
Journal of

Clinical Medicine

Article

Clustering Heatmap for Visualizing and Exploring
Complex and High-dimensional Data Related to
Chronic Kidney Disease

Cheng-Sheng Yu 1,2,† , Chang-Hsien Lin 1,2,†, Yu-Jiun Lin 1,2, Shiyng-Yu Lin 1,2, Sen-Te Wang 1,2,
Jenny L Wu 1,2, Ming-Hui Tsai 3 and Shy-Shin Chang 1,2,*

1 Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
molytrigger@gmail.com (C.-S.Y.); 862077@h.tmu.edu.tw (C.-H.L.); b101096105@hotmail.com (Y.-J.L.);
daleslin@gmail.com (S.-Y.L.); wangader@gmail.com (S.-T.W.); jenny31325et@gmail.com (J.L.W.)

2 Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University,
Taipei 110, Taiwan

3 Preventive health center, Taipei Medical University Hospital, Taipei 110, Taiwan; 916048@h.tmu.edu.tw
* Correspondence: sschang0529@gmail.com; Tel.: +886-0227-372-18 (ext. 3966)
† Equal contribution authors.

Received: 22 January 2020; Accepted: 31 January 2020; Published: 2 February 2020
����������
�������

Abstract: Background: Preventive medicine and primary health care are essential for patients with
chronic kidney disease (CKD) because the symptoms of CKD may not appear until the renal function
is severely compromised. Early identification of the risk factors of CKD is critical for preventing
kidney damage and adverse outcomes. Early recognition of rapid progression to advanced CKD in
certain high-risk populations is vital. Methods: This is a retrospective cohort study, the population
screened and the site where the study has been performed. Multivariate statistical analysis was used
to assess the prediction of CKD as many potential risk factors are involved. The clustering heatmap
and random forest provides an interactive visualization for the classification of patients with different
CKD stages. Results: uric acid, blood urea nitrogen, waist circumference, serum glutamic oxaloacetic
transaminase, and hemoglobin A1c (HbA1c) were significantly associated with CKD. CKD was highly
associated with obesity, hyperglycemia, and liver function. Hypertension and HbA1c were in the
same cluster with a similar pattern, whereas high-density lipoprotein cholesterol had an opposite
pattern, which was also verified using heatmap. Early staged CKD patients who are grouped into
the same cluster as advanced staged CKD patients could be at high risk for rapid decline of kidney
function and should be closely monitored. Conclusions: The clustering heatmap provided a new
predictive model of health care management for patients at high risk of rapid CKD progression.
This model could help physicians make an accurate diagnosis of this progressive and complex disease.
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1. Introduction

Chronic kidney disease (CKD) poses a substantial challenge to global health policy because of
its health and economic burden [1]. Primary health care is vital for CKD because of the high global
prevalence (11%–13%) of underdiagnosed and undertreated patients with stage 3 CKD [2]. In Taiwan,
the prevalence of CKD is as high as 11.93% (approximately 2.74 million patients), resulting in a
potentially high mortality rate because of cardiovascular diseases and accounting for tremendous
health care expenditures [3]. Therefore, early identification of the risk factors for CKD is critical for
preventing kidney damage and adverse outcomes.
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Identification and staging of CKD rely on the measurement of glomerular filtration rate (GFR)
and albuminuria. The calculation of actual GFR by measurement of external filtration markers is
cumbersome and impractical. Moreover, clinical studies have found that external GFR markers are not
reliable predictors of risk of advanced CKD because of the inconsistency in their levels at different
stages of CKD [4–8].

Recently, machine learning techniques have showed success in prediction and diagnosis of
numerous critical diseases. In fact, one study found that CKD can be diagnosed with an accuracy
of 0.98, using supervised machine learning technique [9]. However, to the best of our knowledge,
there is still no attempt to classify and visualize CKD staging via machine learning technique. Given
that GFR measurement can be cumbersome and inconsistent, we aimed to use unsupervised learning
technique, hierarchical clustering with heatmap visualization to classify the CKD staging of patients.
The results of our study may identify patients who are categorized as having early stage CKD but have
physiological parameters similar to those with advanced-stage CKD. Thus, clinicians could provide
active health intervention to this group to minimize their risk of advanced renal disease.

2. Experimental Section

2.1. Study Design

This single-center, retrospective cohort study assessed the ability of the clustering heatmap to
classify and predict the risk of CKD in participants who underwent a self-paid health examination at
the Health Management Center (HMC) of Taipei Medical University Hospital (TMUH).

