis, validated analytical
methods were applied. Quality control samples were within the pre-defined tolerances of the method.
Biocrates’ in-house MetIDQTM software was applied for data export and mapping of measurements
with chemical and biochemical background information.
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2.2. NMR and GC-MS Analysis

2.2.1. Sample Preparation

CSF. A total of 800 µL of each CSF sample were used for the analysis; 600 µL of sample were
lyophilized overnight for NMR analysis while 200 µL of CSF were lyophilized overnight for GC-MS
analysis. For the NMR analysis, the lyophilized samples were resuspended in 630 µL D2O + 70 µL of
1.5 mM phosphate buffer with 5.85 mM trimethylsilylpropanoic acid (TSP), and 650 µL of the solution
was transferred in the NMR tube. For the GC-MS analysis, dried extracts were derivatized with 50 µL
of methoxyamine dissolved in pyridine (10 mg/mL) (Sigma-Aldrich, St. Louis, MO, USA) at 70 ◦C.
After 1 h 100 µL of N-Methyl-N-(trimethylsilyl)-trifluoroacetamide, (MSTFA, Sigma-Aldrich, St. Louis,
MO, USA) were added and left at RT for 1 hr. The samples were then successively diluted in 100 µL of
hexane (Sigma-Aldrich, St. Louis, MO, USA).

Serum: The serum samples were extracted as previously described [20]. Briefly, serum samples
were thawed and centrifuged at 2500 g for 10 min at 4 ◦C. An 800 µL aliquot was added to 2400 µL of
a chloroform/methanol 1:1 plus 350 µL of distilled water. The samples were vortexed for 1 min and
centrifuged for 30 min at 1700× g at RT. The hydrophilic and hydrophobic phases were obtained. The
water-phase was divided in 2 aliquots, concentrated overnight using a speed vacuum centrifuge for
GC-MS and 1H-NMR analysis. For the NMR analysis, the concentrated water-phase was resuspended
in 630 µL of D2O, 70 µL of 5.07 mM trimethylsilylpropanoic acid (TSP). TSP was added to provide an
internal reference for the chemical shifts (0 ppm), and 650 µL of the solution were transferred to a 5 mm
NMR tube. For the GC-MS analysis derivatization was undertaken by adding 100 µL of methoxyamine
hydrochloride in pyridine solution (10 mg/mL) to dried samples for 17 h. Subsequently, 100 µL of
N-trimethylsilyltrifluoroacetamide (MSTFA) were added and vortexed atRT, 1 hr. Samples were then
diluted in hexane (600 µL) with an internal standard (undecane at 25 ppm). Diluted samples were then
filtered (PTFE 0.45 µm) and transferred into glass vials. By following the same procedure, samples
blanks were made used for the samples to avoid background noise resulting from the chemicals used
for the preparation and the laboratory instruments.

2.2.2. NMR Analysis and Data Processing

The samples were analyzed with a Varian UNITY INOVA 500 spectrometer (Agilent Technologies,
Inc., Santa Clara, CA, USA), which was operated at 499 MHz equipped with a 5 mm triple resonance
probe with z-axis pulsed field gradients and an auto-sampler with 50 locations. One-dimensional
1H-NMR spectra were collected at 300 K with a NOESY pulse sequence for the CSF samples and PreSat
sequence for the serum samples to suppress the residual water signal. The spectra were recorded
with a spectral width of 6000; a frequency of 2 Hz; an acquisition time of 1.5 s; a relaxation delay of
2 ms; and a 90◦ pulse of 9.2 µs. The number of scans was 256. Each Free Induction Decay (FID) was
zero-filled to 64 k points and multiplied by a 0.5 Hz exponential line-broadening function. The spectra
were manually phased and baseline corrected. By using Mestre Nova software (version 8.1, Mestrelab
Research S.L. Santiago de Compostela, Spain)) each NMR spectrum was divided into consecutive
“bins” of 0.04 ppm. The serum spectral area investigated was the region between 0.6 and 8.6 ppm. The
regions between 4.60 and 5.2 ppm and between 5.24 and 6.6 ppm were excluded to remove variations
in the pre-saturation of the residual water resonance and spectral regions of noise. The CSF spectral
area investigated was the region between 0.64 and 6.4 ppm. To minimize the effects of the different
concentrations of serum/CSF samples, the integrated area within each bin was normalized to a constant
sum of 100.

