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Abstract: (1) Background: The aim of this observational cross-sectional work was to investigate
early retinal vascular changes in patients undergoing idiopathic epiretinal membrane (iERM) surgery
using swept source optical coherence tomography angiography (SS-OCTA); (2) Methods: 24 eyes
of 24 patients who underwent vitrectomy with internal limiting membrane (ILM) peeling were
evaluated pre- and postoperatively using SS-OCTA system (PLEX Elite 9000, Carl Zeiss Meditec Inc.,
Dublin, CA, USA). For each eye, five 6x6-mm OCTA volume scans were acquired by two observers
independently. The en face images of superficial capillary plexus (SCP) were then exported to imageJ
and a semi-automated algorithm was used for subsequent quantitative analysis. Perfusion density
(PD), vessel length density (VLD), vessel diameter index (VDI) and vessel tortuosity (VT) of SCP were
evaluated in both the parafoveal (2.5 mm diameter) and perifoveal areas (5.5 mm diameter); (3) Results:
At OCTA analysis statistically significant differences were found between controls and diseased eyes
for all parameters in parafoveal and perifoveal regions (p < 0.001; p < 0.05) except for perifoveal
VLD. During 6-month follow up, both anatomical/perfusion and functional parameters showed a
statistically significant improvement if compared to preoperative values. In detail, at one-month post
vitrectomy, VLD and VT significantly changed in parafoveal region (p = 0.043; p = 0.045), while PD
and VDI showed a trend of increase in both parafoveal and perifoveal region. At 6 months after
surgery, PD, VLD and VT of parafoveal region significantly improved (p = 0.021, p = 0.018, p = 0.047
respectively). (4) Conclusions: SS-OCTA provides a quantitative and qualitative analysis of the
superficial capillary plexus allowing for early vascular changes assessment after vitrectomy with
iERM and ILM peeling.
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1. Introduction

Epiretinal membrane (ERM) is a common macular disease characterized by proliferation of
abnormal tissues on the surface of the macula, at the interface between the vitreous and the retina [1–3].
Based on previous studies, ERMs can be associated with other ocular disorders, typically diabetic
retinopathy and retinal vein occlusion, or can develop after cataract surgery or vitrectomy for retinal
detachment [4–6]. On the other hand, ERMs are defined as idiopathic ERM (iERM) when no cause can
be found [7]. Importantly, iERM aetiology is still unclear, although seems to be related to an anomalous
posterior vitreous detachment (PVD) [8,9]. Some pathophysiological theories of iERM formation
support a glial tissue origin. It has been suggested that after the onset of PVD, retinal glial cells deriving
from Müller cells or astrocytes, proliferate and migrate, resulting in the fibrocellular tissue formation
characterizing the scaffold of ERM recently formed [7,9]. Fibroblasts and the myofibroblasts, which are
supposed to derive from Müller’s cells, hyalocytes or retinal pigment epithelium (EPR), are the most
represented cells of the most advanced ERM stages characterized by a rich tractional component.

Idiopathic ERM is still a frequent cause of visual impairment in working age population,
due to traction of the membrane leading to the formation of retinal folds and consequently retinal
thickening [1,7].

To date, optical coherence tomography angiography (OCTA) has been introduced in ERM
evaluation, allowing a detailed assessment of retinal vascular plexuses and highlighting structural and
functional changes related to ERM presence preoperatively and modifications of retinal flow after its
removal [10–14].

The introduction of high-speed swept source (SS) OCT devices provided more details about retinal
diseases, highlighting the reorganization of the inner retinal layers visible in eyes with advanced stage
ERM [11,15–17].

The recent development of SS-OCTA, thanks to use of a longer wavelength and a higher speed,
allows a wider retinal field of view of superficial capillary plexus (SCP), deep capillary plexus (DCP)
and choriocapillaris (CC) and a better visualization of deep layers such as CC and choroid [17,18].

The goal of this study was to report early SCP vascular changes following idiopathic epiretinal
membrane surgery using a SS-OCTA device. Notably, these changes were determined in two different
macular regions comparing the preoperative and post-operative vascular modifications.