2.2. Setting

The study was conducted at TMUH, and patients’ electronic medical records were reviewed.
TMUH is a private, 800-bed teaching hospital in Taiwan. HMC of the TMUH receives 50–60 visits each
day. The Institutional Review Board of TMUH approved this study (TMU-JIRB No.: N201903080),
which was conducted in accordance with the original and amended Declaration of Helsinki. IRB
approval was obtained for this project before starting data collection and informed consent was waived
by the IRB owing to the retrospective nature of the study.

2.3. Inclusion and Exclusion Criteria

The population of interest was participants who underwent a self-paid health examination at the
HMC of TMUH. To be included in the analysis, the self-paid health examination participants must
have undergone a self-paid health examination comprising of an abdominal transient elastography
inspection using FibroScan 502 Touch (Echosens, Paris, France) and urine test from March 2015
to December 2019. Exclusion criteria included, participants the age of participants ≤ 18 years old,
and participants that do not have follow-up urine test, within 3 months when the first urine test is
found to be abnormal.

2.4. Data

All participants undertook the regular processes of HMC. The participants were interviewed by
well-trained personnel, who verified the correctness of the participants’ self-completed questionnaire
on demographics, existing medical conditions, and use of medication. In addition, the personnel
confirmed adherence to health examination prerequisites (e.g., overnight fasting for at least 8 h) for
the package chosen by the participants. Those found to have not followed the prerequisites were
suggested to book another appointment. Then, anthropometrics (weight, height, waist circumference,
and arterial pressures) were measured. The instruments were regularly calibrated per the manufacturer’s
specifications. The samples of blood, urine, and specimens required per the chosen package were
collected for laboratory tests. Regular laboratory test items included alpha-fetoprotein, hemoglobin
A1c (HbA1c), serum glutamic oxaloacetic transaminase (GOT), serum glutamic-pyruvic transaminase
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(GPT), uric acid (UA), creatinine, blood urea nitrogen (BUN), total protein, albumin, globulin,
albumin/globulin ratio (A/G), total bilirubin, direct bilirubin, alkaline phosphatase, gamma-glutamyl
transpeptidase (r-GT), total cholesterol, low-density lipoprotein cholesterol (LDL), high-density
lipoprotein cholesterol (HDL), LDL/HDL ratio, total cholesterol/HDL ratio, triglycerides, fasting blood
sugar, and thyroid-stimulating hormone (TSH). Urine specimens were obtained in the morning and
scheduled to avoid menstrual periods and check proteinuria, hematuria, red blood cell cast, white
blood cell cast, and other urine sediment abnormalities. A repeated check on urine specimens was
performed within 3 months, if an abnormal urine test is obtained. For each FibroScan (502 Touch;
Echosens, Paris, France) inspection, two scores were reported: controlled attenuation parameter (CAP)
score and liver stiffness parameter (E score) [10–13].

2.5. Definitions of Measurement Cutoffs and Calculations

Body mass index (BMI) categories were defined according to the ranges established for Asian
populations by the Ministry of Health and Welfare of Taiwan as follows: obesity, ≥27 kg/m2; overweight,
24–26.9 kg/m2; and normal weight, <23.9 kg/m2 [14]. The cutoff for waist circumference for abdominal
obesity was ≥90 cm for men and ≥80 cm for women, using the Asian-specific cutoff points established
by the International Diabetes Federation [15]. Estimated GFR (eGFR) was calculated using equations
for the Modification of Diet in Renal Disease (MDRD) formula for Chinese patients as follows: 175 ×
(Scr) −1.234

× (age) −0.179
× 0.79 (if female) [16]. In this study, CKD was classified into five stages using

Kidney Outcomes Quality Initiative (KDOQI) [17] guidelines using thresholds of eGFR within the CKD
range and/or evidence of structural renal changes, e.g., proteinuria. In our study, we used equations
for the Modification of Diet in Renal Disease for Chinese patients with CKD [16] measured in the
following manner: 175 × (Scr) −1.234

× (Age) −0.179
× 0.79 (if female). The definition of the five stages of

CKD was stage-1 (eGFR > 90 mL/min/1.73 m2 with serial proteinuria positive); stage-2 (eGFR 60–89
mL/min/1.73 m2 with serial proteinuria positive); stage-3 (eGFR 30–59 mL/min/1.73 m2; Stage-4 (eGFR
29–15 mL/min/1.73 m2); and stage-5 (eGFR < 15 mL/min/1.73 m2). Serial proteinuria was defined as
two positive proteinuria in two separate urine tests over a period of 3 months.

