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Abstract: Islet transplantation has been demonstrated to provide superior glycemic control with
reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However,
the insulin independence rate after islet transplantation from one donor pancreas has remained low.
The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss
during the first hours following grafting. The reduction in islet mass during pancreas preservation,
islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of
intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of
the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of
the most recent contributions to the advancement of knowledge of the JNK pathway and several
possibilities for the treatment of diabetes using JNK inhibitors.

Keywords: islet transplantation; c-Jun NH2-terminal kinase (JNK); mitogen-activated protein kinases
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1. Introduction

Type 1 diabetes mellitus (T1DM) is an autoimmune disease and usually diagnosed at a young age
with insulin deficiency. T1DM is characterized by progressive β-cell failure and gradual destruction
of β-cells [1]. According to the International Diabetes Federation, approximately 542,000 children
0–14 years of age have T1DM, with 86,000 new cases diagnosed worldwide each year [1]. In the insulitis
lesion in T1DM, invading immune cells produce cytokines, such as interleukin (IL)-1β, tumor necrosis
factor (TNF)-α, and interferon (IFN)-γ [2]. IL-1β, TNF-α, and IFN-γ induce β-cell apoptosis via the
activation of β-cell gene networks under the control of the transcription factors nuclear factor-κB
(NF-κB) and STAT-1. NF-κB activation leads to the production of nitric oxide (NO) and chemokines
and the depletion of endoplasmic reticulum (ER) calcium [3–5]. The execution of β-cell death occurs
through the activation of mitogen-activated protein kinases (MAPKs), via the triggering of ER stress
and the release of mitochondrial death signals.

Pancreatic islet transplantation has recently emerged as one of the most promising therapeutic
approaches to improving glycometabolic control in T1DM patients and, in many cases, achieving
insulin independence. Application of the Edmonton protocol has markedly improved the outcome [6,7]
and the rate of insulin independence after islet transplantation has significantly improved in recent
years [8]. However, multiple islet infusions from two or more donors are often required to achieve
and maintain insulin independence. Contributions to graft loss include the instant blood-mediated
inflammatory reaction (IBMIR), potent host auto- and allo-immune responses, and β-cell toxicity from
immunosuppressive agents [9–12]. Moreover, the isolation procedure of pancreatic islets itself destroys
cellular and noncellular components of the pancreatic tissue, which presumably play a role in supporting
the survival of islet cells [13,14]. Pancreatic islets are exposed to mechanical and warm/cold ischemic
stresses during pancreas procurement; to osmotic and cold ischemic stresses during pancreas preservation;
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to mechanical, enzymatic, and warm ischemic stresses during pancreas digestion; and to mechanical,
osmotic, and cold ischemic stresses during islet purification. These stresses induce β-cell death (Figure 1).

β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways
immediately after isolation and transplantation contributes to a reduction of the islet mass [15–17].
NF-κB [16] and the stress-associated MAPKs [18,19] mainly act as death-signaling pathways and
these factors have been shown to contribute to the apoptosis of pancreatic β-cells. Inhibition of
the death-signaling pathways has proven to be beneficial in several models of insulin-producing
cell apoptosis in vitro [20,21]. Three major conserved groups of stress-associated MAPKs have been
described: p38 kinases (p38 α/β/γ/δ) [22], c-Jun NH2-terminal kinases (JNKs; JNK1/2/3) [23], and
extracellular signal-regulated kinases (ERKs; ERK1/2/3) [24]. JNK and p38 are similarly activated by several
stresses, such as cold and heat shock, hypo- and hyperosmolarity, shearing stresses, proinflammatory
cytokines, cytotoxic drugs, ultraviolet and γ-irradiation, the loss of survival factors, and reactive oxygen
species [25,26]. Both p38 and JNK activate downstream nuclear transcription factors, which participate in
the cellular response [27,28] by, for example, activating transcription factor-2 (ATF-2) and the activator
protein-1 (AP-1), which is formed of heteromers of c-fos and c-Jun [27–30].

Here, we review the advancement of knowledge on the death-signaling pathways, especially the
JNK pathway, during pancreas preservation, islet isolation, and islet transplantation, and the effect of
JNK inhibitors for islet transplantation.

Figure 1. c-Jun NH2-terminal kinase (JNK) activation during brain death and pancreas procurement,
pancreas preservation, islet isolation, and islet transplantation.