2. Experimental Section

2.1. Study Participants

In this observational cross-sectional study, 24 subjects with a unilateral idiopathic ERM were
enrolled at the Ophthalmology Clinic of University G. d’Annunzio, Chieti-Pescara, Italy. Twenty-four
eyes of healthy people were considered as controls. The study was approved by our Institutional
Review Board (IRB) (Department of Medicine and Science of Ageing, University G. d’Annunzio
Chieti-Pescara) and adhered to the tenets of the Declaration of Helsinki. An IRB approved informed
consent was obtained from all patients. All subjects with iERM underwent 25 G pars plana vitrectomy
with ERM and internal limiting membrane (ILM) peeling and were imaged with the PLEX Elite 9000
device (Carl Zeiss Meditec Inc., Dublin, CA, USA) between January 2018 and January 2019. Moreover,
all patients received a complete ophthalmologic examination, which included the measurement of best
corrected visual acuity (BCVA), intraocular pressure (IOP) and ophthalmological evaluation. Inclusion
criteria were: (i) diagnosis of iERM (stage 3, according to Govetto classification system) [19], (ii) no
history of previous ocular surgery, except for cataract surgery, (iii) iERM duration ≤ 6 years. Exclusion
criteria were: (i) evidence or history of ocular conditions such as retinal detachment, retinal vascular
occlusions, uveitis, high myopia, trauma; (ii) evidence or history of systemic disorders, including
diabetes and systemic hypertension; (iii) poor image quality.



J. Clin. Med. 2019, 8, 2067 3 of 11

2.2. Image Acquisition

Subjects underwent OCTA imaging using the PLEX Elite 9000 device (Carl Zeiss Meditec Inc.,
Dublin, CA, USA) which uses a swept laser source with a central wavelength of 1050 nm (1000–1100 nm
full bandwidth) and operates at 100,000 A-scans per second. For each eye, five 6x6 -mm OCTA volume
scans were acquired by two independent graders (RM and RDA), preoperatively and at 1 month after
surgery. FastTrac motion correction software was used while the images were acquired.

Poor quality images (signal strength index (SSI) < 8) with either significant motion artifact or
incorrect segmentation were excluded. All selected images were carefully visualized by the two
retinal specialists independently to ascertain the correctness of segmentation and in case of erroneous
recognition by the software of the position of the boundaries of the ILM and retinal pigment epithelium
(RPE) manual correction was performed using the segmentation and propagation editing tool from
the device.

2.3. Image Processing

The main outcome measures were: (i) SCP perfusion density (PD); (ii) SCP vessel length
density (VLD); (iii) SCP vessel diameter index (VDI); (iv) SCP vessel tortuosity (VT). In order to
quantify these variables, a slightly modified previously reported semi-automated algorithm was
employed [20,21]. In brief, for each eye, en face OCTA images segmented at the SCP level were
imported into ImageJ software version 1.50 (National Institutes of Health, Bethesda, MD; available at
http://rsb.info.nih.gov/ij/index.html) and, consequently were processed with a “top-hat” filter. Each
image was duplicated and two different binarizarion methods were then performed on the 2 resultant
images: (i) 1 image was first processed by a “hessian” filter, followed by global thresholding using
the “Huang’s fuzzy” method; (ii) the other (duplicate) image was binarized using the “median local”
thresholding. Finally, the two obtained images were combined. Perfusion density was thus calculated
as a unitless proportion of the number of pixels over the threshold divided by the total number of
pixels in the analyzed area. Successively, the SCP images obtained after binarization were skeletonized
and these images were employed to measure VLD [21,22]. In order to measure the average vessel
caliber, we calculated VDI by dividing the area in the binarized image by that in the skeletonized
image. Finally, using the “Analyze skeleton” plugin, the actual length of each branch and the imaginary
straight length between two branch nodes—points of connections—were marked. We calculated VT
by dividing the sum of actual branch lengths by the sum of straight lengths between branch nodes [23].
The quantitative analysis was thus performed in the macular region, which was defined as a circular
annulus around the fovea with diameter of 5.5 mm and excluding the foveal avascular zone (FAZ).
Furthermore, the analysis of the macular region was further divided into the parafoveal and perifoveal
areas (with diameters of 2.5 mm, and 5.5 mm, respectively) and was performed at the baseline (Figure 1)
and after surgery (Figures 2 and 3).
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Figure 3. OCT scan and en face OCTA images of SCP (on the left), binarized SCP (in the middle) and
skeleton SCP (on the right) 6 months after vitrectomy.

