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Abstract: Background: Machine learning (ML) is a promising methodology for classification and
prediction applications in healthcare. However, this method has not been practically established for
clinical data. Hyperuricemia is a biomarker of various chronic diseases. We aimed to predict uric acid
status from basic healthcare checkup test results using several ML algorithms and to evaluate the
performance. Methods: We designed a prediction model for hyperuricemia using a comprehensive
health checkup database designed by the classification of ML algorithms, such as discrimination
analysis, K-nearest neighbor, naïve Bayes (NBC), support vector machine, decision tree, and random
forest classification (RFC). The performance of each algorithm was evaluated and compared with the
performance of a conventional logistic regression (CLR) algorithm by receiver operating characteristic
curve analysis. Results: Of the 38,001 participants, 7705 were hyperuricemic. For the maximum
sensitivity criterion, NBC showed the highest sensitivity (0.73), and RFC showed the second highest
(0.66); for the maximum balanced classification rate (BCR) criterion, RFC showed the highest BCR
(0.68), and NBC showed the second highest (0.66) among the various ML algorithms for predicting
uric acid status. In a comparison to the performance of NBC (area under the curve (AUC) = 0.669,
95% confidence intervals (CI) = 0.669–0.675) and RFC (AUC = 0.775, 95% CI 0.770–0.780) with
a CLR algorithm (AUC = 0.568, 95% CI = 0.563–0.571), NBC and RFC showed significantly better
performance (p < 0.001). Conclusions: The ML model was superior to the CLR model for the prediction
of hyperuricemia. Future studies are needed to determine the best-performing ML algorithms based
on data set characteristics. We believe that this study will be informative for studies using ML tools
in clinical research.
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1. Background

In 2016, the deep-mining, computer-programmed Go player alphaGo beat one of the best Go
players, Lee Sedol, by a score of 4:1 [1]. While artificial intelligence, machine learning (ML) and deep
learning have been increasingly applied in various areas of society, they have not been applied earnestly
in clinical research. Most studies using clinical data to date have been analyzed with conventional
statistical models. ML algorithms have notable advantages over conventional statistical models.
First, ML does not require a specific hypothesis to explain the association between multiple predictors
and dependent outcomes. Therefore, unknown significance data that are not expected to be important
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can be considered in the analysis instead of being overlooked [2]. Second, clinical input factors have
complex interactions, and therefore, they are not completely independent. Conventional statistical
models have limitations in terms of integrating these issues. In contrast, ML can consider all possible
interactions between various input data [3].

In the era of clinical big data, ML methodologies may uncover new information from electronic
medical record (EMR)-based clinical big data that has not been discovered by conventional research
methods, and thus, they may contribute to medical developments. In this study, we introduced an
ML analysis method that has not been applied to clinical data for clinical big data analysis to lay the
foundation for clinical data research in the era of artificial intelligence. Hyperuricemia is considered
to be a risk factor for the development of metabolic, renal, and cardiovascular diseases [4], and its
prediction could be helpful in preventing various chronic diseases. We used several ML tools and
algorithms to predict uric acid status based on basic healthcare checkup test results.

2. Methods

2.1. Data Acquisition

This study aimed to include Korean men and women over 40 years of age who had received
self-paid, comprehensive health checkups at Gangnam Center, Seoul National University Hospital,
from January 2005 to December 2015. We retrospectively collected data. The uric acid level was
measured during comprehensive health checkups at Gangnam Center in addition to tests performed
in national checkups. In Korea, the National Health Insurance Corporation (NHIC) funds basic
health checkup examination fees annually or biannually. The checkups include blood tests (white
blood cell count (WBC), hemoglobin, fasting glucose level, total cholesterol, glutamic oxaloacetic
transaminase (GOT), glutamic pyruvic transaminase (GPT), gamma-glutamyl transferase (GGT),
creatinine, triglyceride, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL)
cholesterol, urine albumin, anthropometric measurements (blood pressure, height, weight, body mass
index, and waist circumference), and self-recorded questionnaires (past medical history of diabetes,
dyslipidemia, and hypertension; alcohol intake and smoking). It does not include uric acid levels.

