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Abstract: Keratinocytes constitute the major cell type of epidermis, which participates in
re-epithelialization during wound repair and the immune defense response to pathogens. The aim of
the current study was to explore the differentially expressed genes and novel microRNA (miRNA)
regulations that are potentially involved in diabetic keratinocytes through next-generation sequencing
(NGS) and bioinformatics approaches. A total of 420 differentially expressed genes between normal
and diabetic keratinocytes were identified, and systematic bioinformatics analyses indicated that these
differentially expressed genes were functionally enriched in interferon-alpha signaling, viral defense
response, and immune response. Additionally, the potential miR-340-3p-DTX3L interaction that has
been systematically validated in miRNA prediction databases was proposed to participate in the
disrupted skin homeostasis, altering the defense and immune response of diabetic skin. The findings
may provide new insights into understanding the pathogenesis of epidermal pathologies in diabetic
patients and targeting novel molecules to advance diabetic skin care in clinical practice.

Keywords: type 2 diabetes; keratinocytes; immune response; next-generation sequencing;
bioinformatics; microRNA; messenger RNA

1. Introduction

The global prevalence of diabetes mellitus is approximately 9%, and type 2 diabetes (T2D)
accounts for 90% of all diabetes. The rapidly increasing prevalence has made diabetes a major public
health concern [1,2]. Patients with T2D have increased risks of both macrovascular and microvascular
complications, which are the primary causes of morbidity and mortality in T2D [2]. The high prevalence
of skin disorders related to impaired glycemic control and vascular complications has been reported,
while early-stage skin disorders are often overlooked, and may result in ulcers and skin and soft
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tissue infections in patients with T2D [3]. The T2D population is also susceptible to poor wound
healing, which has been proposed to be associated with poor glycemic control and the accumulation
of advanced glycation end products (AGEs) in the skin [3–5].

Human skin consists of epidermal and dermal layers. Unlike the dermis layer having greater cell
diversity, epidermis consists majorly of keratinocytes, which are responsible for re-epithelialization
by interacting with fibroblasts in a paracrine manner during the wound-healing process [6,7].
A high-glucose environment and increased AGEs have been suggested to impair keratinocyte
proliferation and differentiation, and inhibit the migratory ability of keratinocytes, suggesting the
essential role of keratinocytes in diabetic wound healing [8–10]. Recent evidence has also suggested
the key role of genetic and epigenetic regulation in diabetic foot ulcer and the wound-healing
process [11,12]. MicroRNAs (miRNAs) negatively regulate the expression of many human genes
through 3’-untranslated region (UTR) binding at the post-transcriptional level, and provide the
fine-tuning of gene regulations [13]. Recent studies have suggested the essential role of miRNA
regulation in the biological processes of various skin cell types [12,14], including immune cells,
fibroblasts, and keratinocytes, and dysregulated miRNAs in diabetic skins participate in the impaired
wound healing [15–19]. The importance of miRNA regulation in diabetic wound healing has been
emphasized, thus prompting the development of topical miRNA-directed therapy for diabetic skin
care [20,21].

Recent advances in the deep sequencing of the whole genome has provided high-throughput
genomic profiling and facilitated the development of individualized precision medicine [22,23], and
abundant software tools for an integrative analysis of the big data are available, which can enable more
efficiently gaining a comprehensive understanding of the biological functions of a list of genes [24–26].
In the current study, we aimed to investigate the differentially expressed genes and novel miRNA
regulations that are potentially involved in diabetic keratinocytes, using next-generation sequencing
(NGS) and bioinformatics approaches. We hope that the findings will provide novel insights into
understanding the underlying pathogenesis of epidermal pathologies in patients with T2D.

2. Materials and Methods

2.1. Experimental Design

To explore the differential expression profiles between normal and T2D epidermal keratinocytes,
RNAs were extracted from human epidermal keratinocytes of normal (N-HEK) and type
2 diabetes mellitus (DM-HEK) origins for next-generation sequencing (NGS) and further systematic
bioinformatics analysis. The study flowchart is provided in Figure 1.

2.2. Cell Culture of Primary Human Epidermal Keratinocytes

Human adult N-HEK and DM-HEK cells were purchased from Lonza Walkersville Inc.
(Walkersville, MD, USA) and cultured in keratinocyte serum-free growth medium (Cell Applications,
Inc. San Diego, CA, USA) according to recommended culturing protocol in 5% CO2 humidified
incubator at 37 ◦C. After growth to confluence, adult N-HEK and DM-HEK cells were harvested
for further RNA extraction using Trizol Reagent (Invitrogen, Carlsbad, CA, USA), following the
manufacturer’s instructions, and tested for the quality of extracted RNAs. The OD260/OD280

absorbance ratio detected by ND-1000 spectrophotometer (Nanodrop Technology, Wilmington, DE,
USA) was 2.03 for N-HEK and 2.04 for DM-HEK, and the RNA integrity number (RIN) determined by
Bioanalyzer 2100 (Agilent Technology, Santa Clara, CA, USA) was 9.9 for both N-HEK and DM-HEK,
indicating the good quality of the extracted RNAs.
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Figure 1. Study flowchart. Human epidermal keratinocytes of normal and type 2 diabetic skin were 
deep sequenced for RNA and small RNA expression profiles, and systematically analyzed using 
bioinformatics databases for deduction of novel molecular signatures in diabetic keratinocytes. FC, 
fold-change; FPKM, fragments per kilobase of transcript per million mapped reads; RPM, reads per 
million; PPI, protein-protein interaction; GSEA, gene set enrichment analysis; IPA, Ingenuity 
Pathway Analysis; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins. 

2.3. Next-Generation Sequencing 

The extracted total RNAs of adult N-HEK and DM-HEK cells were sequenced for RNA and 
small RNA expression profiles by Welgene Biotechnology Company (Welgene, Taipei, Taiwan). 
Briefly, all of the RNA samples were prepared following the Illumina protocol, and Agilent’s 
SureSelect Strand-Specific RNA Library Preparation kit was used for RNA library construction, 
followed by AMPure XP Beads size selection. The RNA sequencing was determined by Illumina’s 
sequencing-by-synthesis technology, with a read length of 150 nucleotides per pair-end, and the 
sequencing data was generated by Welgene’s pipeline based on Illumina’s base-calling program 
bcl2fastq v2.2.0. The raw reads were trimmed to remove lower quality bases using Trimmomatic 
(version 0.36). The passed reads were then aligned to a reference human genome sequence obtained 
from the Ensembl database (GRCh38.p12) using the HISAT2 alignment tool. The expression value of 
each gene was normalized by calculating the fragments per kilobase of transcript per million 
mapped reads (FPKM). The differential expression analysis between N-HEK and DM-HEK cells was 
carried out using Cuffdiff (Cufflinks version 2.2.1). For small RNA sequencing, the library 
construction was prepared using an Illumina sample preparation kit, which contained 3′ and 5′ 
adaptors that were ligated to total RNA, reverse transcribed to cDNA, fractionated, and purified for 
bands with 18–40 nucleotide fragments. The sequencing for a single-end read length of 75 
nucleotides was carried out using the Illumina instrument and software, in which raw sequences 
were trimmed for qualified reads, analyzed in miRDeep2 to clip 3’ adaptor sequence, and aligned to 
a reference human genome from the University of California, Santa Cruz (UCSC). The miRDeep2 

Figure 1. Study flowchart. Human epidermal keratinocytes of normal and type 2 diabetic skin were
deep sequenced for RNA and small RNA expression profiles, and systematically analyzed using
bioinformatics databases for deduction of novel molecular signatures in diabetic keratinocytes. FC,
fold-change; FPKM, fragments per kilobase of transcript per million mapped reads; RPM, reads per
million; PPI, protein-protein interaction; GSEA, gene set enrichment analysis; IPA, Ingenuity Pathway
Analysis; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins.