2. Donor Organ

The cadaver donor is the principal source of organs for transplantation. However, the successful
rate of transplantations, such as those of kidneys, both over the short- and long-term, remains
significantly inferior to those from living donors [31]. The differences between cadaveric and living
donors are brain death, an optimal health condition of the living donor, a marginal condition
of a substantial number of cadaveric donors, and an optimal timing of surgery in the case of
living donors in comparison to a long cold ischemia time in cadaveric donors. It is certified that
brain death affects the hemodynamic status, inflammatory reactivity, and hormone regulation. The
effect of massive acute cerebral injury, as well as hypotension and circulating factors, results in the
deterioration of organs following brain death [32,33]. Brain death is characterized by extensive
cortical necrosis, which stimulates multiple cell types to produce proinflammatory cytokines, including
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IL-1β, TNF-α, IFN-γ, and IL-6 [32–37]. In the pancreas, donor characteristics such as age, cause of
death, length of hospitalization, and medical history have a remarkable impact on islet recovery
after isolation [38]. It has been demonstrated that the release of these proinflammatory cytokines,
associated with brain death, significantly reduces the islet yield, functionality, viability, and engraftment
after transplantation [36]. In this context, islets recovered from brain death donors presented higher
nuclear activity of inflammation-related transcription factors, including ATF-2, c-Jun, and NF-κB.
Furthermore, it has been demonstrated that macrophages infiltrate islets during brain death and that
macrophage-associated inflammatory molecules, such as IL-1β, TNF-α, and IL-6, in islets are induced
by brain death [39]. Therefore, the establishment of therapeutic strategies to prevent the deterioration
of pancreatic islets during brain death could improve the islet transplant outcome. In addition, the
strategies could improve the quality of organs from marginal donors, thus broadening the criteria for
donor acceptance for isolation and transplantation.

It has been reported that males are more susceptible to the life-threatening effects of sepsis,
hemorrhage, and trauma, compared to females in the proestrus cycle [40,41]. Female sex steroids,
such as 17β-estradiol and estrogen, are likely to exhibit protective properties of immune and
cardiovascular function after trauma, severe blood loss, and various adverse conditions [40,42].
Estradiol administration reversed the spontaneous increase of proinflammatory cytokines, such as
TNF-α, IL-1β, and IL-6 [43]. Moreover, estrogen possesses significant antiapoptotic and antioxidant
activities [42,43]. Eckhoff et al. reported that 17β-estradiol treatment significantly decreased
proinflammatory cytokine and structural and physiologic derangements in pancreatic islets subsequent
to brain death induction [44]. In addition, it was demonstrated that estradiol improves the survival
and functionality of human islets after proinflammatory cytokine exposure in vitro and in vivo. The
molecular mechanisms involved included the inhibition of JNK activation, NF-κB nuclear translocation,
caspase-9 activation, and mitochondrial cytochrome c release [45,46]. The inhibition of JNK activation
induced the reduction of JNK targets, including the nuclear activities of transcription factors ATF-2,
AP-1, c-Fos, c-Jun, and Jun-D, involved in apoptosis in pancreatic β-cells [46].

Our group investigated whether the administration of JNK inhibitors in human and porcine
pancreata immediately after the procurements improves islet isolation results by preventing the
apoptosis of islet cells [47]. A low molecular weight JNK inhibitor (SP600125) and a cell-permeable JNK
inhibitor were used in porcine and human studies, respectively. The administration of JNK inhibitors
in both porcine and human pancreata prevented JNK activation during the isolation procedure and
prevented islet apoptosis immediately after isolation. Our data demonstrated that the JNK pathway is
the major mediator of islet deterioration during/immediately after isolation and that JNK inhibition
before islet isolation could improve the outcomes after pancreatic islet transplantation. The treatment
of multiorgan donors with JNK inhibitors or 17β-estradiol could improve the quality of organs from
marginal donors and increase human islet yields and functionality, and therefore broaden the criteria
for donor acceptance for islet isolation and transplantation.