Hyperuricemia is commonly defined in clinical practice as a serum uric acid level above 7.0
mg/dL for men and above 6.0 mg/dL for women [4]. In our interviews, we asked participants
about their history of being diagnosed with diabetes/hypertension/dyslipidemia and whether they
were currently taking medications for these conditions. Smoking status was subdivided into none,
ex-smokers, and current smokers. Alcohol consumption was defined as no (alcohol consumption
≤20 g/day) and yes (consumption >20 g/day).

2.2. Study Design

After the collection of the data set, we performed the study in the steps described below.
Step 1. When an observation was missing any categorical predictors, we removed the observation

from the data set.
Step 2. When an observation was missing any continuous predictors, we replaced these items

with the mean value of the non-missing observations for the predictor.
Step 3. For each of the algorithms outlined in Table 1, we generated a set of parameters for the

purpose of parameter tuning in the algorithm.
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Table 1. Compared machine learning algorithms.

No. Machine Learning Scheme Method in Detail Data Splitting Method

1 Discrimination analysis
classification (DAC)

K-fold cross validation
with k = 5

Training set ratio = 0.7,
test set ratio = 0.3

2 k-nearest neighbor classification
(KNNC)

K-fold cross validation
with k = 5

Training set ratio = 0.7,
test set ratio = 0.3

3 Naïve Bayes classification (NBC) K-fold cross validation
with k = 5

Training set ratio = 0.7,
test set ratio = 0.3

4 Support vector machine
classification (SVMC)

K-fold cross validation
with k = 5

Training set ratio = 0.7,
test set ratio = 0.3

5 Decision tree classification (DTC) K-fold cross validation
with k = 5

Training set ratio = 0.7,
test set ratio = 0.3

6 Random forest classification (RFC) K-fold cross validation
with k = 5

Training set ratio = 0.7,
test set ratio = 0.3

Step 4. For each of the parameter sets generated in step 3, we trained the algorithm on the training
set and calculated performance measures, such as accuracy, sensitivity, specificity, prediction BCR,
and F1-score, on the test set (Table 2) [5–7].

Table 2. Performance measures and their definitions.

Notation Description Upper Bound

Accuracy (TP + TN)/(TP + FN + FP + TN) 1 when FN = 0 and FP = 0

Sensitivity (Recall, True positive rate) TP/(TP + FN) 1 when FN = 0

Specificity (True negative rate) TN/(FP + TN) 1 when FP = 0

Precision TP/(TP + FP) 1 when FP = 0

Balanced classification rate (SN × SP)1/2 1 when SN = 1 and SP = 1

F1-score (2 × SN × Precision)/(SN + Precision) 1 when SN = 1 and Precision = 1

TP: true positive; TN: true negative; FP: false positive; FN: false negative; SN: sensitivity; and SP: specificity.

In particular, we adopted K-fold cross validation with K equal to five; The total data were
divided into a training-validation set (ratio of 0.7) and a test set (ratio of 0.3). The training-data set
was subdivided into K non-overlapping folds, K-1 folds of which were used for training, and one
remaining fold was used for validation. We obtained the K-fold cross-validated results by allowing
each of the K folds to be used as the validation fold and averaging the obtained validation results
about K.

Step 5. Now, given that the number of K-fold cross-validated results was the same as the parameter
set size, we chose some of the parameter sets according to the criteria below.

Step 5-1. We chose a parameter set that maximizes the sensitivity.
Step 5-2. We chose a parameter set that maximizes the specificity.
Step 5-3. We chose a parameter set that maximizes BCR (balanced classification rate) as a metric

that considers both sensitivity and specificity simultaneously.
Step 5-4. Likewise, we chose a parameter set that maximizes F-score (F-score: harmonic mean of

recall and precision) with beta equal to one.
Step 6. Once we found a parameter set by maximizing the performance measures in step 5,

we trained the algorithm again on the training set, but this time, we trained the algorithm on all of the
K folds instead of only the K-1 folds.