2.3. Next-Generation Sequencing

The extracted total RNAs of adult N-HEK and DM-HEK cells were sequenced for RNA and
small RNA expression profiles by Welgene Biotechnology Company (Welgene, Taipei, Taiwan).
Briefly, all of the RNA samples were prepared following the Illumina protocol, and Agilent’s
SureSelect Strand-Specific RNA Library Preparation kit was used for RNA library construction,
followed by AMPure XP Beads size selection. The RNA sequencing was determined by Illumina’s
sequencing-by-synthesis technology, with a read length of 150 nucleotides per pair-end, and the
sequencing data was generated by Welgene’s pipeline based on Illumina’s base-calling program
bcl2fastq v2.2.0. The raw reads were trimmed to remove lower quality bases using Trimmomatic
(version 0.36). The passed reads were then aligned to a reference human genome sequence obtained
from the Ensembl database (GRCh38.p12) using the HISAT2 alignment tool. The expression value of
each gene was normalized by calculating the fragments per kilobase of transcript per million mapped
reads (FPKM). The differential expression analysis between N-HEK and DM-HEK cells was carried
out using Cuffdiff (Cufflinks version 2.2.1). For small RNA sequencing, the library construction
was prepared using an Illumina sample preparation kit, which contained 3′ and 5′ adaptors that
were ligated to total RNA, reverse transcribed to cDNA, fractionated, and purified for bands with
18–40 nucleotide fragments. The sequencing for a single-end read length of 75 nucleotides was carried
out using the Illumina instrument and software, in which raw sequences were trimmed for qualified
reads, analyzed in miRDeep2 to clip 3’ adaptor sequence, and aligned to a reference human genome
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from the University of California, Santa Cruz (UCSC). The miRDeep2 was used for the detection of
known miRNAs and their estimated expression values were normalized in reads per million (RPM).

2.4. clusterProfiler

The clusterProfiler is an ontology-based tool implemented in R, which is an open-source
programming environment, to analyze functional profiles in gene ontology (GO) terms and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of genes and/or gene clusters for a
functional enrichment test based on hypergeometric distribution. The adjusted p-values were estimated
to prevent a high false discovery rate (FDR) in multiple testing [27]. The clusterProfiler version 3.6
was used for the analysis, and the differentially expressed genes in DM-HEK cells were analyzed for
functional profiles.

2.5. Gene Set Enrichment Analysis (GSEA)

The Gene Set Enrichment Analysis (GSEA) software provides a powerful analytical method
to interpret large gene expression data. The analysis is based on biologically defined gene sets
consisted of groups of genes with common biological function, regulation, or chromosomal location.
GSEA considers all of the expressed genes in an experiment, instead of selected genes with significant
differential expression, and then assesses the significance by permuting phenotypes, which can
preserve gene–gene correlations. Moreover, a leading-edge analysis is provided to help define core
genes that are representative of biological importance within the gene set [28]. The GSEA desktop
version 3.0 was used for the analysis.

2.6. Functional Enrichment Analysis Tool (FunRich)

FunRich is an open access, Windows-based analytic tool for both the functional enrichment and
interaction network analysis of genes and proteins. The FunRich analysis is based on a backend
database with the human-specific collated genomic and proteomic datasets of more than 1.5 million
annotations, which were regularly updated. The statistical significance of enriched terms is performed
by a hypergeometric distribution test, and the FDR method is also implemented to correct for multiple
testing. The results can be graphically presented in customized forms [29,30]. The FunRich version 3.1.3
was used for the analysis.

2.7. STRING and NetworkAnalyst Databases for Protein–Protein Interaction Network Analysis Database

The STRING database collects and integrates all of the functional interactions between expressed
proteins from known and predicted protein–protein association data. The latest version of STRING
covers 2031 organisms: 9.6 million proteins and 1380 million interactions. The differentially expressed
genes were uploaded for the protein–protein interaction (PPI) network, and interactions with at least
medium confidence (interaction score > 0.4) were set by default. The STRING database also provides
enrichment analysis for various classification systems, including GO and KEGG, and implements
Fisher’s exact test followed by correction for multiple testing to determine statistical significance [31].
The retrieved large PPI network was uploaded into Cytoscape software package with Molecular
Complex Detection (MCODE) plugin tool to analyze the clusters of PPI sub-networks [32]. The STRING
version 10.5 and Cytoscape version 3.6.1 were used for the analysis.

NetworkAnalyst is a web-based tool supporting the network-based meta-analysis of gene
expression data in an integrative approach. A gene list of interest was uploaded and mapped to
the manually curated International Molecular Exchange (IMEx) PPI database, and the minimum
interaction network type selected to construct the relevant networks [33,34].
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2.8. Ingenuity Pathway Analysis (IPA)

IPA is a software package (Ingenuity systems, Redwood City, CA, USA) that is available for the
bioinformatics analysis of genomic, proteomic, and experimental studies based on curated literature
searches reviewed and updated by experts. The gene list with expression changes is uploaded to IPA
software for core analysis to obtain predicted canonical pathways, associated diseases and functions,
and interaction networks [35]. In addition, IPA also provides causal analytics tools for the construction
of causal networks to generate mechanistic hypotheses based on the directional changes of expression
in the uploaded dataset. The statistical significance of the enriched functions or constructed networks
was determined by two scores: the enrichment score (Fisher’s exact test p-value), which assesses the
overlap of observed and predicted gene sets, and the z-score, which assesses the match of observed
and predicted regulatory patterns with a prediction for the activation state [36]. In the current study,
differentially expressed genes in DM-HEK cells with fold-changes in expression were uploaded for the
core analysis and construction of the causal network.

2.9. miRmap Target Prediction Database

The miRmap is an open-source software library for the target prediction of a specific miRNA.
It is the first miRNA target prediction tool that comprehensively covers different approaches for
the prediction of repression strength, including probabilistic, evolutionary, thermodynamic, and
sequence-based approaches. The repression strength is indicated as a miRmap score, with a higher
score representing a higher repression strength [37]. The miRmap version 1.0 was used in the current
study to predict the putative targets of differentially expressed miRNAs in DM-HEK cells.