3. Pancreas Preservation

During pancreas preservation, islets are exposed to serious damaging conditions, resulting in
a reduction of islet survival and ultimately graft failure after transplantation. The University of
Wisconsin (UW) solution has been recognized as the gold standard in pancreas preservation before
islet isolation. We, and other groups, have reported the superiority of the two-layer preservation
method (TLM), which employs oxygenated perfluorochemical (PFC) and UW solution, compared with
simple cold storage in UW for not only the whole pancreas, but also pancreatic islet transplantation in
humans [48–51]. When TLM is used for pancreas preservation, PFC directly oxygenates the pancreas
and results in a high level of adenosine triphosphate (ATP) in pancreatic tissues, which maintains
parenchymal and nonparenchymal viability and retains cellular integrity [52–55]. Matsuda et al.
reported the apoptosis pathways of caspase 3, 8, 9, JNK, and p38 in isolated islets after the cold storage
of UW solution or TLM [56]. Islet apoptosis in the UW group was significantly increased compared
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with the fresh (no preservation) and TLM groups. Both caspase 3 and 9 activities in the UW group
were higher than in the fresh and TLM groups, with an approximate increase of 2- to 3-fold. On the
other hand, there was no significant difference in caspase 8 activity among these three groups. These
data suggest that the mitochondrial pathway is largely engaged in islet apoptosis induced by the
simple preservation of UW solution, and that TLM blocks to a great extent. On the other hand, JNKs
were strongly activated in both the TLM and UW groups, while they were not activated in the fresh
group. In contrast, p38 was activated to almost the same levels in these three groups. These findings
suggest that pancreas preservation with UW solution or TLM before islet isolation cannot protect
against JNK activation.

Our group showed that an intraductal injection of JNK inhibitors before pancreas storage prevented
JNK activation during the isolation procedure and improved islet graft survival in humans. [47].
Another group also reported that an intraductal injection of JNK inhibitor in porcine pancreata
significantly suppressed mRNA expression levels of IL-1β, TNF-α, IFN-γ, IL-6, IL-8, and macrophage
chemoattractant protein-1, as well as the concentration of IL-1β and IL-8, in the culture supernatant [57].
These data suggest that the inhibition of JNK activation during pancreas preservation improves the
islet transplant outcome through the reduction of the inflammatory response.

We recently developed a novel preservation solution, the extracellular-type/JNK inhibitor-
containing (EJ) solution, for porcine pancreas preservation [58]. After pancreas preservation in
EJ solution, JNK activity was maintained at a relatively low level during islet isolation. The islet yield
before and after purification was significantly higher in the EJ group than in the UW group or EJ-J
(EJ solution without the JNK inhibitor) group. After islet transplantation into streptozotocin-induced
diabetic mice, the attainability of post-transplantation normoglycemia was higher in the EJ group than
the UW group or EJ-J group. These data suggest that the inhibition of JNK activity for pancreas storage
could be useful for preventing islet apoptosis and improving islet transplant outcomes.

4. Islet Isolation and Culture

Pancreatic islets are exposed to mechanical, enzymatic, osmotic, and ischemic stresses during
pancreas digestion and islet purification. Our group reported that JNK activity progressively increased
during the isolation procedure [47]. Abdelli et al. mapped the major intracellular stress-signaling
pathways activated during human islet isolation and following acute cytokine exposure [17]. For the
islet isolation procedure, two pathways are involved in islet survival: NF-κB→iNOS and MAPK
kinase 7 (MKK7)→JNK/p38→c-fos. Proinflammatory cytokines activate the NF-κB→iNOS and
MKK4/MKK3/6→JNK/p38 pathways without the involvement of c-fos. It is also likely that the
procedure of islet isolation, together with proinflammatory cytokine production immediately after
transplantation, may further synergize to enhance the apoptosis of islets [59]. In the case of other
cell types, MKK7 also transduces cytokine signaling [26]. Therefore, the activation of MKK7 after
islet purification may sensitize islets to cytokine exposure [60]. The activated pathways return to
background levels after the 48 h culture of isolated islets and the expression of MKK7 becomes
undetectable [17]. Inhibition of the JNK, p38, and NF-κB pathways throughout the procedures of
pancreas preservation, islet isolation, and islet transplantation might result in the reduction of primary
nonfunction and the improvement of islet graft survival [20,21,61]. Our group also reported that
the treatment of JNK inhibitors before islet isolation prevented JNK activation during the isolation
procedure and prevented islet apoptosis immediately after isolation [47].

Three JNK isoforms (JNK1, 2, and 3) have been identified. JNK1 and JNK2 are ubiquitously
expressed, while JNK3 expression is restricted to pancreatic islets and the brain [62,63]. In contrast to
JNK1 and JNK2, JNK3 exhibits anti-apoptotic activity in insulin-producing cells [63]. Varona-Santos
et al. investigated the role of JNK isoforms in pancreatic islets using Jnk1−/− and Jnk2−/− mice [64].
Islets derived from Jnk1−/− mice secreted more insulin and significantly protected cytokine-induced
cell death compared with islets derived from wild-type and Jnk2−/− mice. These data suggest that
specific JNK1 blockades in islets may be important for islet transplantation [64].
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5. Islet Transplantation