2.4. Surgical Procedure

All diseased eyes enrolled underwent 25G 3-port pars plana vitrectomy with ERM and ILM peeling
after ERM and ILM staining with a combination of 0.15% trypan blue, 0.025% brilliant blue G, and
4.00% polyethylene glycol (MembraneBlue-DualTM, DORC International, Zuidland, the Netherlands).
All procedures were performed by a single and experienced surgeon (R.M.). Four eyes were phakic
and twenty of them were pseudophakic. In phakic eyes combined phacovitrectomy with intraocular
lens implantation in the capsular bag was performed. No intra and postoperative complications
were reported.

2.5. Statistical Analysis

The quantitative variables were summarized as mean and standard deviation (SD) according to
their distribution and qualitative variables as frequency and percentage. A Shapiro-Wilk’s test was
performed to evaluate the departures from normal distribution for each variable.

Differences in baseline demographic and clinical characteristics between control group and iERM
patients group were tested by Mann-Whitney U test and Pearson chi-square test for continuous and
categorical variables, respectively. Only in iERM patients group, Friedman test was applied for
assessing significance differences in the quantitative variables between baseline values and follow-up
measurements. Wilcoxon U test with Bonferroni correction was applied to evaluate a multiple
comparison between different time points.

Lin’s concordance correlation coefficient (CCC) with the 95% confidence intervals was calculated
to assess the interobserver reproducibility of image acquisition.

Spearman’s Rho correlation coefficient was applied to evaluate the linear correlation among CMT
and retinal perfusion variables in iERM patients group.
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All statistical analyses were performed using R Statistical Software (version 3.5.3; R Foundation
for Statistical Computing, Vienna, Austria). In all statistical tests the threshold of statistical significance
was assumed equal to p = 0.05.

3. Results

3.1. Characteristics of Diseased and Healthy Eyes at the Baseline

A total of 24 eyes of 24 people (16 females, 8 males; mean age of 58.9 ± 8.6 years) with a diagnosis
of 3-stage iERM were considered in the analysis. Clinical and demographic characteristics of diseased
eyes enrolled are reported in Table 1.

Table 1. The clinical and demographics characteristics of diseased eyes (iERM group) and healthy eyes
(control group).

Variable iERM Group Control Group p-Value

Age (years), mean ± SD 58.9 ± 8.6 55.9 ± 8.7 0.326 a

Gender (male/female), n (%) 8 (33.3)/16 (66.7) 10 (41.7)/14 (58.3) 0.766 b

Axial length (mm), mean ± SD 22.9 ± 1.1 23.1 ± 0.5 0.422 a

ERM 3 stage, n (%) 24 (100.0) - -
Duration of ERM(years), mean ± SD 5.2 ± 0.7 - -

Phakic/pseudophakic, n (%) 4 (17.0)/20 (83.0) 24 (100.0) -
a Mann-Whitney U test; b Pearson chi-square test.

A group of 24 healthy eyes of 24 subject were considered as controls (14 females, 10 males; mean
age of 55.9 ± 8.7 years). No statistically significant difference was found between diseased and normal
eyes in terms of age, gender and axial length (p > 0.05; Table 1).

The average central macula thickness (CMT) and average logMAR BCVA of iERM group were
512.3 ± 23.4 µm at baseline and 0.78 ± 0.38 LogMAR at baseline respectively (Table 2).

Table 2. Anatomical and functional parameters of healthy (control group) and diseased eyes (iERM group).