2.2.3. GC-MS Analysis and Data Processing

One microliter of derivatized sample underwent splitless injection into a 7890A gas chromatograph
coupled with a 5975C Network mass spectrometer (Agilent Technologies, Santa Clara, CA, USA)
equipped with a 30 m × 0.25 mm ID, fused silica capillary column, with a 0.25 µM TG-5MS stationary
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phase (Thermo Fisher Scientific, Waltham, MA, USA). The injector and transfer line temperatures
were at 250 ◦C and 280 ◦C, respectively. The gas flow rate through the column was 1 mL/min. The
column initial temperature was kept at 60 ◦C for 3 min, then increased to 140 ◦C at 7 ◦C/min, held
at 140 ◦C for 4 min, increased to 300 ◦C at 5 ◦C/min and kept for 1 min. Identification of metabolites
was performed using the standard NIST 08 [21] (http://www.nist.gov/srd/mslist.cfm), Fiehn 2013 [22]
(http://fiehnlab.ucdavis.edu/Metabolite-Library-2007) and GMD [23] (http://gmd.mpimp-golm.mpg.de)
mass spectra libraries (match ≥ 40%) and, when available, by comparison with authentic standards.
Data processing was performed by using a pipeline in Knime [24]. In brief, peak detection and
deconvolution were performed in a R-XCMS package, filtering was performed using blank samples
and keeping features present in ≥50% of the samples. Missing value imputation was conducted using
a random forest algorithm. Relative concentrations of the discriminant metabolites were obtained by
the chromatogram area and then normalized by median fold change.

2.3. Statistical Analysis

A multivariate statistical analysis was performed on the matrix resulting by LC-MS/MS,
FIA-MS/MS, 1H-NMR, and GC-MS using SIMCA-P software (ver. 15.0, Umetrics, Sweden). The
variables were Pareto scaled to emphasize all metabolite signals and reduce the spectral noise for the
1H-NMR analysis and UV scaled for the MS analysis.

The initial data analyses were conducted using the Principal Component Analysis (PCA), which
is important for the exploration of the sample distributions without classification. To identify potential
outliers, the DmodX and Hotelling’s T2 tests were applied.

Partial least square discriminant analyses (PLS-DA) were subsequently applied. PLS-DA maximize
the discrimination between samples assigned to different classes. The variance and the predictive
ability (R2X, R2Y, Q2) were established to evaluate the suitability of the models. PLS-DA models were
performed by using only variables corresponding to VIP (Variable Influence on Projection) value > 1,
as a quantitative estimation of the discriminatory power of each individual metabolite. Variables with
VIP > 1 are the most relevant for explaining Y (assignment of two classes) [25].

In addition, a permutation test (n = 400) was performed to validate the models. The scores from
each PLS-DA model were subjected to a CV-ANOVA to test for significance (p < 0.05).

The most significant variables were extracted by the loading plot from each model and for the
1H-NMR data were identified using the Chenomx NMR Suite 7.1 (Chenomx Inc., Chenomx Inc.,
Edmonton, Alberta, Canada) [26]. GraphPad Prism software (version 7.01, GraphPad Software, Inc.,
San Diego, CA, USA) was used to perform the univariate statistical analysis of the data. To verify
the significance of the metabolites resulting from multivariate statistical analysis U-Mann–Whitney
test a Holm–Bonferroni test, to correct for multiple comparisons were performed. Subsequently,
to test the sensitivity and specificity of these metabolites, Receiver Operating Characteristic ROC
curves were built; this is generally considered the standard method for performance assessment of
target biomolecules [27]. ROC curves were built using the concentrations of the metabolites with
p-value < 0.05 as input, with the aim of testing their sensitivity and specificity in classifying the patients
by using GraphPad Prism software (version 7.01, GraphPad Software, Inc., San Diego, CA, USA).