2.6. Statistical Analysis

Statistical analysis was conducted using R (version 3.6.1) or SPSS (version 17.0) software.
In Table 1, the baseline characteristics of the enrollees were described, and the p-value denotes
comparison between CKD stage 1 and CKD stage 2–5 participants. Binary variables were presented
as a frequency and percentage and were compared using the Chi-squared test or Fisher’s exact test.
The Mann–Whitney U-test, a nonparametric test, was used to compare the medians of continuous
variables. In Table 2, multivariate logistic regression was conducted to assess the significance of clinical
data, and p-value denotes whether the variable is statistically significant. In addition, variance inflation
factor (VIF) was used to check multicollinearity [18,19]. In all analysis, p-value < 0.05 was considered
statistically significant.

2.6.1. Receiver Operating Characteristic Curve

Receiver operating characteristic (ROC) curves were used to illustrate the diagnostic ability of
machine learning classification. Area under the curve (AUC), true-positive rate (also called sensitivity
or recall), and false-positive rate (related to specificity) are shown in a graphical plot [20].
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Table 1. Descriptive statistics and testing of medical variables in health examination data with chronic
kidney disease.

CKD Stage 1 CKD Stage 2 CKD Stage 3–5

n1 = 1715 n2 = 370 n3 = 202
Factors No. (%) No. (%) No. (%) p-Value

Sex
Female 1017 (59.3%) 96(25.9%) 63(31.2%) <0.001
Male 698 (40.7%) 274(74.1%) 139(68.8%)

Hypertension
Normal 1299 (75.7%) 214(57.8%) 112(55.4%) <0.001

High 416 (24.3%) 156(42.2%) 90(44.6%)

Median (IQR)
Age, years 42 (35–51) 53 (46–60.75) 63.5 (55.25–73) <0.001

Albumin, g/dL 4.6 (4.4–4.8) 4.6 (4.5–4.8) 4.3 (3.8–4.5) <0.001
BMI, kg/m2 23.4 (21.1–25.99) 24.7 (22.7–27.02) 25.05 (22.15–27.98) <0.001

WC, cm 80.5 (73.5–88) 86 (80–92) 87.58 (82–95.75) <0.001
AFP, ng/mL 2.35 (1.62–3.27) 2.62 (1.98–3.62) 2.69 (2.15–4.48) <0.001
ALKp, IU/L 60 (50–72) 67 (55–79) 79.69 (65.68–96) <0.001
GOT, IU/L 20 (17–24) 23 (20–28) 23.1 (19–34) <0.001
GPT, IU/L 18 (13–28) 23 (17–33) 22 (15–35) <0.001

T_Bilirubin, mg/dL 0.6 (0.4–0.8) 0.6 (0.5–0.8) 0.6 (0.4–0.9) 0.002
γGT, U/L 17 (12–27) 23 (17–34) 34.63 (21–70.90) <0.001

CAPscore, dB/m 241 (208–281) 260 (227–301.8) 246 (203–296.5) <0.001
Escore, kPa 4.3 (3.5–5.1) 4.6 (3.7–5.6) 7.9 (4.925–13.525) <0.001

BUN, mg/dL 12 (10–14.34) 15 (13–18) 23.5 (16.78–38.82) <0.001
Creatinine, mg/dL 0.7 (0.6–0.8) 1 (1–1.1) 1.7 (1.425–3.9) <0.001

UA, mg/dL 5.1 (4.3–6.3) 6.3 (5.5–7.3) 6.6 (5.7–7.975) <0.001
Cholesterol, mg/dL 187 (165–209) 191.5 (165–217) 169 (130.2–195) <0.001

HbA1C, % 5.4 (5.2–5.6) 5.525 (5.3–5.9) 5.7 (5.3–6.3) <0.001
HDL, mg/dL 54 (45–65) 49 (41–58) 46 (37–57.9) <0.001
LDL, mg/dL 121 (102–143) 131 (102.2–152) 107 (80.25–128.75) <0.001

TSH, µIU/mL 1.81(1.2–2.545) 2.075 (1.465–2.835) 2.009 (1.54–2.565) <0.001

CKD, chronic kidney disease; BMI, body mass index; WC, waist circumference; AFP, alpha-fetoprotein; ALKp,
alkaline phosphatase; GOT, serum glutamic-oxalocetic transaminase; GPT, serum glutamic-pyruvic transaminase;
γGT, γ-Glutamyl transpeptidase; BUN, blood urea nitrogen; UA, uric acid; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; HbA1C, glycated hemoglobin; TSH, thyroid-stimulating hormone; IU, international units;
U, µmol/min; µIU, micro-international units. The upper part includes categorical variables and the others are
continuous variables, which are general physiological indices in the first section, hepatic indices and nephritic
elements in the second section, and blood lipid and thyroid indices in the final section.