Variable
iERM Group Control Group

Baseline 1 Month 6 Months Friedman
p-Value Baseline Mann–Whitney

p-Value

CMT (µm) 512.3 ± 23.4 374.5 ± 31.7 * 374.0 ± 49.3 <0.001 185.9 ± 12.9 <0.001
logMAR

BCVA 0.78 ± 0.38 0.53 ± 0.34 0.32 ± 0.40 <0.001 0.10 ± 0.41 <0.001

* p < 0.05 vs. previous time point.

At OCTA analysis statistically significant differences were found between controls and diseased
eyes for all perfusion parameters in both parafoveal and perifoveal regions except for perifoveal VLD
(Table 3).

Table 3. SCP analysis of parafoveal and perifoveal region at baseline of iERM and healthy groups.

Variable
Parafoveal Region Perifoveal Region

iERM
Group

Control
Group

Mann-Whitney
p-Value

iERM
Group

Control
Group

Mann-Whitney
p-Value

Perfusion Density (%) 25.3 ± 1.8 30.6 ± 4.4 <0.001 39.4 ± 3.6 42.3 ± 1.8 0.023
Vessel Length Density (%) 6.8 ± 0.7 8.8 ± 1.3 <0.001 10.2 ± 1.6 11.3 ± 0.7 0.105

Vessel Diameter Index 18.5 ± 1.9 21.7 ± 3.2 0.009 29.1 ± 2.3 31.0 ± 1.3 0.023
Vessel Tortuosity 1.4 ± 0.1 0.7 ± 0.1 <0.001 1.4 ± 0.1 0.7 ± 0.1 <0.001
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3.2. Comparison between Pre-Operative and Post-Operative Morphological and Functional Parameters of
Diseased Eyes

At 6 months after surgery, both anatomical/perfusion and functional parameters showed a
statistically significant difference compared to the baseline values (Table 2; Figure 3).

In detail, the logMAR BCVA of iERM group improved to 0.53 ± 0.34 LogMAR and to 0.32 ± 0.40
LogMAR at 1 month and 6 months after surgical treatment respectively (Table 2).

During the 6-month follow-up, CMT significantly decreased in iERM eyes in comparison with
preoperative values (at 1-month follow up: 374.5 ± 31.7 µm, p < 0.001; at 6 month follow up:
374.0 ± 49.3 µm; p < 0.001; Table 2).

At OCTA analysis outcome measures of both groups were compared at baseline, 1 month and
6 months after surgery. In detail, at one-month post vitrectomy, VLD and VT significantly changed
in parafoveal region (p = 0.043; p = 0.045), while PD and VDI showed a trend of increase in both
parafoveal and perifoveal region (Figure 4). At 6 months after surgery PD, VLD and VT of parafoveal
region significantly improved (p = 0.021, p = 0.018, p = 0.047 respectively, Figure 4).
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Figure 4. Mean and standard deviation of retinal perfusion variables in iERM patients group at baseline,
at 1-month (1mo) and 6-months (6mo) follow-up after vitreoretinal surgery: (A) Perfusion Density (%);
(B) Vessel Diameter Index; (C) Vessel Length Density (%); (D) Vessel Tortuosity. p-values reported in
figure are relative to comparison between values evaluated by Friedman test.

On the contrary, no statistically significant difference was observed in terms of PD, VLD and VT in
perifoveal region before and after surgery for whole 6-month follow up (p = 0.174, p = 0.876, p = 0.998
respectively, Figure 4).
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Finally, in the iERM group, no significant correlations were found between anatomical and
functional parameters, except for the vessel tortuosity that was significantly positively associated with
CMT at 6-months (Rho = 0.674 and p = 0.018). The agreement between the two observers was excellent
with a Lin’s CCC of 0.99 (95% CI: 0.98–0.99) in all analyzed parameters.

4. Discussion

It has been hypothesised that Müller cells play a main role in the pathological mechanism of ERM
formation and in the support of foveolar structure. Their strong adhesion with ILM has been associated
with a higher risk of ultrastructural damages of deep portions of the retina after peeling [24].

It has been widely reported a macular contraction and retinal vessel displacement in patients with
a diagnosis of ERM due to tangential and centripetal forces exerted from ERM itself [18].