3. Results

3.1. Identification of Differentially Expressed Genes in Human Type 2 Diabetic Epidermal Keratinocytes (DM-HEK)

The expression profiling of adult N-HEK and DM-HEK cells were retrieved from NGS results,
and the expression values were normalized in FPKM. The distribution of the FPKM values of the
two samples were displayed in a density plot (Figure 2A). The differentially expressed genes in
DM-HEK cells were screened by the following selection criteria: expression values of higher than
0.3 FPKM in either sample, at least a 2.0-fold-change between N-HEK and DM-HEK cells, and
a significant between-sample differential expression with a p-value < 0.05. The distribution of
differentially expressed genes between N-HEK and DM-HEK cells were plotted in a volcano plot, as
shown in Figure 2B. The selection criteria yielded a total of 420 differentially expressed genes, with
209 up-regulated genes and 211 down-regulated genes in DM-HEK cells.
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Figure 2. Differential expression patterns of normal (N-HEK) and diabetic (DM-HEK) human epidermal
keratinocytes from next-generation sequencing (NGS) displayed in (A) a density plot and (B) a
volcano plot. The dots in red represent significantly up-regulated genes, and the dots in green
represent significantly down-regulated genes in DM-HEK cells. DM-HEK, diabetic human epidermal
keratinocytes; N-HEK, normal human epidermal keratinocytes.

3.2. The Differentially Expressed Genes in DM-HEK Were Enriched in Interferon (IFN) Signaling and Viral
Defense Response

The differentially expressed genes were systematically analyzed in the following bioinformatics
databases for functional enrichment analysis, including GSEA, clusterProfiler, and FunRich. Firstly, the
expression values of all of the genes in N-HEK and DM-HEK cells were uploaded into GSEA software
to analyze the enriched functions within the hallmark gene sets database. The default cutoff for the
significantly enriched gene sets was set at a FDR of <25%. The results identified that the gene sets that
were related to interferon alpha/gamma response and cell cycle function were significantly enriched
in N-HEK cells, as shown in Figure 3.

In addition, the 420 differentially expressed genes were input into the clusterProfiler and FunRich
databases for functional enrichment analysis. The top 20 functionally enriched biological processes
with their corresponding adjusted p-values obtained from clusterProfiler analysis under GO terms
are indicated in a bar chart in Figure 4A, and the most significantly enriched biological processes
were associated with type I interferon (IFN) signaling and defense response to virus. The interaction
networks between enriched biological processes were analyzed using the enrichMap function in the
clusterProfiler package, which yielded a dense interaction network among the biological processes
related to IFN signaling and defense response to virus, as shown in the upper part of the network
cluster in Figure 4B. The biological pathway analysis results from the FunRich database indicated that
these differentially expressed genes were significantly enriched in IFN signaling and cytokine signaling
in the immune system, as shown in Figure 5. Taken together, the systematic bioinformatics analysis
of the differentially expressed genes between N-HEK and DM-HEK cells were functionally enriched
in IFN-alpha signaling related to the immune system. Therefore, we hypothesized that normal and
DM keratinocytes exert different gene expression profiles that are related to altered defense response
in skin.
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Figure 3. Gene Set Enrichment Analysis (GSEA) of gene expressions in keratinocytes. All of the
expressed genes in N-HEK and DM-HEK cells were uploaded into GSEA for enrichment analysis.
The h.all.v6.2.symbols.gmt [Hallmarks] gene set database was used as the gene set collection for
analysis. GSEA performed 1000 permutations. The maximum and minimum sizes for gene sets were
set at 500 and 15, respectively. Cutoff for significant gene sets was false discovery rate <25%, by default.
NES, normalized enrichment score; FDR, false discovery rate.

3.3. Identification of Potential Mechanistic Regulatory Network and Gene Clusters Involved in IFN Signaling
and Defense Response of HEK Cells

To further identify clusters of genes among the 420 differentially expressed genes and their
associated biological functions, these genes were input into the STRING database for potential PPI
networks. A large PPI network (PPI enrichment p-value < 1.0 × 10−16) with 414 nodes and 728 edges
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was retrieved, and further sub-network analysis was performed using the plug-in Molecular Complex
Detection (MCODE) tool in Cytoscape. The clusters of sub-networks that were retrieved from MCODE
analysis are listed in Table 1, with the 23 molecules grouped into cluster 1 showing the highest
score. These 23 molecules were analyzed in the STRING database for enrichment analysis in GO
terms, and the top 10 biological processes that were enriched in these genes were associated with the
defense response to virus, type I IFN signaling, and related immune responses, as listed in Table 2.
The PPI network among the molecules of cluster 1 was obtained from the STRING database, as
presented in Figure 6A, and the molecules that were related to the biological processes of the type I
IFN signaling pathway, defense response, immune response, and response to cytokine were indicated.
The 23 molecules were uploaded to NetworkAnalyst for network validation using IMEx PPI database
(Figure 6B).J. Clin. Med. 2019, 8, x FOR PEER REVIEW  8 of 22 

 

 

 
Figure 4. (A) Top 20 functionally enriched biological processes with corresponding adjusted 
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Figure 4. (A) Top 20 functionally enriched biological processes with corresponding adjusted p-values
analyzed by clusterProfiler, which are displayed in a bar chart. The color scales indicated the different
thresholds of adjusted p-values. (B) Interaction networks between enriched biological processes
analyzed by enrichMap in the clusterProfiler package. The color scales indicated different thresholds
of adjusted p-values, and the sizes of the dots represented the percentage of each term.
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Figure 5. Enriched biological pathways of differentially expressed genes in diabetic keratinocytes.
Top 10 biological pathways with their corresponding p-values and percentages of genes were
obtained from enrichment analysis using the FunRich analytic tool, and are displayed in a bar chart.
The significantly enriched biological pathways (p < 0.05) included interferon signaling and cytokine
signaling in the immune system.

Table 1. Clustered sub-networks of protein–protein interaction as determined from analysis through
the Cytoscape software package with Molecular Complex Detection (MCODE).

Cluster Score (Density *#Nodes) Nodes Edges Node IDs

1 20.273 23 223

PLSCR1, IFITM1, PARP12, STAT1, IRF9, XAF1,
DDX58, DHX58, OAS2, IFI44L, MX1, SP110, HERC6,
PARP9, MX2, USP18, IFI44, ISG15, DDX60, EPSTI1,

OAS3, IFI6, SAMD9

2 4.4 11 22 TOR4A, CXCL5, FGF2, CXCR2, LGALS3BP, CXCL1,
MMP7, PPBP, MMP1, CXCL3, CXCR1

3 4 17 32
MITF, COL8A2, TEK, ITGA4, COL5A3, COL6A2,

ITGB2, EDNRA, ITGAL, EGF, NTSR1, TIMP3, LYN,
COL9A2, VAV1, HRH1, PLCB1

4 3.333 4 5 KDM6A, SMARCA2, NAP1L4, HIST2H2AC
5 3.333 4 5 RRAD, PRKX, RTN4RL1, LGR6
6 3 3 3 SAMHD1, HLA-A, HLA-C
7 3 3 3 GBP6, B2M, TRIM2
8 3 3 3 ALDH1A3, DIP2C, ACOXL
9 3 5 6 ACACA, CARS, DPYSL4, SHMT1, CYB5R2

Table 2. Top 10 biological processes enriched in the genes of cluster 1.