2.6.2. Random Forest

Random decision forest, an ensemble learning method for classification, regression, or other
applications based on a decision tree structure, was used to extract the most relevant variables from
those biomarkers. The random forest model created multiple decision trees and then combined the
output generated by each decision tree [21,22]. This approach removed the bias that a decision tree
model might introduce in the system, thus considerably improving the predictive power. All procedures
in the random forest model were conducted in the R package “randomForest” [23].

2.6.3. Missing Values

Data with missing values were regulated by an expectation–maximization algorithm, which was
an iterative procedure and preserved the relationship with other variables. After deletion of variables
with missing values >10% of the sample size, 23 variables were retained [24].
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Table 2. Multivariate logistic regression analysis of whole biomarkers related to chronic kidney disease.

Factors Odds Ratio 95% CI OR VIF ∆VIF p-Value

BMI, kg/m2 0.904 (0.854, 0.958) 3.977 3.975 0.001 *

WC, cm 1.046 (1.023, 1.069) 4.170 4.169 <0.001 *

Cholesterol, mg/dL 0.983 (0.973, 0.994) 10.598 ∆ 0.002 *

Hypertension 0.213 (0.654, 1.099) 1.123 1.122 0.213
HbA1C, % 1.248 (1.087, 1.434) 1.223 1.178 0.002 *

HDL, mg/dL 1.005 (0.994, 1.016) 1.945 1.334 0.363
LDL, mg/dL 1.016 (1.005, 1.028) 10.286 1.077 0.004 *

Albumin, g/dL 0.793 (0.536, 1.174) 1.355 1.364 0.247
ALKp, IU/L 1.001 (0.995, 1.006) 1.202 1.209 0.761
GOT, IU/L 1.030 (1.012, 1.050) 3.832 3.801 0.001 *

GPT, IU/L 0.977 (0.966, 0.988) 3.847 3.803 <0.001 *

γGT, U/L 1.002 (0.997, 1.006) 1.452 1.448 0.425
T_Bilirubin, mg/dL 1.088 (0.930, 1.273) 1.182 1.180 0.291

CAPscore, dB/m 1.003 (1.000, 1.006) 1.646 1.647 0.044 †

Escore, kPa 1.012 (0.985, 1.040) 1.622 1.595 0.393
AFP, ng/mL 1.000 (1.000, 1.000) 1.141 1.129 0.528
BUN, mg/dL 1.229 (1.190, 1.270) 1.063 1.062 <0.001 *

UA, mg/dL 1.478 (1.349, 1.619) 1.346 1.333 <0.001 *

TSH, µIU/mL 1.047 (1.004, 1.091) 1.016 1.015 0.031

* indicates the p value < 0.001, † indicates the p-value < 0.05. BMI, body mass index; WC, waist circumference; HbA1C,
glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALKp, alkaline phosphatase;
GOT, serum glutamic-oxalocetic transaminase; GPT, serum glutamic-pyruvic transaminase; γGT, γ-Glutamyl
transpeptidase; AFP, alpha-fetoprotein; BUN, blood urea nitrogen; UA, uric acid; TSH, thyroid-stimulating hormone;
IU, international units; U, µmol/min; µIU, micro-international units. Chronic kidney disease is the dependent
variable, and all the biomarkers are the independent variables in the logistic analysis. The odds ratio represents the
exp(β), which is the exponential of the estimator in logistic regression with 95% confidence interval. In addition,
the variance inflation factor (VIF) for each variable is calculated to check multicollinearity. Factors with high odds
ratio or significant p-value are marked in bold. Factors with high VIF values are shaded. ∆VIF records the variance
inflation factor (VIF) after removing the predictor variables with high VIF value.