2.4. Pathways Analysis

Metabolic pathways were generated by using MetaboAnalyst 4.0 (MetaboAnalyst 4.0, Xia Lab.
Ste. Anne de Bellevue, Quebec) a web server designed to obtain a comprehensive metabolomic data
analysis, visualization and interpretation [28]. This approach permits to correlate metabolites changes
with metabolic networks. In particular, the pathway analysis module of Metaboanalyst 4.0 combines
results from powerful pathway enrichment analysis with pathway topology analysis to help researchers
identify the most relevant pathways involved in the conditions under study. MetaboAnalyst performs
in-house mapping of common compound names to a wide variety of database identifiers including
KEGG, HMDB, ChEBI, METLIN, and PubChem prior to performing any functional analysis. In our
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analysis, metabolites having p-value < 0.05 were used. Only pathways having p-value < 0.05 were
considered for the discussion and biological interpretation.

3. Results

The data generated by all the analytical technique used for the analysis of the CSF and serum
were organized in matrix that underwent to multivariate statistical analysis. Firstly, a multivariate
analysis was performed on the results from NMR and GC-MS. For the NMR analysis, the total number
of variables obtained (bins) was 103 for the CSF, and 155 for the serum, while for the GC-MS analysis
of the CSF, the total number of variables obtained was 35, and 40 for the serum. The generate models
did not show any significant difference between RRMS and PPMS (low Q2 and p > 0.05, see Figure S1
and Table S2). and for these reasons the VIPs were not taken into consideration.

Subsequently, multivariate analysis of the matrix from FIA-MS/MS (acylcarnitines, lipids, and
hexose) and LC/MS (amino acids, biogenic amines) was applied to test the possible differences between
RRMS vs PPMS. A separation of the samples, in line with the presence of the different types of MS,
was observed by the application of the supervised model PLS-DA (Figure 1) with good statistical
parameters. All the parameters of the models were reported in the Table 2. Based on the value of the
VIP (>1), 49 metabolites belonging to the classes of acylcarnitines, glycerophospholipids, sphingolipids
and 12 metabolites belonging to the classes of the amino acid and biogenic amines were included for
the CSF’s PLS-DA models.
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Figure 1. Multivariate analysis. A–B: PLS-DA models resulted from the analysis of cerebrospinal
fluid (CSF) samples with FIA-MS/MS and LC-MS. C–D: PLS-DA models resulted from the analysis of
serum samples with FIA-MS/MS and LC-MS. Black circles indicate primary progressive MS (PPMS)
patients while white boxes indicate RRMS patients. The statistical parameters were all significant and
were reported in the Table 1.

Table 2. Statistical parameters of the multivariate models resulting from the analysis of the matrix
generated by FIA-MS/MS and LC-MS analysis.

CSF SERUM

R2X R2Y Q2 p-Value

Permutation
Test:

Intercept
R2
\Q2

R2X R2Y Q2 p-Value

Permutation
Test:

Intercept
R2
\Q2

FIA-MS/MS 0.272 0.862 0.634 2,6e-05 0.59/−0.23 0.523 0.666 0.512 0.0004 0.33/−0.19

LC-MS 0.395 0.697 0.496 0.002 0.29/−0.28 0.224 0.846 0.514 0.0002 0.35/−0.26
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Similarly, for the serum, based on the value of the VIP (>1), 50 metabolites belonging to the classes
of acylcarnitines, glycerophospholipids, sphingolipids, and 16 metabolites belonging to the classes of
amino acids and biogenic amines were included in the PLS-DA models.