Biological Process Gene Count False Discovery Rate

Response to virus 14 7.09 × 10−19

Defense response to virus 13 7.09 × 10−19

Type I interferon signaling pathway 11 7.09 × 10−19

Cellular response to type I interferon 11 7.09 × 10−19

Defense response 16 1.10 × 10−11

Innate immune response 14 3.42 × 10−11

Immune system process 17 6.53 × 10−11

Immune response 15 9.23 × 10−11

Response to cytokine 12 2.49 × 10−10

Negative regulation of multi-organism process 7 9.85 × 10−8
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Figure 6. Protein–protein interaction (PPI) network in cluster 1 from the MCODE sub-network analysis.
(A) The interaction network and functional enrichment analysis of the 23 molecules in cluster 1 were
obtained from the STRING database. Molecules involved in the type I interferon signaling pathway are
colored in red, the defense response-related molecules are colored in blue, the immune response-related
molecules are colored in green, and the cytokine response-related molecules are colored in yellow.
(B) The interaction network was validated using NetworkAnalyst with the International Molecular
Exchange (IMEx) PPI database. The molecules that are involved in interferon signaling and cytokine
signaling in the immune system are indicated in the red frame.

To further identify the genes that are potentially involved in the defense response of HEK
cells, expression values of the 420 differentially expressed genes were uploaded into IPA software
for core analysis. As indicated in other bioinformatics databases, IFN signaling was one of the
top canonical pathways (p-value = 8.79 × 10−5, z-score = −2.236) identified in the IPA results.
Additionally, the regulator effect network retrieved from the core analysis result showed a mechanistic
network (consistency score = 9.087) that was associated with functions of antiviral response (p-value =
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9.15 × 10−10, z-score = −2.0) and replication of viral replicon (p-value = 1.2 × 10−4, z-score = 2.407).
The proposed mechanistic network with predicted upstream regulator and associated downstream
effectors and final functions is shown in Figure 7. Among the generated regulatory network, STAT1,
IFITM1, ISG15, and MX1 were genes associated with the IFN signaling pathway, while STAT1 and MX1
were associated with dermatitis, and STAT1 and ISG15 were associated with the inflammatory response.
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Figure 7. Proposed regulatory network from Ingenuity Pathway Analysis software. The proposed
mechanistic network with predicted upstream regulator and associated downstream effectors and final
functions were generated based on assessing the match of observed and predicted regulatory patterns.
The overlay canonical pathway among the mechanistic network identified STAT1, IFITM1, ISG15, and
MX1 as associated with the Interferon (IFN) signaling pathway. Molecules in purple frames, including
STAT1, ISG15, and MX1 from our dataset, were associated with dermatitis and the inflammatory
response. Molecules in light green indicated decreased expression, while orange indicated predicted
activation, and blue indicated predicted inhibition.

3.4. Identification of Potential miRNA–mRNA Interactions in DM-HEK Cells

To investigate the potential miRNA regulations in DM-HEK cells, we simultaneously performed
small RNA sequencing for miRNA profiling in adult N-HEK and DM-HEK cells. Differentially
expressed miRNAs in DM-HEK cells were selected under the selection criteria of normalized read
counts >one RPM and at least a 2.0-fold-change between N-HEK and DM-HEK cells. The selection
criteria yielded 87 differentially expressed miRNAs, including 44 up-regulated and 43 down-regulated
miRNAs in DM-HEK cells.

Using the miRmap database, the 44 up-regulated and 43 down-regulated miRNAs in DM-HEK
cells were input into the database for miRNA target prediction, and those predicted targets with
miRmap scores >97.0 were selected. The selected putative targets of up-regulated (down-regulated)
miRNAs were matched to our dataset of 211 down-regulated (209 up-regulated) genes in DM-HEK
cells. The matched result is displayed in a Venn diagram along with heatmaps in z-score values of
differentially expressed miRNAs and mRNAs in Figure 8A. A total of 94 genes with potential miRNA
regulations were identified.
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Figure 8. Differentially expressed miRNAs and mRNAs with potential miRNA targets and the
deduction of novel genes related to defense response in diabetic keratinocytes. (A) The heat maps
of differentially expressed miRNAs and mRNAs in N-HEK and DM-HEK cells are shown in the left
and right panels, respectively. Putative miRNA targets were predicted using the miRmap database,
setting the repression score at ≥97.0. The candidate genes were those overlapping with differentially
expressed mRNAs in HEK cells, as shown in the Venn diagram in the middle panel. (B) The 94 miRNA
targets were matched to 23 genes, which were identified as cluster 1 from Molecular Complex Detection
(MCODE) sub-network analysis, and 18 genes related to antiviral response from the Ingenuity Pathway
Analysis (IPA) result for the deduction of novel genes related to defense response in DM-HEK cells,
including DTX3L, EPSTI1, OAS2, and PARP9.

To identify the overlapping genes between 94 potential miRNA targets and clusters of genes
already indicated in MCODE cluster 1 and the antiviral response in the IPA result, the Venn diagram
analysis was carried out, and identified four overlapping genes of interest, including OAS2, PARP9,
EPSTI1, and DTX3L (Figure 8B).
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The four target genes with corresponding miRNA regulations and respective miRmap scores were
listed in Table 3. To validate these potential miRNA regulations systematically, the other two miRNA
target prediction databases were used, including TargetScan and miRDB, and the analytic results
yielded one potential miRNA regulation with consistent putative 3′-UTR binding sites at positions of
181–187 and 1016–1022 in all three miRNA prediction databases, the miR-340-3p-DTX3L interaction
(Figure 9).

Table 3. Potential miRNA regulations in diabetic epidermal keratinocytes.

miRNA Fold Change (DM-HEK/N-HEK) Putative Target miRmap Score TargetScan miRDB

hsa-miR-2116-3p 2.41 DTX3L 98.87 + −
hsa-miR-296-3p 2.30 OAS2 97.82 − −
hsa-miR-340-3p 2.00 DTX3L 97.39 + +
hsa-miR-4642 9.17 OAS2 97.20 − −

hsa-miR-5010-3p 2.97 EPSTI1 97.49 + −
hsa-miR-548b-5p 2.24 PARP9 97.23 − +
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Figure 9. The putative binding sites of miR-340-3p on DTX3L. The sequences and putative
3′-untranslated region (UTR) binding sites of miR-340-3p on DTX3L at positions of 181–187 and
1016–1022 were validated in miRmap (A), TargetScan (B), and miRDB (C) databases.

4. Discussion

The current study identified that the differentially expressed genes in DM-HEK cells were enriched
in biological functions of IFN-alpha signaling, viral defense response, and immune response, through
NGS and systematic bioinformatics analysis. In addition, the potential miR-340-3p-DTX3L interaction
validated in different miRNA prediction databases was proposed to participate in the altered defense
and immune response of diabetic skin. The proposed molecular signatures in DM-HEK cells are
presented in graphic summary in Figure 10.