2.6.4. Multivariate Analysis

Multivariate analysis, which involved observation and analysis of more than one statistical
outcome variable simultaneously, was employed as the analysis of large multivariable data sets was
a major challenge for life science research. Multivariate analysis has been made much easier with
inexpensive, fast computers and powerful analytical software. The application of multivariate analysis
included dimensionality reduction, clustering, and variable selection. Here, a heatmap and hierarchical
clustering were used [25].

2.6.5. Heatmap and Clustering

A heatmap was used to visualize the pattern of the medical variables generated through
classification. The heatmap, a graphical representation of data with the individual values contained in
a matrix, was represented as grids of colors plus clustering on both rows and columns. Clustering
was applied to group a set of patients according to their health examination data. Participants were
divided into different clusters using Ward’s hierarchical clustering method, and the patterns of their
biomarkers were shown in colors in the center of the heatmap. The heatmap was available from the
package “gplot” as an enhanced version or its basic function stats in R [26–31].

3. Results

A total of 2287 participants were enrolled. The whole procedure from data collection to statistical
analysis and outcome is shown in Figure 1. After a series of data-cleaning procedures, the participants
were stratified into three groups (stage 1, stage 2, and stage 3–5) and compared on Table 1. A higher
percentage of female was observed in stage 1 (59.3%) as compared to stage 2 (25.9%) and stage 3–5
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(31.2%). As expected, stage 1 CKD participants were generally younger and healthier than stage 2 and
stage 3–5 participants.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 7 of 13 
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Figure 1. A flowchart of the step-by-step procedure from data collection and preprocessing to
statistical analyses.

Variables that had prominent effects on CKD were assessed by multivariate logistic regression
(Table 2). Two biomarkers (BUN, odds ratios of 1.229 and UA, odds ratios of 1.478) related to
kidney function and one biomarker related to metabolic syndrome (HbA1C, odds ratios of 1.248)
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were found to have substantial positive association with CKD status. Other metabolic syndrome
markers that exhibited significant positive association with CKD status were BMI, and WC. In addition,
significant association was observed for three hepatic markers (GOT, GPT and CAPscore). VIF detected
multicollinearity between cholesterol and LDL; hence, cholesterol was excluded from subsequent
multivariate analyses.

For every variable, the weights of importance measured using random forest are depicted in
Figure 2a. The top rank of variables, which had leading scores of mean decrease accuracy in random
forest, were similar to the multivariable analysis, Creatinine (87.2%), BUN (24.4%), UA (18.3%), HbA1c
(17.2%), Escore (15%), γGT (14.7%), and GPT (14.2%). The AUC of the random forest model using
ROC was approximately 0.984 (Figure 2b).
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Figure 2. (a) Variable importance ordered by the accuracy of mean decrease in random forest.
The leading variables obtained by random forest list in a with a darker blue; conversely, less prominent
variables are indicated in a lighter blue. (b) area under the ROC curve of random forest. The rainbow
bar indicates the value of specificity in the false-positive rate.

Finally, multivariate analysis using clustering heatmaps described the classification of CKD stages
and related biomarkers (Figure 3). In the row clustering step, most patients with early CKD (stage
1 in dark green; stage 2 in sky blue) were grouped in the lower cluster, whereas most patients with
more advanced CKD (stage 3 in pink; stage 4 in red violet; stage 5 in red) were grouped into the
center clusters. In addition, every biomarker was clustered into different subgroups on the column
side according to their color patterns in the center grids of heatmap. Hepatic biomarkers (blue) were
grouped together to the right side with renal biomarkers (light green) because their patterns were more
similar than the others. Metabolic (green and salmon) and lipid biomarkers (light blue) were grouped
into the left cluster as their patterns were more similar. HDL had an opposite color pattern because
higher HDL indicates a healthy state. Heatmaps provided a systematic and clustered visualization of
the analyzed data, facilitating monitoring of CKD patients according to their health examination data
(Figure 3).
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Figure 3. A clustering heatmap illustrating the classification of chronic kidney disease (CKD) in health
examination data. Both the rows of CKD patients and the columns of biomarkers have been clustered,
respectively; row data is also normalized into Z-score, simultaneously. Moreover, the mapping grids in
the center have been colored according to their z scores.

