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Supplementary Figure S1: 

Patients with a histopathological label of quasi-mesenchymal, QM) (blue curve) experienced 

significantly diminished overall survival compared to patients with a histopathological label of 

non-QM (red curve), (16.1 vs. 20.9 months median OS, log-rank-test p=0.02, HR 1.59, 95% 

CI 1.08-2.53). Patients with an unclassifiable histopathological phenotype experienced a 

median overall survival time of 25.2 months, and the survival curves crossed both other groups’ 

curves, leading to breach of the proportional hazards assumptions and statistical non-

significance (p=0.18 for KRT81+ vs. unclassifiable and p=0.97 for HNF1a+ vs. unclassifiable). 
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Parameter exp(coef) exp(coef) 

upper 95% 

exp(coef) 

upper 95% 

p 

pT 1.46 2.138 2.138 0.052 

pN 1.438 2.084 2.084 0.055 

G 1.31 1.763 1.763 0.074 

CA199 1.221 1.541 1.541 0.092 

cM 1.694 3.146 3.146 0.095 

adjuvant 0.857 1.068 1.068 0.169 

CEA 0.795 1.131 1.131 0.202 

Age 1.009 1.026 1.026 0.258 

Sex 1.08 1.574 1.574 0.687 

R 1.029 1.521 1.521 0.884 

 

Supplementary Figure S2: 

Cox proportional hazards multivariate survival analysis did not yield any significant survival 

covariate in the cohort A patients. 
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Radiomics Extraction Process and Machine Learning Modelling 

 

PyRadiomics version 2.1.0 [1] was used for the analysis. Intensity discretization was performed 

to a fixed bin number of 25 bins. No normalization was performed. Images were spatially 

resampled to 3x3x3mm using the BSpline interpolator. All first order statistics, shape-based, 

Gray Level Run Length Matrix, Gray Level Size Zone Matrix, Neighbouring Gray Tone 

Difference Matrix and Gray Level Dependence Matrix features and all Gray Level Cooccurence 

Matrix features except SumAverage (due to redundancy), as well as Laplacian of Gaussian-

filtered (with Sigma values 1.0, 2.0, 3.0), wavelet-decomposition-based (using the coiflet 1 

function), square, exponential, gradient, square-root and logarithm filtered versions of these 

features. GLCM and GLRLM were extracted using the default settings (separately for each 

direction then averaged). Feature descriptions can be found in the PyRadiomics 

documentation. 1474 features were extracted in total. 

The following radiomic features were excluded: Features yielding nil, constant or-missing 

values. Furthermore, tumors were segmented a second time after 2 weeks by the same 

observers to test for repeated segmentation stability. The intra-class-correlation coefficient 

(two-way mixed effects model/ consistency as described by McGraw and Wong [2]) was 

calculated and features yielding inter-segmentation values below 0.9 were excluded.  

Machine learning modeling was performed using the Python programming language version 

3.7.6. For training and testing, the estimator was fit and tested using stratified shuffle/split 

cross-validation with 5 splits of 70%/30% (train/test) of the dataset. The Random Forest 

algorithm implemented in Scikit Learn 0.21.3 was used with the following setting: 10 random 

trees, Gini impurity feature importance assessment, all-available-core parallelization (with 18 

available CPU cores). The other settings were left at default values. 
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Supplementary Table S1. Most important radiomic features selected by the Random Forest algorithm 

with respect to classification performance in descending order. 

Radiomic Feature 
Average Feature 

Importance 
STDEV 

wavelet-HLL_firstorder_Uniformity 0.056 0.028 
wavelet-LHL_firstorder_TotalEnergy 0.048 0.072 

wavelet-HHH_glcm_Id 0.046 0.056 
wavelet-HHL_firstorder_10Percentile 0.042 0.035 

wavelet-HHL_gldm_LowGrayLevelEmphasis 0.04 0.033 
original_glcm_Idm 0.039 0.031 

wavelet-HHH_glcm_Idm 0.039 0.051 
wavelet-HLL_glcm_InverseVariance 0.035 0.029 

wavelet-HLL_glrlm_LongRunLowGrayLevelEmphasis 0.034 0.06 
wavelet-HLL_glszm_GrayLevelNonUniformityNormalized 0.028 0.049 