Step 7. Now, the trained model from step six was used to evaluate the performance measures on
the test set.
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Step 8. We evaluated the performance of the developed models and compared the best-performing
algorithms of each ML model with conventional logistic regression (CLR) by measuring the area under
the receiver operating characteristic (ROC) curves (AUC) on the combined set, which includes the
training and test sets. Comparisons of the ROC curves were done with the DeLong test [8].

2.3. Evaluated Machine Learning Models

We evaluated the most common ML models, namely, discriminant analysis classification (DAC) [9],
decision tree classification (DTC) [10], K-nearest neighbor classification (KNNC) [11,12], naïve Bayes
classification (NBC) [13,14], random forest classification (RFC) [15,16], and support vector machine
classification (SVMC) [17,18].

2.4. Tools for Machine Learning and Statistical Analysis

ML analysis was performed using MATLAB 2016B (MathWorks Inc., Natick, MA, USA). In the
analyses using conventional statistics, a chi-squared test or ANOVA was used for categorical variables,
and a Student’s t-test was used for continuous variables. CLR analysis was performed in the prediction
model design. In the performance comparison between conventional statistics and ML, a ROC curve
was used by calculating its AUC. Conventional statistics were conducted with R 3.2.2 (R Development
Core Team; R Foundation for Statistical Computing, Vienna, Austria).

2.5. Ethics Statement

The Institutional Review Board of Seoul National University Hospital approved the study protocol
(IRB number 1706-058-859), and the study was conducted in accordance with the Declaration of
Helsinki. Informed consent was waived by the Board.

3. Results

3.1. Baseline Characteristics

Data from a total of 55,227 persons were collected during health checkups. Cases with any missing
categorical predictors were removed, and data from a total of 38,001 people were analyzed in this study.
The number of people who met the definition of hyperuricemia was 7705 (25.4%). The demographic
features and characteristics of the population are shown in Table 3.
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Table 3. Demographics features of the included population.

Normal Uric Acid Level
(N = 30,296)

Hyperuricemia (N =
7705) p

Sex (N, %)
Male 19,540 (64.5%) 6764 (87.8%)

<0.001Female 10,756 (35.5%) 941 (12.2%)

Age 52.1 ± 9.4 50.7 ± 9.6 <0.001

Systolic blood pressure 116.6 ± 13.9 120.0 ± 13.3 <0.001

Diastolic blood pressure 75.6 ± 10.8 79.2 ± 10.7 <0.001

Height (cm) 166.2 ± 8.0 169.3 ± 7.1 <0.001

Weight (kg) 65.2 ± 11.0 72.4 ± 10.9 <0.001

Body mass index (m2/kg) 23.5 ± 2.8 25.2 ± 2.9 <0.001

Waist circumference 84.7 ± 7.9 89.4 ± 7.7 <0.001

White blood cell count
(cells/mL) 5.4 ± 1.5 5.9 ± 1.7 <0.001

Hemoglobin (g/dL) 14.4 ± 1.5 15.1 ± 1.3 <0.001

Glucose (mg/dL) 97.6 ± 19.5 99.0 ± 18.2 <0.001

Total cholesterol (mg/dL) 193.1 ± 34.2 200.8 ± 36.0 <0.001

GOT (IU/L) 24.4 ± 14.8 28.5 ± 16.7 <0.001

GPT (IU/L) 25.8 ± 24.6 33.9 ± 24.9 <0.001

GGT (IU/L) 36.0 ± 42.7 55.3 ± 63.8 <0.001

Creatinine (mg/dL) 0.9 ± 0.2 1.0 ± 0.2 <0.001

Triglyceride (mg/dL) 108.0 ± 69.9 144.8 ± 95.6 <0.001

HDL cholesterol (mg/dL) 53.3 ± 12.6 49.3 ± 11.1 <0.001

LDL cholesterol (mg/dL) 121.8 ± 28.9 129.4 ± 31.1 <0.001

Urine albumin, Positive (N, %) 363 (1.2%) 203 (2.6%) <0.001

Smoking (N, %) <0.001
None 14,274 (47.1%) 2198 (28.5%)
Ex-smoker 9891 (32.6%) 3375 (43.8%)
Current smoker 6131 (20.2%) 2132 (27.7%)