Tangential and vertical macular tractions are considered responsible of foveal microarchitectural
changes in the retinal vasculature with vessel occlusion and tortuosity [24].

The tangential force would drag the superficial retinal layers away from their original location
thus straightening or curling retinal vessel of superficial capillary plexus [25].

ERM removal should release all tractions, thus letting main retinal vessels and capillaries come
back to their original position. However, some forces of traction could persist also after vitrectomy [26].

In addition, ILM peeling procedure has been considered to be responsible of increased elasticity
of the retina thus causing a foveal displacement of capillaries [26].

Kumagai et al [27] described a centripetal movement of the inner retinal layer after ILM peeling
with a centripetal shift of foveal capillaries. Furthermore, authors reported changes in ganglion cell
complex, where SCP is located, with its thickness reduction, due to a partial structural restoration after
ILM peeling surgery and a likely disruption of the ganglion cell neurites included in the iERM [28].

The non-invasive nature of OCTA technique has progressively and quickly gained much interest in
clinical practice. OCTA is rapidly becoming a new important imaging modality for the retina/choroid,
optic nerve head and even the anterior segment. It has shown a high reliability in perfusion assessment
of the superficial retinal vasculature [29,30].

As already known, retinal vasculature is composed by three plexuses: the superficial, the
intermediate and the deep capillary plexus. In detail, the superficial capillary plexus, located in the
ganglion cell layer and nerve fiber layer, is characterized by a centripetal pattern vessel; while the
vessels of deep capillary plexus, that is located in the inner nuclear layers, have typically a concentric
distribution with vertical interconnections [31].

The recently introduced widefield SS-OCTA is able to provide quantitative and qualitative
information of microvasculature of all three retinal capillary plexuses in central area and
in midperiphery.

SS-OCTA uses tunable laser centered at 1060 nm and with at a scan speed of 100,000 A scans per
second and an axial resolution of 6.3 µm. This device is based on optical micro angiography complex
algorithm to analyse retinal microvasculature in detail and in depth.

We aimed at evaluating retinal microvasculature parameters of superficial capillary plexus of a
6x6 mm scan area to identify early vascular changes at baseline and after vitrectomy with ILM peeling
in terms of parafoveal and perifoveal retinal perfusion using SS-OCTA.

In detail, at SCP level, PD, VDI, VLD and TV were investigated. We decided to focus only on the
superficial plexus in order to avoid ERM related projection artefacts. Indeed, traction of ERM and
macular edema may alter OCTA signal quality of deep capillary plexus status. Although artefacts can
be corrected with projection removal algorithms, OCTA remains susceptible to projection artefacts
because of the superficial blood flow, thus leading a difficult interpretation of deep retinal vasculature
feature with a potential loss of details [32].

Furthermore, ERM with rich intraretinal fluid component weakens the reflected OCTA signal
intensity from deeper layers, although swept-laser source allows more light to penetrate deeper tissue
due to the reduced scattering properties of tissue [32].
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In our cohort we included only ERM of stage 3 to eliminate possible bias related to different
severity of the disease. In addition, we considered patients with a similar duration of ERM diagnosis
that was a mean of ≤ 5.2 ± 0.7 years.

A significant reduction in capillary blood flow velocity of iERM patients was observed using
fluorescein angiography if compared with healthy age-matched eyes probably due to increase of
venous resistance caused by vessel abnormalities [25,33].

Six months after vitrectomy, a statistically significant improvement in blood flow velocity was
reported by the authors, related to capillary vessel recanalization [25,33].

In our cohort, PD and VLD in iERM group were significantly different if compared to the control
group likely due to a centripetal movement of microvessels exerted from traction with central vessel
crowding. It can be hypothesized that partial capillary sub- /occlusion occurred related to ERM
presence thus causing flow impairment in the foveal region [25]. Conversely, Nelis and coworkers [34]
found a significant increase of the macular vessel density ratio (vessel density of the foveal and
parafoveal region) of MER eyes in comparison to healthy controls, that presumably reflected a vascular
displacement from the perifoveal to the foveal area without a significant vessel occlusion component.