The transplantation of isolated islets into the liver through the portal vein is the preferred
site for clinical islet transplantation. An early innate inflammatory reaction after intrahepatic islet
transplantation strongly affects islet engraftment and survival. This early immune response is triggered
by ischemia-reperfusion injury and IBMIR occurring hours and days after islet infusion [65–71]. IBMIR
involves activation of the complement and coagulation cascades, ultimately resulting in clot formation
and infiltration of leukocytes into the islets, which leads to disruption of islet integrity and islet
destruction [12]. Moreover, the nonspecific activation and dysfunction of intrahepatic endothelial cells
after islet transplantation, which are characterized by the production of proinflammatory cytokines
such as TNF-α, IL-1β, and IFN-γ, as well as the upregulation of the intracellular adhesion molecule
(ICAM)-1, P-selectin, and NO, have been demonstrated [69–75]. These effects finally induce early graft
loss. It has been reported that 25% of the transplanted islets were lost within the first few minutes
after intraportal transplantation [76] and that the islet loss after transplantation into the portal vein is
widely estimated to be higher (50%–60%) [77–79]. To prevent early graft loss, candidate drugs have
been reported in clinical and experimental animal studies. Heparin is commonly used for clinical
islet transplantation to reduce the impact of coagulation. Low molecular weight dextran sulfate
(LMW-DS, MM 5000) is an alternative inhibitor of IBMIR [80–84]. An open randomized multicenter
study showed that LMW-DS has a similar efficacy in inhibiting IBMIR to promote islet engraftment
when compared with heparin [84]. Activated protein C (APC) is another potent inhibitor which
exerts anticoagulant, anti-inflammatory, and antiapoptotic activities by acting directly on cells. It has
been reported that the exogenous administration of APC significantly reduced the loss of functional
islet mass after intraportal transplantation in diabetic mice [85]. APC is an important physiological
anticoagulant generated from protein C by the action of thrombin-thrombomodulin on endothelial
cells [86]. APC appears to regulate the inflammatory process in part by blocking the activity of the
transcription factor NF-κB by preventing the generation of thrombin and by inhibiting the production
of proinflammatory cytokines [86–90]. Our group showed that the double blockage of proinflammatory
cytokines, IL-1β and TNF-α, improved the efficacy of clinical islet transplantation [91]. The blockage
of TNF-α, eternacept, IL-1β, and anakinra was administered in three patients with type 1 diabetes
before and during islet transplantation and all patients achieved insulin independence with normal
HbA1c levels by a single infusion from one donor. Although this study used not only the antibody, but
also thymoglobulin induction and sirolimus-free immunosuppression, the double blockage of IL-1β
and TNF-α could contribute to the prevention of early graft loss.

To evaluate the intracellular stress-signaling pathways of JNK during the islet transplant process,
our group measured JNK activity in the liver 1, 3, 6, and 24 h after mouse islet transplantation [92].
The JNK was activated until 1 h after islet transplantation and the activity became gradually higher
until 24 h. The evidence has profound implications for IBMIR, the production of proinflammatory
cytokine, and subsequent islet apoptosis. Our group also investigated the effect of an intraportal
injection of pancreatic islets with JNK inhibitor. Isolated islets with JNK inhibitor were transplanted
into diabetic mice through the portal vein and liver samples were collected before transplantation and
1, 3, 6, and 24 h after transplantation. The JNK activity in the liver was suppressed at a low level until
24 h after transplantation. Moreover, the intraportal injection of isolated islets with the JNK inhibitor
improved islet graft survival [92]. These data suggest that control of the JNK pathway is extremely
important in islet transplantation and that an intraportal injection of isolated islets with JNK inhibitor
prevents the activation of JNK in the liver immediately after islet transplantation and improves the
outcome for islet transplantation.

Varona-Santos et al. investigated the role of JNK isoforms in transplant recipients using Jnk1−/−

and Jnk2−/− mice [64]. When islets derived from wild-type mice were transplanted into diabetic
Jnk1−/−recipients, the median time to diabetes reversal was shorter than that for wild-type diabetic
recipients. On the other hand, the median time to diabetes reversal in diabetic Jnk2−/− recipients
was longer than that for wild-type diabetic recipients when islets derived from wild-type mice were



J. Clin. Med. 2019, 8, 1763 6 of 15

transplanted into diabetic Jnk2−/− recipients. These data suggest that specific JNK1 blockades in
recipients may be important for islet transplantation [64].