The goodness of fit of the models allowed the possibility of identifying the discriminant variables
responsible of RRMS and PPMS by exploiting the information coming from the loadings plot and
VIPs values. Box plots of the most important metabolites (having VIPs values > 1) are represented in
Figure 2. Moreover, the different concentrations of the discriminant metabolites for each class were
tested through the U-Mann–Whitney test and subsequently, for those metabolites having p-value < 0.05,
a Holm–Bonferroni correction for multiple comparisons was applied. Furthermore, metabolites that
exhibited the greatest differences between the studied groups according to a p-value < 0.05 were
selected to create the ROC curve. The univariate analysis revealed that all the metabolites from the
analysis of the serum by LC-MS/MS and FIA-MS/MS resulting significant after U-Mann–Whitney
test, passed the Holm–Bonferroni correction (PC aa C34:3, PC aa C38:4, PC ae C38:1, PC ae C38:2, PC
aa C40:5, SM C26:0, C5, Methionine-Sulfoxide, alpha-Aminoadipic acid, glutamate, valine, taurine,
spermidine). In the case of CSF analysis, 1 phosphocholine (PCae C42:2) from the FIA-MS/MS analysis
and histidine, ornithine, phenylalanine and threonine from the LC-MS/MS passed the correction
for multiple comparison. These metabolites have been considered suitable as biomarkers for the
classification of the two types of MS. In this light, ROC curves were performed to test their sensitivity
and sensibility. A synthesis of the significantly altered metabolites resulting from the analysis of the
CSF and the serum is reported in Table 3 and in Table 4, respectively. The tables indicate: trends
of metabolites in the RR and PP classes (+ or -), p-value after U-Mann–Whitney test, p-value after
Holm–Bonferroni correction and statistical data of the ROC-curve (area under the curve, standard
error, confidential interval, p-value). ROC curves of the discriminant metabolites in CSF and serum
were reported in Figures 3 and 4, respectively.
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Figure 2. Univariate analysis. Bar-plot of the most discriminant metabolites resulting from the analysis
of CSF and serum analyzed with FIA-MS/MS and LC-MS/MS. The black bar indicates the average
concentration of the relapses and remissions (RRMS) class expressed as ranks, while the grey bar
indicates the average concentration of the PPMS class expressed as ranks. Stars indicate significant
change in the concentration of the metabolites.
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Figure 3. CSF Biomarkers evaluation. Roc curves of the most important metabolites resulting from the
multivariate analysis of the CSF matrix, generated with FIA-MS/MS and LC-MS/MS respectively.

Table 3. Trend, univariate analysis, and ROC curve analysis of the discriminant metabolites in
CSF samples.

CSF

METABOLITES RR vs.
PP

p-Value Holm–Bonf.
Correction

ROC-CURVE

AUC Std. Error CI p-Value

FIA-MS/MS

-lysoPC a C20:4 + 0.02 ns 0.74 0.09 0.55–0.93 0.02
-PC aa C34:2 - 0.04 ns 0.71 0.08 0.53–0.88 0.04
-PC aa C36:5 - 0.03 ns 0.72 0.09 0.54–0.90 0.03
-PC aa C38:5 - 0.02 ns 0.73 0.09 0.55–0.90 0.03
-PC aa C42:0 - 0.009 ns 0.78 0.08 0.61–0.94 0.01
-PC ae C34:3 - 0.04 ns 0.71 0.09 0.53–0.89 0.04
-PC ae C38:4 - 0.03 ns 0.72 0.08 0.55–0.89 0.03
-PC ae C40:2 - 0.007 ns 0.78 0.08 0.62–0.93 0.008
PC ae C42:2 - 0.004 0.04 0.79 0.07 0.64–0.95 0.005

SM(OH) C 22:1 - 0.010 ns 0.77 0.08 0.6–0.93 0.01
SM(OH) C 22:2 - 0.01 ns 0.76 0.08 0.6–0.92 0.01

LC-MS/MS

HIS + 0.0004 0.001 0.89 0.06 0.77–1 0.0009
ORN - 0.01 0.010 0.79 0.08 0.63–0.96 0.03
PHE + 0.03 0.010 0.75 0.09 0.57–0.93 0.03
THR + 0.001 0.002 0.86 0.07 0.71–1 0.002

+ or - indicates a higher or lower level of the metabolite in RR vs PP group.
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Table 4. Trend, univariate analysis, and ROC curve analysis of the discriminant metabolites in
serum samples

SERUM

METABOLITES RR vs.
PP

p-Value Holm—-Bonf.
Correction

ROC-CURVE

AUC Std. Error CI p-Value

FIA-MS/MS

PC aa C34:3 + <0.0001 0.001 0.91 0.05 0.81–1.00 <0.0001
PC aa C38:4 - 0.0010 0.005 0.83 0.07 0.70–0.97 0.001
PC ae C38:1 + 0.0016 0.006 0.82 0.08 0.67–0.97 0.002
PC ae C38:2 + 0.0036 0.011 0.80 0.08 0.62–0.97 0.004
PC aa C40:5 - 0.0059 0.012 0.78 0.08 0.61–0.95 0.007