Patients with T2D have an increased risk of skin infection and poor wound healing, and the
impaired function of keratinocytes is one of the major factors contributing to impaired wound healing
in diabetes [38]. Moreover, keratinocytes also play a critical role in cutaneous innate immunity through
the production of various antimicrobial peptides, having a crucial role in the defense response of
skin against microbial infections [6]. Innate immunity is the first-line defense in the human body
that provides non-specific defense response at all of the anatomical barriers, including the skin, and
maintains a dynamic interaction with various microbes [39,40]. Patients with T2D are susceptible to
infections, and the proposed mechanism is the dysregulated homeostasis of the T cell immunity with
decreased innate T cells, contributing to tissue inflammation [41]. In the current study, bioinformatics
tools based on different enrichment algorithms were used in order to obtain validated results of
functional enrichment analysis, including singular enrichment analysis such as clusterProfiler and
FunRich, gene set enrichment analysis such as GSEA and clusterProfiler, and modular enrichment
analysis such as IPA, STRING, and NetworkAnalyst [26,42]. The systematic analysis using multiple
tools identified consistently enriched biological pathways, including type I IFN signaling, viral defense
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response, and immune response among differentially expressed genes in DM-HEK cells. Among the
gene clusters related to these biological functions, the results by GSEA and z-score estimation by IPA
implicated the inhibited functions of the IFN-alpha response and antiviral response in DM-HEK cells.
The results are in line with the clinical observation that patients with T2D have an increased risk of
common infections [43,44].J. Clin. Med. 2019, 8, x FOR PEER REVIEW  16 of 22 
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Approximately 30% of patients with diabetes have skin changes, which are both infectious and
non-infectious [45]. Various microorganisms inhabit the human skin and have essential roles in
protecting against pathogens and modulating the immune system [46]. Research in skin microbiome
suggests a fine balance between defense response and elicited inflammatory response in healthy
skin condition, and the disturbed homeostasis is associated with many human diseases presenting
cutaneous manifestations [46,47]. In the condition of dysregulated innate immunity such as T2D,
alteration in the skin microbiome can result in an aberrant skin defense response and the uncontrolled
colonization of pathogens, contributing to the high susceptibility to skin infection [40,48]. Our current
results also indicated an altered defense response in diabetic keratinocytes, which supports the
increased risk of developing skin infection related to changed bacterial diversity and aberrant skin
colonization in patients with T2D [39,49].

In diabetic skin, reduced immune cell infiltrates, including Langerhans cells and dendritic cells,
in the dermis and epidermis layers were observed, suggesting the potential role of altered cutaneous
immunity toward an inflammatory cutaneous environment predisposing to skin wounds [5,50].
New concepts have emphasized that keratinocytes act as immune sentinels that recognize pathogens
through Toll-like receptors (TLRs) to modulate predominantly innate immune response and produce
type I interferons (IFNs) [6,51]. IFN-alpha belongs to the type I IFN subfamily, which signals
mainly through the activation of the Janus kinase/signal transducers and activators of transcription
(JAK-STAT) and mitogen-activated protein kinase (MAPK) pathways, and induces the expression
of IFN-stimulated genes (ISGs) with potent antiviral activities [52,53]. Keratinocytes also produce
antimicrobial peptides as a defense mechanism against pathogens when damaged [6,54]. Our current
results identified the potentially inhibited functions of IFN-alpha and viral defense responses in
DM-HEK cells, with TLR7/9 and IFNA1/A2 being the predicted upstream regulators affecting several
downstream innate immune-related genes and ISGs, particularly STAT1, IFITM1, ISG15, and MX1
(Figures 3 and 7). Based on the current findings, we therefore proposed that in normal keratinocytes,
responses to skin stimuli such as organism invasion and trauma may properly activate the innate
immune system and trigger the immune sentinels residing in the epidermis and dermis to maintain
skin homeostasis. However, in diabetic skin with an impaired function of keratinocytes, the suppressed
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innate immune response and reduced immune infiltrates in the dermis may result in disrupted skin
homeostasis. However, the expressions of these innate immune-related genes in keratinocytes differ
among various skin conditions such as atopic dermatitis and autoimmune urticaria [55,56], and the
expressions of these genes in diabetic keratinocytes have not been reported. Further investigation is
needed in order to confirm our current findings.

DTX3L (deltex E3 ubiquitin ligase 3L), an E3 ubiquitin ligase, belongs to the Deltex protein
family, and complexes with poly(ADP-ribose) polymerase family member 9 (PARP9) to mediate the
monoubiquitylation of histone and modulate the DNA damage response [57]. Research on DTX3L
has mainly focused on its role in tumor cell growth and adhesion, including skin melanoma [58–60].
Based on the concept of immune advantage through enhancing the cellular response to IFN, a study
by Zhang et al. suggested that the PARP9-DTX3L complex enhanced the expression of ISGs in
host and promoted the degradation of viral proteases to enhance IFN-dependent immunity [61].
The dermal lymphatics provide a critical role in interstitial fluid drainage, and epidermal damage
triggers immune cell activation and dermal lymphatic drainage [62]. Choi et al. proposed that laminar
flow induced shear stress in lymphatic endothelial cells, and promoted lymphatic sprouting, and the
DTX3L loss of function could lead to defective lymphatic sprouting [63]. In the current study, our
NGS and bioinformatics results identified the down-regulated DTX3L and PARP9 in DM-HEK cells,
which potentially participated in IFN signaling and antiviral response, and were possibly regulated
by miRNAs. Together with this evidence, we proposed the potential role of DTX3L in diabetic
keratinocytes, which may be related to the impaired wound healing and susceptibility to skin infection
of patients with T2D. Future investigation on the role of DTX3L in diabetic skin is necessary to provide
information on its pathogenic role and advance skin care in patients with T2D.

The miRNA target prediction databases predicted miR-340-3p, which was 2.0-fold up-regulated
in DM-HEK cells, as the potential upstream regulator of DTX3L. Studies have reported the increased
expression of miR-340 in response to environmental exposures such as ultraviolet B (UVB) irradiation
and fine particulate matter (PM2.5). With UVB irradiation, miR-340 was overexpressed in melanocyte
and promoted dendrite formation and melanosome transport to neighboring keratinocytes [64]; in
addition, miR-340 was also induced in retinal pigment epithelial cells to promote cell apoptosis as
a possible mechanism of UVB-induced retinal damage [65]. The role of miR-340 in immune cell
regulation was also reported. Elevated miR-340 in mice lung tissue after exposure to PM2.5 was
associated with Type 1 T helper (Th1) / Type 2 T helper (Th2) cells immune imbalance [66]. In a mouse
model of psoriasis, the expression of miR-340 was decreased, and treatment with miR-340 suppressed
the expression of endogenous IL-17A and alleviated the clinical severity of psoriasis [67]. In conditions
related to metabolic changes, circulating miR-340 was lower in maternal obesity and associated
with more impaired glucose tolerance [68], and a decreased level of miR-340 was observed after a
six-month high glycemic index diet [69]. In tissue regeneration, miR-340 dysregulation decreased
debris removal and limited axonal growth in rat sciatic nerve crush injury [70]. The role of miR-340-3p
in the accumulation of AGEs in diabetic skin or diabetic cutaneous defense response has not yet
been reported. The current findings supported the potential role of miR-340-3p-DTX3L interaction
in diabetic keratinocytes, and merit further experimental validation and clinical correlation for its
potential as a diagnostic or therapeutic target in diabetic skin disorders.