4. Discussion

Traditionally, CKD stages have been defined by only eGFR, an approach that is neither punctilious
nor precise, because CKD is a progressive and complex disease. This is especially complicated in early
stage CKD patients with a steep decline in their renal function. Therefore, it is challenging for clinicians
to predict the progression of CKD and to identify early patient groups at risk of rapid deterioration
within the same stage of CKD. Using random forest analysis, we found that the significant variables
that played principal roles in CKD were Creatinine, BUN and UA as nephritic factors; HbA1C as blood
glucose factors; Escore, γGT and GPT as hepatic factors. In addition, this study found that a clustering
heatmap was a practical and accurate method to classify CKD patients into several clusters as well as
perform multigroup analysis. In addition, heatmaps that involved plenty of biomarkers were more
dynamic, equitable, and comprehensive than a fixed criterion measured by MDRD considering only
age, race, sex, and creatinine.

There is a paucity of studies that used machine learning to predict CKD, and we found one
study that have very similar study design and results like ours. Using hospital data from India,
Anusorn Charleonnan et al. found that the accuracy of prediction in CKD reached 0.98, very similar
to what we have found (Figure 2b) [9]. However, Charleonnan et al. had not discussed and rank
the significant factors, which contributed to prediction of CKD. Our study not only showed the
importance of risk factors in predicting CKD by ensemble learning model, but also discussed the
outcomes and meanings in clinical medicine. Furthermore, we have applied unsupervised learning
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technique, hierarchical clustering with heatmap visualization to classify and monitor patients in
different groups. This approach might be useful for prediction and prevention of other chronic diseases
that involved staging.

For heatmaps, we used Euclidean distance as the distance measure and Ward’s method for
unsupervised clustering. The clustering may be upgraded using other measures or algorithms.
In addition, the heatmap may be more robust and dynamic with adequate sample size of patients
at different stages or by using other specific and remarkable variables. Accordingly, new patients
could be assessed using this clustering heatmap system based on their health conditions; if the new
patients, especially those in early stages of CKD, had patterns similar to those in advanced CKD groups,
precautionary treatment could be administered. In the clustering of medical factors, GPT, GOT and
UA were in the same cluster with a similar pattern, whereas HDL, being a sign of good health, had the
opposite pattern.

The CAP and E score by FibroScan are accurate non-invasive methods for assessing liver steatosis
and fibrosis in patients with NAFLD [32]. CKD and NAFLD share a common pathological pathway
and many important cardiometabolic risk factors. Moreover, the presence of pathophysiological
interrelationships between the liver and kidney is well established and is supported by the presence of
the hepatorenal syndrome, which may occur in patients with decompensated cirrhosis, regardless of
its etiology. Patients with NAFLD had a significantly higher risk of incident CKD than those without
NAFLD. Patients with more ‘severe’ NAFLD were also more likely to develop incident CKD [33].
NAFLD per se affects CKD through lipoprotein metabolism and hepatokine secretion, and conversely,
targeting the renal tubule by sodium-glucose cotransporter 2 inhibitors can improve both CKD and
NAFLD [34].

The result on hyperuricemia can be explained by association with the acceleration of GFR decline
and CKD progression [35–37]. Previous research found that dyslipidemia in CKD is characterized by
elevated triglycerides and decreased and dysfunctional HDL [38], and our results suggest that
hypertension, hyperglycemia, and their combination may be associated with the incidence of
CKD [39–41]. The association with HbA1C can be explained by diabetic patients being strongly
associated with both albuminuria and reduced eGFR, and in the US it was found that diabetic patients
had a substantially higher prevalence of CKD [42].

There are several limitations in this study. First, this study investigated only health-conscious
participants that underwent a self-paid health examination, and the number of patients with advanced
CKD may be underrepresented. Having approximately the same percentage of patients across different
CKD stages will establish a much better model, and hence repeating this study by selectively including
more advanced CKD patients is one of the future goals of this study. Second, this is a retrospective study,
and confounding cannot be excluded. Hence, the subsequent step is to conduct a large prospective
study to test the accuracy and usefulness of the predictive model. Third, this study concerned mainly
Han Chinese population residing in Taiwan, and the study results needs to be repeated and validated
in other populations. Fourth, this study failed to include some new CKD diagnostics that may further
improve the prediction of CKD staging. For example, it was recently found that salivary ferric ion
reducing antioxidant parameter can distinguish patients with mildly to moderately decreased kidney
function from those with severe renal impairment with an accuracy of 100% (AUROC) [43].

5. Conclusions

Using machine learning technologies, we have generated a new predictive model of health care
management for patients within the high-risk CKD group. However, considering the retrospective
nature of this study, a sufficiently powered prospective cohort study is needed to conclusively address
the usefulness of this predictive model to help physicians make an accurate diagnosis of the staging of
CKD, which changes over time.
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