SM C26:0 - 0.006 0.012 0.79 0.08 0.63–0.93 0.008
C5 - 0.0149 0.012 0.75 0.08 0.6–0.92 0.015

LC-MS/MS

MET-SO + 0.010 0.040 0.76 0.08 0.59–0.94 0.01
ALPHA-AAA - 0.002 0.010 0.81 0.08 0.65–0.98 0.003

GLU - 0.02 0.040 0.74 0.09 0.56–0.93 0.02
VAL - 0.02 0.040 0.74 0.09 0.56–0.92 0.02
TAU - 0.01 0.040 0.77 0.08 0.59–0.94 0.01
SPER - 0.02 0.040 0.75 0.08 0.57–0.92 0.02

+ or - indicates a higher or lower level of the metabolite in RR vs PP group.
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To avoid the confounding effect, due to the different age of the patients of the two classes,
Spearman Correlation was perform relating the selected metabolites and the age of the patients. A weak
correlation was found for the ornithine (R2 = 0.5), PC ae C42:2 (R2 = 0.46) and histidine (R2 = −0.44)
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in the CSF, while for the serum metabolites PC aa C34:4 (R2 = −0.48), taurine (R2 = −0.55), alpha
AAA(R2 = 0.41) and spermidine (R2 = −0.41) showed a weak correlation. All the results are shown in
Figures S2 and S3.

The metabolites passing the Holm–Bonferroni correction were considered the most relevant
for the classification of the RRMS and PPMS classes. The subsequent step was to investigate the
biological meaning of the selected metabolites by using the Metaboanalyst tool. The pathway analysis
algorithm was based on Fisher’s Exact Test and Out-degree Centrality for the Pathway Topology
Analysis. As shown in Figure 5, nitrogen metabolism, arginine and ornithine metabolism, branched
chain amino acid (BCAAs) biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and
histidine metabolism were the most altered pathways between the two classes of patients in CSF.
The most altered pathways between RR and PP resulting from the analysis of the serum metabolites
were glutathione metabolism, nitrogen metabolism, arginine and proline metabolism, glutamine and
glutamate metabolism, linoleic acid metabolism, taurine and hypotaurine metabolism and, finally,
alanine, aspartate, and glutamate metabolism.
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Figure 5. Pathways analysis. Pathways analysis of the most discriminant metabolites passing
the Holm–Bonferroni correction in CSF and serum. (A) Most altered pathways between RR and
PP patients in CSF samples: nitrogen metabolism, arginine and ornithine metabolism, branched
chain amino acid (BCAAs) biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and
histidine metabolism. (B) Most altered pathways between RR and PP patients in serum samples:
glutathione metabolism, nitrogen metabolism, arginine and proline metabolism, glutamine and
glutamate metabolism, linoleic acid metabolism, taurine and hypotaurine metabolism and, finally,
alanine, aspartate, and glutamate metabolism.

The best similarities of the results between CSF and blood were common altered pathways such
as pathways linked the oxidative stress (Glutathione metabolism and nitrogen metabolism) and the
arginine metabolism, while differences were characterized by changes in different amino acid pathways
(glutamine and glutamate metabolism, taurine, and hypotaurine metabolism and alanine, aspartate
metabolism in serum; branched chain amino acid, phenylalanine, tyrosine, tryptophan biosynthesis
and histidine metabolism in CSF).

4. Discussion

During previous decades, the discovery of reliable biomarkers for MS proved very difficult,
due to the clinical and pathophysiological complexities of the disease. In this context, the “-Omics”
technologies offer the opportunity of large-scale analysis and identification of new candidate biomarkers
at multiple levels of cell biology. The goal of the study was to characterize the metabolomics profile of
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serum and CSF samples of patients affected by different MS sub-types: RR and PP. Several analytical
techniques, were used to determine the concentration of a large number of potential biomarkers.
Subsequently, different statistical methods were applied in order to identify the discriminant metabolites
able to classify patients based on their subtypes of MS. In this study. both 1H-NMR and GC-MS did
not allow identification a specific metabolic fingerprint of the RR and PP patients in CSF and serum.
Thus, we focused our attention on the results from the MS/MS analysis.