6. JNK Inhibitors

JNK inhibitors have been expected as drugs to improve islet transplant outcomes (Table 1).
The widely used inhibitor of JNKs for research is SP600125 [93]. SP600125 is an ATP-competitive
inhibitor and the IC50 values for JNK1 and JNK2 are both 40 nM, while that for JNK3 is 90 nM [94].
On the other hand, SP600125 is >300-fold selective over the related MAPKs, ERK1, and p38-2, and
between 10-fold and 100-fold selective over another 14 protein kinases tested [94]. We and another
group showed the efficacy of SP600125 during pancreas preservation for islet transplantation [47,57].
SP600125 prevented JNK activation during islet isolation and improved isle viability and the islet
transplant outcome. However, the ATP-competitive inhibitor has several degrees of toxicity and lacks
the required specificity because it inhibits the phosphorylation of all JNK substrates [95].

Peptide inhibitors of JNK have also been developed, which are ATP-noncompetitive [93].
The peptide inhibitors of JNK are based on JNK-interacting protein-1 (JIP1), also known as islet-brain-1
(IB1). JIP1 has been discovered to have a JNK inhibitory property and its minimum inhibitory sequence
has also been identified [20,96]. For efficient delivery of the JNK inhibitory peptide (JNKI) (Figure 2)
into pancreatic islets, our group synthesized JNKI as a C-terminal fusion protein with 11-arginine (11R).
Poly-arginine facilitates the uptake of peptides into mammalian cells more efficiently than TAT or other
cell-penetrating peptides [97–100]. 11R-JNKI prevented JNK activation during pancreas preservation
and islet isolation [47], islet culture [101], and immediately after islet transplantation [92], resulting in
an improvement of islet graft survival. Another group also reported that TAT-JNKI reduced the islet
loss in culture and protected against cell death through the regulation of AKT/GSK3B activity [102].
Our group recently developed a more efficient JNK inhibitory peptide [58,103]. The N-terminal
amino acids of JNKI include two arginine and one lysin (RPKR) (Figure 2). Since poly-arginine/lysin
facilitates the uptake of peptides and proteins into mammalian cells, our group hypothesized that the
transduction efficacy of 11R-JNKI may not be reduced after the deletion of three arginine and two
glycine-linkers. Moreover, we investigated whether C-terminal deletion peptides of JNKI can inhibit
JNK activity (Figure 2). One of the peptides, 8R-sJNKI(-9), efficiently prevented JNK activation at
one tenth of the concentration of 11R-JNKI, suggesting that 8R-sJNKI(-9) inhibits islet apoptosis and
improves islet function more efficiently than 11R-JNKI. It has been reported that, when the specificity
of sJNKI was investigated in assays of 40 different protein kinases, only the JNKs and their upstream
activators MKK7 and MKK4 were affected, emphasizing the specificity of inhibition [104].

Table 1. c-Jun NH2-terminal kinase (JNK) inhibitors used for islet transplantation.

Agents Administration Step Effect Year Reference

17β-estradiol Brain death

Reduction in JNK activation, nuclear
AP-1, c-fos, Jun-D, and ATF-2 activities
Enhancement of islet viability and islet

mass

2003 [46]

Cell-permeable peptide
inhibitor (11R-JNKI) Culture Prevention of islet apoptosis

Improvement of islet graft function 2005 [101]

Cell-permeable peptide
inhibitor (11R-JNKI) Transplantation Prevention of islet graft loss

Improvement of islet transplant outcome 2007 [92]

Cell-permeable TAT
peptide inhibitor

(L-JNKI)
Culture

Reduction of the islet loss in culture and
protection from cell death

regulation of AKT/GSK3B activity
2008 [102]

Cell-permeable peptide
inhibitor (11R-JNKI),

SP600125

Pancreas
preservation

Prevention of JNK activation during the
isolation procedure

Improvement of islet transplant outcome
2009 [47]

SP600125
(+ simvastatin)

Pancreas
preservation

Increase of the β-cell viability index and
islet survival rate 2011 [57]
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Table 1. Cont.