wavelet-HLH_glcm_Correlation 0.025 0.031 
wavelet-HHH_glcm_JointEnergy 0.025 0.031 

wavelet-LLH_glcm_DifferenceVariance 0.025 0.045 
wavelet-HLL_glszm_LargeAreaLowGrayLevelEmphasis 0.024 0.026 
wavelet-HHL_glrlm_ShortRunLowGrayLevelEmphasis 0.018 0.028 

wavelet-HLL_glcm_DifferenceEntropy 0.015 0.024 
logarithm_gldm_SmallDependenceLowGrayLevelEmphasis 0.015 0.028 

wavelet-LHL_firstorder_10Percentile 0.014 0.02 
wavelet-HLL_firstorder_Energy 0.013 0.023 

log-sigma-2-0-mm-3D_gldm_DependenceVariance 0.012 0.024 
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Technical Evaluation of the Study according to RSNA criteria 

 

The Radiological Society of North America recently published evaluation criteria for artificial 

intelligence studies in radiology [3] and recommends adherence to these criteria for all such 

studies. The point-to-point assessment of our study is detailed below: 

 

    1. Carefully define all three image sets (training, validation, and test sets of images) of the 

AI experiment.  

 

The training and validation sets used in the study were derived by cross-validation of the 

original set of 181 patients to ascertain that no validation data leaks into the training set in each 

fold, although the employed shuffle-split cross-validation method does not guarantee non-

overlapping splits. The test set was completely independent and consisted of 26 patients. 

Patients were included based on availability of technically sufficient CT scans as detailed in 

the main manuscript. No outliers were removed. 

 

    2. Use an external test set for final statistical reporting.  

and 

    3. Use multivendor images, preferably for each phase of the AI evaluation (training, 

validation, test sets).  

 

The final assessment of the algorithm did not occur on an external test set. However, we 

pooled image datasets from several CT scanner vendors to provide robustness against this 

variable. The high degree of standardization in computed tomography likely also provides a 

level of multi-vendor generalizability. Despite this, the generalization power of the algorithm 

cannot be conclusively assessed at this stage.  

 

    4. Justify the size of the training, validation, and test sets.  

 

The size of the training, validation and test sets were determined by the number of patients 

who had undergone histopathological evaluation to obtain a label for algorithm training as 

detailed in the main manuscript. Since this histopathological evaluation is both costly and time-

consuming, the ultimate sample size could not be further increased. 
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    5. Train the AI algorithm using a standard of reference that is widely accepted in our field.  

 

The algorithm was trained on histopathological labels, which are a published standard of 

reference valid for assessment of molecular PDAC subtype (see reference in main 

manuscript). 

 

    6. Describe any preparation of images for the AI algorithm.  

 

The images were prepared using a state-of-the art approach (independent segmentations with 

quality control, discarding unstable features, feature reduction, preprocessing and analysis 

using standardized and open-source software). No other manipulation of the source images 

occured. 

 

    7. Benchmark the AI performance to radiology experts 

 

We did not perform formal benchmarking as part of the study but will perform a separate study 

on benchmarking human observers against the algorithm. However, expert observers noted 

no visual differences between the CT images of KRT81+ vs. HNF1a+ tumors. 

 

    8. Demonstrate how the AI algorithm makes decisions.  

 

Interpretability of Random Forest models is provided by the inbuilt feature importance metric, 

which is reported in detail in the main manuscript.  

 

    9. The AI algorithm should be publicly available so that claims of performance can be verified 

 

Source code for the analysis will be made available after publication on the author’s GitHub 

page under a permissive open-source license and using the open-source Python programming 

language. A binary implementation of the algorithm will be included. 
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STROBE checklist and patient recruitment flowchart 

 

 
Item 
No 

Reccomendation Remark/ 
Location 

 Title and abstract 1 (a) Indicate the study’s design with a commonly 
used term in the title or the abstract 

Reported in 
abstract 
(Methods) 

(b) Provide in the abstract an informative and 
balanced summary of what was done and what 
was found 

Reported in 
abstract 
(Methods, 
Results) 

Introduction  

Background/rationale 2 Explain the scientific background and rationale for 
the investigation being reported 

Abstract, 
Introduction 

Objectives 3 State specific objectives, including any 
prespecified hypotheses 

Introduction, 
Discussion 

Methods  

Study design 4 Present key elements of study design early in the 
paper 

Methods 

Setting 5 Describe the setting, locations, and relevant dates, 
including periods of recruitment, exposure, follow-
up, and data collection 

Ibid. 