Alcohol, Heavy (N, %) 16,236 (53.6%) 5298 (68.8%) <0.001

Diabetes, Yes (N, %) 2311 (7.6%) 508 (6.6%) 0.002

Hypertension, Yes (N, %) 6003 (19.8%) 2169 (28.2%) <0.001

Dyslipidemia, Yes (N, %) 4765 (15.7%) 1531 (19.9%) <0.001

3.2. Performance of the Respective Machine Learning Algorithms in Test Set Population

We performed six ML methods, namely, DAC, DTC, KNNC, NBC, RFC, and SVMC. For the
algorithms shown in Table 1, the obtained results are shown in Supplement Table S1.

3.3. Overall Comparison of Respective Machine Learning Models

Table 4 summarizes the performance of the different predictive models in the training and test
sets for the maximum sensitivity criterion and the maximum BCR criterion. With our K-fold cross
validation at K equal to five, severe degradation was not encountered due to overfitting. Since our
model is intended to identify the population at risk for hyperuricemia, we developed a model that had
a maximum sensitivity criterion as the primary target. For the maximum sensitivity criterion model,
the best performance was obtained by the NBC algorithm, which had an accuracy of 0.63, sensitivity of
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0.73, and specificity of 0.63 on the test set, and the second-best performance was by the RFC algorithm.
However, considering the imbalance of the uric acid data sets, we also aimed for a maximum BCR
criterion, and the RFC algorithm showed the best performance with an accuracy of 0.70, sensitivity of
0.64, and specificity of 0.71 on the test set, and NBC had the second-best performance.

Table 4. Comparison of model performance for maximum sensitivity criterion and maximum
BCR criterion.

Model
Training Set Test Set

Accuracy SN SP BCR Precision F1 Score Accuracy SN SP BCR Precision F1 Score

For maximum sensitivity criterion

DAC 0.70 0.58 0.73 0.65 0.35 0.44 0.70 0.59 0.73 0.65 0.37 0.45

KNNC 1 1 1 1 1 1 0.72 0.34 0.82 0.53 0.34 0.34

NBC 0.62 0.73 0.60 0.66 0.31 0.44 0.63 0.73 0.60 0.66 0.33 0.45

SVMC 0.53 0.48 0.54 0.51 0.21 0.29 0.52 0.48 0.54 0.51 0.22 0.30

DTC 0.80 0.10 0.97 0.31 0.52 0.17 0.78 0.08 0.97 0.28 0.49 0.14

RFC 0.78 0.88 0.75 0.81 0.47 0.61 0.68 0.66 0.69 0.67 0.36 0.47

For maximum BCR criterion

DAC 0.70 0.58 0.73 0.65 0.35 0.44 0.70 0.59 0.73 0.65 0.37 0.45

KNNC 1.00 1.00 1.00 1.00 1.00 1.00 0.72 0.34 0.82 0.53 0.34 0.34

NBC 0.62 0.73 0.60 0.66 0.31 0.44 0.63 0.73 0.60 0.66 0.33 0.45

SVMC 0.53 0.48 0.54 0.51 0.21 0.29 0.52 0.48 0.54 0.51 0.22 0.30

DTC 0.80 0.10 0.97 0.31 0.52 0.17 0.78 0.08 0.97 0.28 0.49 0.14

RFC 0.73 0.71 0.73 0.72 0.40 0.51 0.70 0.64 0.71 0.68 0.37 0.47

SN: sensitivity; SP: specificity; BCR: balanced classification rate; DAC: discriminant analysis classification; KNNC:
K-nearest neighbor classification; NBC: naïve Bayes classification; SVMC: support vector machine classification;
DTC: decision tree classification; and RFC: random forest classification.