There are several limitations to be addressed in the current study. Firstly, the current results
were based on normal and diabetic epidermal keratinocytes isolated from single donors. To conduct a
hypothesis generating study and minimize possible confounding factors between T2D populations
with different glycemic control statuses, keratinocytes from single donors were used in the current
in vitro study to identify the differentially expressed genes in diabetic skin. Further experimental
validation is needed in order to confirm the candidate miRNA and its putative target. It is also of
clinical importance to investigate the clinical specimens of different degrees of diabetic skin ulcers and
at different stages of the healing process to help clarifying our current findings. Moreover, a detailed
investigation of the signaling pathways that are involved in the altered skin pathology in T2D based
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on the mechanistic regulatory network obtained from a bioinformatics database is needed to gain a
deeper understanding of the possible mechanisms that are involved in the disrupted skin homeostasis
of the diabetic population.

5. Conclusions

Our current exploratory study indicated functionally enriched pathways of IFN-alpha signaling,
viral defense response and immune response in differentially expressed genes of DM-HEK cells, with a
focus on the potential role of miR-340-3p-DTX3L interaction in the disrupted skin homeostasis, altered
the defense and immune response of diabetic skin. The findings may provide novel molecular targets
in advancing diabetic skin care.

Author Contributions: P.L.K., E.-S.L. and W.-A.C. conceived and designed the experiments; L.-Y.W., W.-A.C. and
Y.-J.C. performed the experiments; Y.-Y.C., Y.-J.C. and P.-L.K. analyzed the data; Y.-J.C. wrote the manuscript; all
authors contributed to the editing and final approval of the manuscript.

Funding: Ministry of Science and Technology (MOST 107-2320-B-037-011-MY3; MOST 107-2635-B-037-001;
MOST 106-2622-E-025-001-CC3; MOST 105-2622-E-025-001-CC3; MOST 104-2622-E-025-002-CC3), Kaohsiung
Medical University Hospital (KMUHS10701; KMUHS10712; KMUH107-6R15), Kaohsiung Medical University
(KMU-DK108003).

Acknowledgments: The authors thank the Center for Research Resources and Development of Kaohsiung
Medical University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Weisman, A.; Fazli, G.S.; Johns, A.; Booth, G.L. Evolving Trends in the Epidemiology, Risk Factors, and
Prevention of Type 2 Diabetes: A Review. Can. J. Cardiol. 2018, 34, 552–564. [CrossRef] [PubMed]

2. Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its
complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [CrossRef] [PubMed]

3. De Macedo, G.M.; Nunes, S.; Barreto, T. Skin disorders in diabetes mellitus: An epidemiology and
physiopathology review. Diabetol. Metab. Syndr. 2016, 8, 63. [CrossRef] [PubMed]

4. Makrantonaki, E.; Jiang, D.; Hossini, A.M.; Nikolakis, G.; Wlaschek, M.; Scharffetter-Kochanek, K.;
Zouboulis, C.C. Diabetes mellitus and the skin. Rev. Endocr. Metab. Disord. 2016, 17, 269–282. [CrossRef]

5. Hu, H.; Jiang, H.; Ren, H.; Hu, X.; Wang, X.; Han, C. AGEs and chronic subclinical inflammation in diabetes:
Disorders of immune system. Diabetes. Metab. Res. Rev. 2015, 31, 127–137. [CrossRef] [PubMed]

6. Nestle, F.O.; Di Meglio, P.; Qin, J.Z.; Nickoloff, B.J. Skin immune sentinels in health and disease.
Nat. Rev. Immunol. 2009, 9, 679–691. [CrossRef] [PubMed]

7. Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol.
2007, 127, 998–1008. [CrossRef]

8. Spravchikov, N.; Sizyakov, G.; Gartsbein, M.; Accili, D.; Tennenbaum, T.; Wertheimer, E. Glucose effects on
skin keratinocytes: Implications for diabetes skin complications. Diabetes 2001, 50, 1627–1635. [CrossRef]

9. Zhu, P.; Yang, C.; Chen, L.H.; Ren, M.; Lao, G.J.; Yan, L. Impairment of human keratinocyte mobility and
proliferation by advanced glycation end products-modified BSA. Arch. Dermatol. Res. 2011, 303, 339–350.
[CrossRef]

10. Huang, S.M.; Wu, C.S.; Chiu, M.H.; Yang, H.J.; Chen, G.S.; Lan, C.E. High-glucose environment induced
intracellular O-GlcNAc glycosylation and reduced galectin-7 expression in keratinocytes: Implications on
impaired diabetic wound healing. J. Dermatol. Sci. 2017, 87, 168–175. [CrossRef]

11. Arya, A.K.; Tripathi, K.; Das, P. Promising role of ANGPTL4 gene in diabetic wound healing. Int. J. Low.
Extremity Wounds 2014, 13, 58–63. [CrossRef] [PubMed]

12. Jhamb, S.; Vangaveti, V.N.; Malabu, U.H. Genetic and molecular basis of diabetic foot ulcers: Clinical review.
J. Tissue Viability. 2016, 25, 229–236. [CrossRef] [PubMed]

13. Wang, Y.; Liang, Y.; Lu, Q. MicroRNA epigenetic alterations: Predicting biomarkers and therapeutic targets
in human diseases. Clin. Genet. 2008, 74, 307–315. [CrossRef]

http://dx.doi.org/10.1016/j.cjca.2018.03.002
http://www.ncbi.nlm.nih.gov/pubmed/29731019
http://dx.doi.org/10.1038/nrendo.2017.151
http://www.ncbi.nlm.nih.gov/pubmed/29219149
http://dx.doi.org/10.1186/s13098-016-0176-y
http://www.ncbi.nlm.nih.gov/pubmed/27583022
http://dx.doi.org/10.1007/s11154-016-9373-0
http://dx.doi.org/10.1002/dmrr.2560
http://www.ncbi.nlm.nih.gov/pubmed/24846076
http://dx.doi.org/10.1038/nri2622
http://www.ncbi.nlm.nih.gov/pubmed/19763149
http://dx.doi.org/10.1038/sj.jid.5700786
http://dx.doi.org/10.2337/diabetes.50.7.1627
http://dx.doi.org/10.1007/s00403-010-1102-z
http://dx.doi.org/10.1016/j.jdermsci.2017.04.014
http://dx.doi.org/10.1177/1534734614520704
http://www.ncbi.nlm.nih.gov/pubmed/24659626
http://dx.doi.org/10.1016/j.jtv.2016.06.005
http://www.ncbi.nlm.nih.gov/pubmed/27372176
http://dx.doi.org/10.1111/j.1399-0004.2008.01075.x