Actually, there is no diagnostic laboratory test available that fulfils the criteria of a complete
diagnosis in multiple sclerosis, often resulting in delayed definitive diagnosis [29]. The search for
biomarkers in this area is very active. but very few molecules have been rigorously validated and
used in clinical practice [30,31]. In our study, we chose to investigate the metabolome of both CSF and
blood samples. For diagnostic, prognostic, and therapeutic properties, CSF offers a unique opportunity
to sample the metabolic content of fluid circulating around the brain and cerebrovascular interfaces
reflecting directly brain activity. This may provide important information about neurological damages
induced by the progression of MS [31], while blood analysis represents a non-invasive method to
investigate peripheral pathological alterations. The analysis of the serum with the FIA-MS/MS and
LC-MS/MS allowed the identification of PC aa C34:3 (AUC = 0.91. p-Value after Holm–Bonferroni
correction 0.001) as the best lipid compound to classify the two groups, while alpha-AAA was
the most discriminant between the amino acids and biogenic amines (AUC = 0.81, p-Value after
Holm–Bonferroni correction 0.01). Moreover, the analysis of the CSF allowed the identification of PC
ae C42:2 (AUC = 0.79, p-value after Holm–Bonferroni correction 0.04) as the best lipid compound able
to classify the patients, while between the amino acids and biogenic amines the most discriminant was
histidine (AUC = 0.89, p-Value after Holm–Bonferroni correction 0.001). The analysis of the samples
with the NMR and GC-MS did not found any significant differences between PPMS and RRMS both
in CSF and serum. The serum of a similar cohort of patients (three subtypes of MS, RRMS, SPMS,
and PPMS) was analyzed by Dickens et al. [15] with the NMR: They obtained a good results for the
comparison between RRMS and SPMS but, as found by our investigation, they underlined the lack of a
predictive model between the PP and RR patients.

The discriminant metabolites were studied for a better understanding of the pathophysiology of
the two sub-types of MS, by identifying the altered metabolic pathways in RR and PP. Unfortunately,
few metabolomics studies based on the different subtypes of MS are present in literature, so is not
simple to fully understand our results. Glutathione metabolism, nitrogen metabolism, arginine and
proline metabolism, glutamine and glutamate metabolism, linoleic acid metabolism, taurine and
hypotaurine metabolism and alanine, aspartate and glutamate metabolism were the most altered in
serum between the two classes. In the CSF, nitrogen metabolism, arginine and ornithine metabolism,
branched chain amino acid (BCAAs) biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis
and histidine metabolism were the most altered pathways. Stoessel et al. [14] comparing the plasma of
PPMS with RRMS and controls patients found the alteration of several pathways such as, linoleic acid
metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis
and nitrogen metabolism perfectly in line with our results. Moreover, in the same study, they found
a decline in levels of LysoPC (20:0) during the disease course of PPMS, but we did not found any
significant differences of this lysoPC comparing the two classes of patients.

Glutathione metabolism and nitrogen metabolism (that we found altered in both CSF and blood)
are closely linked to oxidative stress. Oxygen and nitrogen free radicals may represent important
features in the pathogenesis of MS. Radical oxygen species (ROS) are particularly active in the brain and
neuronal tissue and are bio-products by the metabolism of excitatory amino acids and neurotransmitters.
They are generated by constant use of oxygen in the mitochondria to supply the energy, and by many
enzymatic and non-enzymatic pathways [32]. ROS attack glia and neurons leading to neuronal damage
such as demyelination and axonal injury. In addition, free radicals can activate certain transcription
factors (transcription factor-kappa B. NF-κB), promoting the up-regulation of the expression of many
genes involved in MS, (tumor necrosis factor-α, nitric oxide synthase, iNOS, intracellular adhesion
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molecule 1, ICAM-1, etc.) [33]. The fundamental role of oxidative stress in MS has been proved by
several scientific studies that found evidence of lipid peroxidation in the CSF and in the plasma of
patients with MS [34]. Moreover, it has been proposed that reactive nitrogen species promote myelin
and oligodendrocyte destruction due to their cytotoxic effects on nerve and glial cells [35]. Numerous
studies had shown increased free radical activity, and/or deficiencies in important antioxidant enzymes
in patients with MS compared with healthy controls [36]. From the metabolomics point of view, several
study demonstrate the key role of metabolites linked to the presence of oxidative stress in MS [37,38].
Interestedly, Koch et al. analyzed the serum and peripheral blood leukocytes from patients with benign
relapsing remitting MS, secondary progressive MS, primary progressive MS and healthy controls
found increased ROS formation occurs in all subgroups of MS, but the highest production of ROS was
found in patients with PPMS [39].