3.4. Performance Comparison with Conventional Logistic Regression Model

We compared the best-performing algorithms for the maximum sensitivity criterion, NBC and
RFC, with the CLR algorithm using the AUC.

The results are shown in Table 5. The NBC (AUC = 0.669, 95% CI = 0.669–0.675) and
RFC (AUC = 0.775, 95% CI 0.770–0.780) models showed better performance than the CLR model
(AUC = 0.568, 95% CI = 0.563–0.571) with statistical significance (p < 0.001).

Table 5. Performance comparison with conventional logistic regression model for total set (maximum
sensitivity criterion).

AUC 95% Confidence Interval p for Comparison with CLR

CLR 0.568 0.563–0.572 Reference

NBC 0.669 0.663–0.675 <0.001

RFC 0.775 0.770–0.780 <0.001

DAC 0.661 0.655–0.667 <0.001

KNNC 0.8723 0.868–0.877 <0.001

SVMC 0.515 0.509–0.522 <0.001

DTC 0.537 0.534–0.541 <0.001

CLR: conventional logistic regression; NBC: naïve Bayes classification; RFC: random forest classification; DAC:
discriminant analysis classification; KNNC: K-nearest neighbor classification; SVMC: support vector machine
classification; DTC: decision tree classification; and AUC: area under the curve.
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4. Discussion

In this paper, we compared various ML algorithms, namely, DAC, KNNC, NBC, SVMC, DTC,
and RFC, for the prediction of hyperuricemia using basic health checkup data. We found that NBC
achieved the best performance and that RFC had the second-best performance in terms of sensitivity
on the test set. For BCR, on the other hand, the RFC algorithm performed the best and NBC was
the second best on the training set. When we compared the performance of ML algorithms and CLR
analysis, ML algorithms had higher prediction power, as determined by AUC [8]. A large set of
EMR-based clinical data can be used for the prediction of various healthcare issues by ML analysis.

In recent years, ML, artificial intelligence and deep learning have been increasingly used in
various fields [19–21]. However, there have not been many reports on the application of these methods
for disease prediction models using clinical data in the medical field [22]. There are several reasons
to choose ML algorithms over conventional statistical method for designing a prediction model.
First, compared to conventional statistical analysis, ML can design a prediction model that reflects
the relationship between variables without prior knowledge of the algorithm [23]. This characteristic
makes it possible to include all information from the input data regardless of its effectiveness during
analysis and prevents overseeing data with indefinite effectiveness. Second, in conventional statistical
analysis, it is assumed that the input variables are independent [3]. However, this assumption is
impossible in the real world. Various input factors are inter-related in complex ways, regardless of
whether these ways are known or not. ML considers potential interactions so that all information in
the input data can be reflected in the analysis [24], and it can improve prediction performance with
complex, heterogenous, and high-dimensional data [25].

In this study, hyperuricemia was targeted as one of the tasks used to create a disease prediction
model using ML based on basic clinical information. We have chosen the disease entity “hyperuricemia”
as the output of the prediction model because hyperuricemia is known to be related to various chronic
diseases [4]. Thus, hyperuricemia can be a biomarker of various chronic diseases and reflects one’s
health status. However, uric acid levels are not routinely measured at basic health checkups. If we use
the prediction model designed by the ML method to screen someone at high risk of hyperuricemia, we
could recommend a uric acid level test to individuals who need an examination. This approach could
represent the beginning of precision medicine with respect to health checkup tests.

At our institute, visitors perform self-paid comprehensive health checkup tests, which include
expensive, advanced tests. In Korea, the NHIC pays each participant’s basic health examination fee
once every two years for people aged 40 years or older. The test items included in this study were used
as input factors, and the uric acid level, which is a test that is not included in the basic examination,
was set as an output factor.