Participants 6 (a) Give the eligibility criteria, and the sources and 
methods of selection of participants. Describe 
methods of follow-up 

Ibid. 

(b) For matched studies, give matching criteria and 
number of exposed and unexposed 

Not applicable 

Variables 7 Clearly define all outcomes, exposures, predictors, 
potential confounders, and effect modifiers. Give 
diagnostic criteria, if applicable 

Methods, 
Results  

Data sources/ 
measurement 

8*  For each variable of interest, give sources of data 
and details of methods of assessment 
(measurement). Describe comparability of 
assessment methods if there is more than one 
group 

Methods 

Bias 9 Describe any efforts to address potential sources 
of bias 

Methods, 
Results 

Study size 10 Explain how the study size was arrived at Methods/ 
Supplement 

Quantitative 
variables 

11 Explain how quantitative variables were handled in 
the analyses. If applicable, describe which 
groupings were chosen and why 

Methods, 
Table 1 

Statistical methods 12 (a) Describe all statistical methods, including those 
used to control for confounding 

Methods 

(b) Describe any methods used to examine 
subgroups and interactions 

Ibid. 

(c) Explain how missing data were addressed Methods, 
Table 1 

(d) If applicable, explain how loss to follow-up was 
addressed 

Methods, 
Table 1 

(e) Describe any sensitivity analyses Not applicable 

Results  

Participants 13* (a) Report numbers of individuals at each stage of 
study—eg numbers potentially eligible, examined 
for eligibility, confirmed eligible, included in the 
study, completing follow-up, and analysed 

Methods, 
Supplementary 
Material 
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(b) Give reasons for non-participation at each 
stage 

Ibid. 

(c) Consider use of a flow diagram See below 

Descriptive data 14* (a) Give characteristics of study participants (eg 
demographic, clinical, social) and information on 
exposures and potential confounders 

Methods, 
Table 1, 
Results, 
Supplement 

(b) Indicate number of participants with missing 
data for each variable of interest 

Methods, 
Table 1 

(c) Summarise follow-up time (eg, average and 
total amount) 

Methods 

Outcome data 15* Report numbers of outcome events or summary 
measures over time 

Results, 
Supplement  

Main results 16 (a) Give unadjusted estimates and, if applicable, 
confounder-adjusted estimates and their precision 
(eg, 95% confidence interval). Make clear which 
confounders were adjusted for and why they were 
included 

Results, 
Supplement 

(b) Report category boundaries when continuous 
variables were categorized 

Not applicable 

(c) If relevant, consider translating estimates of 
relative risk into absolute risk for a meaningful time 
period 

Not applicable 

Other analyses 17 Report other analyses done—eg analyses of 
subgroups and interactions, and sensitivity 
analyses 

Results, 
Supplement 

Discussion  

Key results 18 Summarise key results with reference to study 
objectives 

Discussion 

Limitations 19 Discuss limitations of the study, taking into account 
sources of potential bias or imprecision. Discuss 
both direction and magnitude of any potential bias 

Discussion 

Interpretation 20 Give a cautious overall interpretation of results 
considering objectives, limitations, multiplicity of 
analyses, results from similar studies, and other 
relevant evidence 

Discussion 

Generalisability 21 Discuss the generalisability (external validity) of the 
study results 

Discussion 
Supplementary 
Material 

Other information  

Funding 22 Give the source of funding and the role of the 
funders for the present study and, if applicable, for 
the original study on which the present article is 
based 

Preamble 
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Reasons for exclusion: 
Received prior treatment (N= 9) 
Insufficient technical quality (N= 6) 
Pre-existent active malignant disease (N=3) 
Loss to follow-up earlier than 2-weeks postoperatively (N= 12) 
 
  

Examined for eligibility N=237 

Confirmed eligible N=207 

Included in the study N=207 

Analysed N=207 

Excluded 
N=30 
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