Other altered pathways in serum were glutamine and glutamate metabolism, as well as alanine,
aspartate and glutamate metabolism. These are excitatory amino acids (EAA), fundamental for
synaptic connection. Brain excitotoxicity is the result of an imbalance between excitatory processes and
GABA/glycine-mediated inhibitory processes, caused by glutamate overload. Glutamate is the major
EAA and both intracellular and extracellular physiological concentrations are precisely controlled [40].
Glutamate overload most frequently results from the glutamate–glutamine cycle dysfunction leading
to a damage to neurological tissue due to overstimulation of glutamate receptors, and subsequent
excitotoxic injury of neurons and glial cells, as widely demonstrated [41,42]. Considering the pivotal
role of the glutamate in the CNS, it is not surprising its relevance also in a pathological conditions
such as MS [43,44]. Interestingly, Sarchielli et al. demonstrated an increase level of glutamate and
aspartate in the CSF of patients with RR MS during relapse and even during a stable clinical phase.
Also, in the patients with SPMS, an increase in the CSF levels of glutamate and aspartate emerged
compared with those in the control subjects, particularly in patients with a progression of neurological
impairment [45].

In addition, in our data, the arginine metabolism pathway was altered in both serum and CSF. As
demonstrated by several studies, altered arginine metabolism represent a typical feature in MS [46,47],
in both human and in animal models [48]. Indeed, the pathogenesis of MS is based on two major
theories: An autoimmune and a neurodegenerative mechanism. The neurodegenerative hypothesis
involves metabolic changes in the constituents of myelin, which results in destabilization of membrane
architecture and myelin degradation [49]. One of the modifications involves the conversion of peptide
bound arginine to peptide bound citrulline, an enzymatic reaction called deimination [50,51]. Moreover,
arginine is the precursor to nitric oxide in a reaction catalyzed by the nitric oxide synthase family [46].
Therefore, alteration of arginine metabolism, that we found significant in our analysis, could affect
nitric oxide synthesis and be involved in oxidative stress. The role of amino acids in MS is suggested by
the involvement of several amino acid systems, as our findings demonstrate. Also, BCAAs participate
both directly and indirectly in a variety of important biochemical functions in the brain. These include
protein synthesis, production of energy, and compartmentalization of glutamate [52]. Moreover, BCAAs
are a known source of pyruvate for energy metabolism, and de novo synthesis of macromolecules
within neural and immune cells [53,54].

Phenylalanine, tyrosine, and tryptophan biosynthesis was an altered pathway from the analysis
of the CSF. Tryptophan is closely linked to the kynurenine pathway, which is activated in number
of inflammatory and neurodegenerative diseases, including MS, and as such represents a common
pathological mechanism highly relevant for the understanding of MS pathology [55]. Accumulating
evidences demonstrates the involvement of tryptophan metabolism, in particular activation of
the kynurenine pathway in neurocognitive disorders under CNS inflammatory conditions such
as MS [56–58]. Moreover, this net was evaluated also in the comparison between RRMS and the
progression disease subtypes SPMS and PPMS, indicating the key role of the metabolites involved
in the tryptophan metabolism. This study reveals how the ratio kinurenic acid/quinolic acid was
increased in SPMS and PPMS compared to the RRMS, directly linked to an excitotoxicity effect. [16]
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Metabolomics represents an innovative approach able advance discover new potential biomarkers
and to explore pathophysiological features in a pathological condition. We believe that the use of
this new tools will help us come to a greater understanding of the pathogenesis of MS, improving its
diagnosis, its classification, availability of effective treatment and to define the response to therapy, as
recent investigations have shown [59]. Despite the weak correlation between the age of the patients
and the concentration of the selected metabolites, age could be considered as a confounder factor, and
its contribution should not be overlooked. Further investigations in larger cohorts are necessary to
confirm our preliminary results and to explore the metabolomics fingerprint related to MS and its
evolution. Moreover, the evaluation of a control group, that it was not possible to recruit for ethical
reasons, would have been useful. This aspect might represent a point of limitation for the study.
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the analysis of the matrix generated by NMR and GC-MS analysis.
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