The degree of perifoveal hemodynamic changes is strictly associated with severity of ERM and
depth and duration of traction, for this reason we preferred to evaluate eyes with the same ERM grade
and with a duration of ≤ 6 years from the first diagnosis.

At 1-month post-surgery, although a trend of increase was observed, overall macular PD of iERM
group did not show any significant difference compared to preoperative values, both in perifoveal and
parafoveal areas, probably because of the recanalization of occlused microvessels contemporaneously
with the decrease of central vessel crowding toward perifovea.

On the contrary, parafoveal VLD significantly increased at 1-month follow-up. The vessel length
density increase was likely due to a reopening of little vessels that were sub-occlused in the preoperative
period because of ERM traction release.

We speculate that forces exerted from ERMs could have a greater impact on tiny little vessels
leading to a temporary sub-/occlusion of them. After vitrectomy these capillaries would open again
due to the release of tractions as well as a recovery to the vessel original positions. Dell’Omo et al [35]
have previously described as, after vitreoretinal surgery for retinal detachment, vessels seen with
autofluorescence did not come back to their original position, on the contrary they would assume a
new position.

Our results showed an initial increase in vessel diameter in both parafoveal and perifoveal regions
because of the reopening and recanalization of microvessels, thus OCTA signal would consider also
diameter of reopened smaller vessels in the overall analysis.

At 6-month follow up after vitrectomy, both anatomical/perfusion and functional parameters
showed a statistically significant improvement if compared to the baseline values, confirming that the
real recanalization of parafoveal microvasculature needs a longer time to completely recovery.

Finally, our work investigated vascular tortuosity and it appears to be the first study describing
this parameter in patients with iERMs using SS-OCTA.

A relatively recent study [35] has identified VT detected with OCTA as a useful quantitative
measure correlated to diabetic retinopathy (DR) stage. It has been reported that a higher VT is
associated with a higher progression to proliferative diabetic retinopathy. Therefore, VT seems to be
an early indicator of microvascular damages in the retina and a quantitative marker to monitor the
progression of DR [36].

In our work VT showed a statistically significant decrease postoperatively compared to
preoperative values only in the parafoveal area. The latter region is probably mainly involved
in the early modifications of VT recovery after surgery. Perifoveal area would need more time to a
complete anatomical recovery. Although surgical treatment partially resolves tangential and vertical
retinal tractions, thus improving macular microcirculation thanks to recanalization of capillary vessels,
some tractional effects may persist also after surgery, explaining no significant change of perifoveal VT.
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To the best of our knowledge this is the first study that analyses in detail retinal microvasculature
features, quantifying contemporary perfusion and tortuosity as an elaboration of a single
scan acquisition.

The comprehension of early changes of retinal circulation could be predictive of macular status at
baseline and of macular morphology and function after surgery.

With further advancement in imaging technology, OCTA may serve as an alternative non-invasive
device to the traditional fluorescein angiography in order to better identify ERM features and to predict
visual prognosis after surgery.

In terms of functional changes, our findings showed a significant early improvement in terms of
visual outcome and CMT postoperatively, already starting from one month after surgery.

Our results suggest a relationship between early changes of capillary architecture after vitrectomy
and postoperative retinal function in iERM patients. This issue could be helpful to better identify the
pathophysiology of the disease, and to assess morphological markers (vascular) that could be helpful
to predict the postoperative outcome.

The main limitation of this study is the relatively small sample and the cross sectional nature of
analysis. The follow up was very small, nevertheless we wanted to focus intentionally on early changes
after surgery, to identify predictive flow modifications of the macula over time. A longer follow up of
the same parameters assessed with the same new swept source device is needed to possibly predict a
prognosis of the final anatomical and functional success, by analyzing and following depth-selectively
vessel behavior pre and postoperatively.

In conclusion, our cohort of patients with iERM showed very early (1 month post-surgery) macular
hemodynamic changes such as vessel tortuosity and vessel length density with a micro architectural
restoration of vessels. On the other hand, macular perfusion density would need a longer time
(6-month follow-up) to significantly improve, likely due to a gradual and progressive reopening and
recanalization of microvessels.
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