Agents Administration Step Effect Year Reference

GLP-1 1 receptor
agonist

(exenatide)
Culture Lower JNK and caspase-3 activation and

β-cell apoptosis 2013 [105]

α-1 antitrypsin Transplantation
Suppression of JNK phosphorylation

Suppression of blood-mediated
coagulation pathways

2017 [106]

Prolactin Culture Prevention of the activation of JNK via
AKT 2018 [107]

Cell-permeable peptide
inhibitor (8R-sJNKI) Culture Prevention of islet apoptosis

Improvement of islet graft function 2018 [103]

Cell-permeable peptide
inhibitor (8R-sJNKI)

Pancreas
preservation

Prevention of JNK activation during the
isolation procedure

Improvement of islet transplant outcome
2019 [58]

α-1 antitrypsin i.p. injection 24 h
before islet isolation

Suppression of JNK phosphorylation
Suppression of caspase 9 activation 2019 [108]

1 GLP-1: Glucagon-like peptide-1.

Figure 2. Cell-permeable JNK inhibitors. (A) The sequences of JNK inhibitory peptides. The peptide
inhibitors of JNK are based on JNK-interacting protein-1 (JIP1), which was discovered to have a JNK
inhibitory property. (B) Inhibition of JNK activation. MIN6 cells, which are part of the pancreatic β-cell
line, were cultured with 1–10 µM of 11R-JNKI, 8R-JNKI(0), 8R-sJNKI(-3), 8R-sJNKI(-6), 8R-sJNKI (-9),
or 8R-sJNKI(-12) for 23 h. The cells were then treated with 1 µg/mL of anisomycin for 1 h to stimulate
the activation of JNK, after which the JNK activity was examined by western blotting. The cell lysates
from MIN6 cells cultured with and without 1 µg/mL of anisomycin for 1 h were used as positive
and negative controls, respectively. The data are expressed with the JNK activity of the positive and
negative controls, which were arbitrarily set at 100 and 0, respectively.
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It has been reported that exenatide, a glucagon-like peptide-1 receptor agonist, inhibited JNK
activation and caspase-3 activation, resulting in the inhibition of β-cell apoptosis [105] and that
17β-estoradiol reduced JNK activation, nuclear AP-1, c-fos, Jun-D, and ATF-2 activities and enhanced
islet viability and islet mass [46]. Prolactin and α-1 antitrypsin also inhibited JNK activation [106–108].

7. Future Perspective

The activation of JNK is induced during pancreas preservation and JNK activity is progressively
increased during the isolation procedure. In addition, JNK is activated in the transplanted liver
immediately after islet transplantation. In diabetes, JNK plays an important role in various tissues due
to the phenomenon known as “glucose toxicity” and activation of the JNK pathway interferes with
insulin biosynthesis [109], β-cell function [109,110], and insulin action [111–113]. The JNK inhibition
from pancreas preservation and isolation, and throughout the transplantation procedure might prove
critical for the maintenance of islet cell mass and improve isle graft function. The current challenge in
finding new successful anti-JNK therapies is to design isoform-selective inhibitors of the JNKs. The
regulation of intracellular signaling pathways, including JNK, may become a new therapeutic strategy
to improve graft survival in clinical islet transplantation.

Both JNK and p38 are preferentially activated in response to the processing of islets for
transplantation and by the inflammation associated with islet transplantation. Some small molecules
that inhibit p38 activity suppress the production of proinflammatory cytokines and improve islet
engraftment [114–116]. Since p38 participates in another signaling cascade controlling cellular responses
to cytokines and stress, the inhibition of both JNK and p38 may enhance the inhibition of isle apoptosis.
Some groups indicate cytokine-mediated β-cell necrosis as an additional possibility [117,118]. Collier et
al. showed that proinflammatory cytokines cause β-cell cytotoxicity primarily through a nonapoptotic
mechanism linked to a decline in ATP levels [117]. Steer et al. showed that IL-1 induces β-cell
necrosis [118]. The inhibition of not only apoptosis but also necrosis may become a new therapeutic
strategy to improve the outcome of islet transplantation.
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Abbreviations

JNK c-Jun NH2-terminal kinase
MAPKs mitogen-activated protein kinases
T1DM type 1 diabetes mellitus
IL interleukin
TNF tumor necrosis factor
IFN interferon
NF-κB nuclear factor-κB
NO nitric oxide
ER endoplasmic reticulum
IBMIR instant blood-mediated inflammatory reaction
ERKs extracellular signal–regulated kinases
ATF-2 activating transcription factor-2
AP-1 activator protein-1
UW University of Wisconsin solution
PFC perfluorochemical
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TLM two-layer preservation method
ATP adenosine triphosphate
EJ extracellular-type/JNK inhibitor-containing solution
MKK MAPK kinase
ICAM intracellular adhesion molecule
APC activated protein C
JIP1 JNK-interacting protein-1
IB1 islet-brain-1
JNKI JNK inhibitory peptide
11R 11-arginine
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