In this study, a prediction model was designed that included not only well-known risk factors of
hyperuricemia, such as aging, obesity, high alcohol intake, hypertension, and cholesterol level [26–28],
but also factors with no clear relation to the disease. These factors would have been removed in
CLR. However, in the case of ML, we designed the prediction model by including all factors with
a marginal effect and factors with unknown associations. In the hyperuricemia prediction model,
NBC (1st) and RFC (2nd) showed the best performance in the test set for maximizing the sensitivity
criterion. KNNC showed high sensitivity in the training set (sensitivity = 1), but this performance
was not validated in the test set (sensitivity = 0.34). We selected the criterion model that maximized
sensitivity because the role of these models was to assign red flags to individuals with an unexpectedly
high risk of hyperuricemia and recommend further evaluation based on basic test results. At the
same time, we also evaluated the model that maximized BCR. BCR is an average of specificity and
sensitivity; BCR can only be high when both sensitivity and specificity are high [7]. Therefore, it can
reflect performance in terms of both sensitivity and specificity. This metric provides a more precise
measure of the effectiveness of the classifier than other metrics [29]. Therefore, we also evaluated
models that maximized BCR in order to consider the balance between sensitivity and specificity. In the
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BCR maximizing model, RFC (1st) and NBC (2nd) showed the best performance, which is somewhat
consistent with the results with models maximizing sensitivity.

In terms of the characteristics and advantages of particular ML algorithms [30], NBC is a
probabilistic model that uses the naïve independence assumption [31] and can analyze uncertain
medical data [32–34]. The main advantage of NBC is that it takes into account all available information
to design the model [30,35,36]. It is known to be a useful classifier for clinical decision support [20]
and has been used in several medical data analyses [30].

Random forest is a ML technique and is an ensemble learning method used for classification or
regression from many decision trees [16,37]. In this paper, we employed Breiman’s random forest
algorithm by using Matlab’s treebagger function [15,38]. RFC is used in medical studies, such as
proteomics and genetics studies [39–41], but it is not actively applied to clinical data. There are
several advantages of RFC, and the most crucial ones for our prediction design were that (a) it has a
relatively lower risk of overfitting and that (b) it can include continuous and categorical variables in
the analysis [42]. Our data set had the following characteristics: (1) It includes both categorical and
continuous input factors, (2) the predictive power of the input factor is not well known or has borderline
power, (3) the purpose of the model is general application for public health checkups, so overfitting
should be avoided, and (4) the input factors are numerous with high dimensionality. Based on these
characteristics, it is reasonable that NBC and RFC are the models that showed the highest performance.
Consequently, an appropriate ML tool should be selected based on the characteristics of the input data
and the purpose of the prediction design.

The development of an algorithm for predicting high-dimensional clinical information through
ML using EMR-based basic clinical information may have the following benefits. First, it may play a
role as a supervision tool for selecting undetected and unsuspected high-risk populations using limited
information. Second, by introducing a ML tool that has not yet been actively applied in medical clinical
studies into the medical big data analysis, EMR-based medical big data that have already accumulated
can produce information that leads to new clinical knowledge. Third, this prediction model can save
medical expenses by selecting patient groups that need to be closely examined and recommending
certain tests. This model is also expected to be a basic tool to promote health by highlighting which
people need tests and conducting additional screenings. Hyperuricemia is known as a predicting
factor for the development of various chronic diseases. By inputting the basic laboratory test results in
this model, we could identify those who need special medical attention among antecedently known
healthy populations.

Our study has several limitations. First, our study was performed in a population who
participated in an expensive, self-paid health checkup program. The effect of socioeconomical status
may limit the generalization of our results to other populations. Second, it is difficult to interpret the
results of an ML model. Compared to conventional statistics, which assess the effect of individual
predictors, the process and effect of each predictor are not visualized in ML.

5. Conclusions

In this study, a large clinical set was used to develop a prediction model for high-risk health status
by applying various ML tools and evaluating their performance. The best ML model was superior to a
conventional model developed by a CLR model as per estimates by AUC. Future studies are needed to
determine the best-performing ML algorithms based on the characteristics of the data set. We believe
that this study will be informative for studies using ML tools in clinical research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/2/172/s1,
Table S1: Performance measures for each algorithm.
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