J. Clin. Med. 2019, 8, 73 18 of 20

14. Zgheib, C.; Hodges, M.; Hu, J.; Beason, D.P.; Soslowsky, L.J.; Liechty, K.W.; Xu, J. Mechanisms of mesenchymal
stem cell correction of the impaired biomechanical properties of diabetic skin: The role of miR-29a.
Wound Repair Regen. 2016, 24, 237–246. [CrossRef]

15. Wang, W.; Yang, C.; Wang, X.Y.; Zhou, L.Y.; Lao, G.J.; Liu, D.; Wang, C.; Hu, M.D.; Zeng, T.T.; Yan, L.; et al.
MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression.
Diabetes 2018, 67, 1627–1638. [CrossRef] [PubMed]

16. Li, X.; Li, D.; Wang, A.; Chu, T.; Lohcharoenkal, W.; Zheng, X.; Grunler, J.; Narayanan, S.; Eliasson, S.;
Herter, E.K.; et al. MicroRNA-132 with Therapeutic Potential in Chronic Wounds. J. Investig. Dermatol. 2017,
137, 2630–2638. [CrossRef]

17. Liang, L.; Stone, R.C.; Stojadinovic, O.; Ramirez, H.; Pastar, I.; Maione, A.G.; Smith, A.; Yanez, V.; Veves, A.;
Kirsner, R.S.; et al. Integrative analysis of miRNA and mRNA paired expression profiling of primary
fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen.
2016, 24, 943–953. [CrossRef]

18. Xu, J.; Wu, W.; Zhang, L.; Dorset-Martin, W.; Morris, M.W.; Mitchell, M.E.; Liechty, K.W. The role
of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: Correction with
mesenchymal stem cell treatment. Diabetes 2012, 61, 2906–2912. [CrossRef]

19. Caporali, A.; Emanueli, C. MicroRNA-503 and the extended microRNA-16 family in angiogenesis.
Trends Cardiovasc. Med. 2011, 21, 162–166. [CrossRef]

20. Ross, K. Towards topical microRNA-directed therapy for epidermal disorders. J. Control. Release 2018, 269,
136–147. [CrossRef]

21. Desmet, E.; Bracke, S.; Forier, K.; Taevernier, L.; Stuart, M.C.; De Spiegeleer, B.; Raemdonck, K.; Van
Gele, M.; Lambert, J. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders:
Proof-of-concept in the treatment of psoriasis. Int. J. Pharm. 2016, 500, 268–274. [CrossRef] [PubMed]

22. Zewde, M.; Kiyotani, K.; Park, J.H.; Fang, H.; Yap, K.L.; Yew, P.Y.; Alachkar, H.; Kato, T.; Mai, T.H.;
Ikeda, Y.; et al. The era of immunogenomics/immunopharmacogenomics. J. Hum. Genet. 2018, 63, 865–875.
[CrossRef] [PubMed]

23. Titeux, M.; Izmiryan, A.; Hovnanian, A. The Molecular Revolution in Cutaneous Biology: Emerging
Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs.
J. Investig. Dermatol. 2017, 137, e123–e129. [CrossRef] [PubMed]

24. Shukla, V.; Varghese, V.K.; Kabekkodu, S.P.; Mallya, S.; Satyamoorthy, K. A compilation of Web-based
research tools for miRNA analysis. Brief. Funct. Genom. 2017, 16, 249–273. [CrossRef] [PubMed]

25. Gligorijevic, V.; Malod-Dognin, N.; Przulj, N. Integrative methods for analyzing big data in precision
medicine. Proteomics 2016, 16, 741–758. [CrossRef] [PubMed]

26. Garcia-Campos, M.A.; Espinal-Enriquez, J.; Hernandez-Lemus, E. Pathway Analysis: State of the Art.
Front. Physiol. 2015, 6, 383. [CrossRef] [PubMed]

27. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among
gene clusters. Omics 2012, 16, 284–287. [CrossRef]

28. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.;
Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

29. Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.;
Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. FunRich: An open access standalone functional enrichment and
interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [CrossRef]

30. Pathan, M.; Keerthikumar, S.; Chisanga, D.; Alessandro, R.; Ang, C.S.; Askenase, P.; Batagov, A.O.;
Benito-Martin, A.; Camussi, G.; Clayton, A.; et al. A novel community driven software for functional
enrichment analysis of extracellular vesicles data. J. Extracell. Vesicles 2017, 6, 1321455. [CrossRef]

31. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.;
Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association
networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [CrossRef] [PubMed]

32. Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction
networks. BMC Bioinform. 2003, 4, 2. [CrossRef]

33. Xia, J.; Benner, M.J.; Hancock, R.E. NetworkAnalyst–integrative approaches for protein-protein interaction
network analysis and visual exploration. Nucleic Acids Res. 2014, 42, W167–W174. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/wrr.12412
http://dx.doi.org/10.2337/db17-1238
http://www.ncbi.nlm.nih.gov/pubmed/29748291
http://dx.doi.org/10.1016/j.jid.2017.08.003
http://dx.doi.org/10.1111/wrr.12470
http://dx.doi.org/10.2337/db12-0145
http://dx.doi.org/10.1016/j.tcm.2012.05.003
http://dx.doi.org/10.1016/j.jconrel.2017.11.013
http://dx.doi.org/10.1016/j.ijpharm.2016.01.042
http://www.ncbi.nlm.nih.gov/pubmed/26806466
http://dx.doi.org/10.1038/s10038-018-0468-1
http://www.ncbi.nlm.nih.gov/pubmed/29785006
http://dx.doi.org/10.1016/j.jid.2016.08.038
http://www.ncbi.nlm.nih.gov/pubmed/28411843
http://dx.doi.org/10.1093/bfgp/elw042
http://www.ncbi.nlm.nih.gov/pubmed/28334134
http://dx.doi.org/10.1002/pmic.201500396
http://www.ncbi.nlm.nih.gov/pubmed/26677817
http://dx.doi.org/10.3389/fphys.2015.00383
http://www.ncbi.nlm.nih.gov/pubmed/26733877
http://dx.doi.org/10.1089/omi.2011.0118
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1002/pmic.201400515
http://dx.doi.org/10.1080/20013078.2017.1321455
http://dx.doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
http://dx.doi.org/10.1186/1471-2105-4-2
http://dx.doi.org/10.1093/nar/gku443
http://www.ncbi.nlm.nih.gov/pubmed/24861621


J. Clin. Med. 2019, 8, 73 19 of 20

34. Xia, J.; Gill, E.E.; Hancock, R.E. NetworkAnalyst for statistical, visual and network-based meta-analysis of
gene expression data. Nat. Protoc. 2015, 10, 823–844. [CrossRef]

35. Thomas, S.; Bonchev, D. A survey of current software for network analysis in molecular biology. Hum. Genom.
2010, 4, 353–360. [CrossRef]

36. Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway
Analysis. Bioinformatics 2014, 30, 523–530. [CrossRef] [PubMed]

37. Vejnar, C.E.; Zdobnov, E.M. MiRmap: Comprehensive prediction of microRNA target repression strength.
Nucleic Acids Res. 2012, 40, 11673–11683. [CrossRef]

38. Hu, S.C.; Lan, C.E. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing
on diabetic wound healing. J. Dermatol. Sci. 2016, 84, 121–127. [CrossRef]

39. Thimmappaiah Jagadeesh, A.; Prakash, P.Y.; Karthik Rao, N.; Ramya, V. Culture characterization of the skin
microbiome in Type 2 diabetes mellitus: A focus on the role of innate immunity. Diabetes Res. Clin. Pract.
2017, 134, 1–7. [CrossRef]

40. Chehoud, C.; Rafail, S.; Tyldsley, A.S.; Seykora, J.T.; Lambris, J.D.; Grice, E.A. Complement modulates
the cutaneous microbiome and inflammatory milieu. Proc. Natl. Acad. Sci. USA 2013, 110, 15061–15066.
[CrossRef]

41. Touch, S.; Clement, K.; Andre, S. T Cell Populations and Functions Are Altered in Human Obesity and Type
2 Diabetes. Curr. Diabetes Rep. 2017, 17, 81. [CrossRef] [PubMed]

42. Huang da, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [CrossRef] [PubMed]

43. Muller, L.M.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.; Rutten, G.E.
Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis.
2005, 41, 281–288. [CrossRef] [PubMed]

44. Hine, J.L.; de Lusignan, S.; Burleigh, D.; Pathirannehelage, S.; McGovern, A.; Gatenby, P.; Jones, S.; Jiang, D.;
Williams, J.; Elliot, A.J.; et al. Association between glycaemic control and common infections in people with
Type 2 diabetes: A cohort study. Diabet. Med. 2017, 34, 551–557. [CrossRef] [PubMed]

45. Lima, A.L.; Illing, T.; Schliemann, S.; Elsner, P. Cutaneous Manifestations of Diabetes Mellitus: A Review.
Am. J. Clin. Dermatol. 2017, 18, 541–553. [CrossRef] [PubMed]

46. Schommer, N.N.; Gallo, R.L. Structure and function of the human skin microbiome. Trends Microbiol. 2013,
21, 660–668. [CrossRef] [PubMed]

47. Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155.
[CrossRef]

48. Grice, E.A.; Snitkin, E.S.; Yockey, L.J.; Bermudez, D.M.; Liechty, K.W.; Segre, J.A. Longitudinal shift in diabetic
wound microbiota correlates with prolonged skin defense response. Proc. Natl. Acad. Sci. USA 2010, 107,
14799–14804. [CrossRef]

49. Redel, H.; Gao, Z.; Li, H.; Alekseyenko, A.V.; Zhou, Y.; Perez-Perez, G.I.; Weinstock, G.; Sodergren, E.;
Blaser, M.J. Quantitation and composition of cutaneous microbiota in diabetic and nondiabetic men.
J. Infect. Dis. 2013, 207, 1105–1114. [CrossRef]

50. Strom, A.; Bruggemann, J.; Ziegler, I.; Jeruschke, K.; Weiss, J.; Al-Hasani, H.; Roden, M.; Ziegler, D.
Pronounced reduction of cutaneous Langerhans cell density in recently diagnosed type 2 diabetes. Diabetes
2014, 63, 1148–1153. [CrossRef]

51. Miller, L.S.; Modlin, R.L. Human keratinocyte Toll-like receptors promote distinct immune responses.
J. Investig. Dermatol. 2007, 127, 262–263. [CrossRef] [PubMed]

52. Takaoka, A.; Yanai, H. Interferon signalling network in innate defence. Cell. Microbiol. 2006, 8, 907–922.
[CrossRef] [PubMed]

53. Smith, P.L.; Lombardi, G.; Foster, G.R. Type I interferons and the innate immune response—more than just
antiviral cytokines. Mol. Immunol. 2005, 42, 869–877. [CrossRef] [PubMed]

54. Lan, C.C.; Wu, C.S.; Huang, S.M.; Kuo, H.Y.; Wu, I.H.; Liang, C.W.; Chen, G.S. High-glucose environment
reduces human beta-defensin-2 expression in human keratinocytes: Implications for poor diabetic wound
healing. Br. J. Dermatol. 2012, 166, 1221–1229. [CrossRef] [PubMed]

55. Rebane, A.; Zimmermann, M.; Aab, A.; Baurecht, H.; Koreck, A.; Karelson, M.; Abram, K.; Metsalu, T.;
Pihlap, M.; Meyer, N.; et al. Mechanisms of IFN-gamma-induced apoptosis of human skin keratinocytes in
patients with atopic dermatitis. J. Allergy Clin Immunol. 2012, 129, 1297–1306. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nprot.2015.052
http://dx.doi.org/10.1186/1479-7364-4-5-353
http://dx.doi.org/10.1093/bioinformatics/btt703
http://www.ncbi.nlm.nih.gov/pubmed/24336805
http://dx.doi.org/10.1093/nar/gks901
http://dx.doi.org/10.1016/j.jdermsci.2016.07.008
http://dx.doi.org/10.1016/j.diabres.2017.09.007
http://dx.doi.org/10.1073/pnas.1307855110
http://dx.doi.org/10.1007/s11892-017-0900-5
http://www.ncbi.nlm.nih.gov/pubmed/28779366
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://dx.doi.org/10.1086/431587
http://www.ncbi.nlm.nih.gov/pubmed/16007521
http://dx.doi.org/10.1111/dme.13205
http://www.ncbi.nlm.nih.gov/pubmed/27548909
http://dx.doi.org/10.1007/s40257-017-0275-z
http://www.ncbi.nlm.nih.gov/pubmed/28374407
http://dx.doi.org/10.1016/j.tim.2013.10.001
http://www.ncbi.nlm.nih.gov/pubmed/24238601
http://dx.doi.org/10.1038/nrmicro.2017.157
http://dx.doi.org/10.1073/pnas.1004204107
http://dx.doi.org/10.1093/infdis/jit005
http://dx.doi.org/10.2337/db13-1444
http://dx.doi.org/10.1038/sj.jid.5700559
http://www.ncbi.nlm.nih.gov/pubmed/17228303
http://dx.doi.org/10.1111/j.1462-5822.2006.00716.x
http://www.ncbi.nlm.nih.gov/pubmed/16681834
http://dx.doi.org/10.1016/j.molimm.2004.11.008
http://www.ncbi.nlm.nih.gov/pubmed/15829276
http://dx.doi.org/10.1111/j.1365-2133.2012.10847.x
http://www.ncbi.nlm.nih.gov/pubmed/22283836
http://dx.doi.org/10.1016/j.jaci.2012.02.020
http://www.ncbi.nlm.nih.gov/pubmed/22445417


J. Clin. Med. 2019, 8, 73 20 of 20

56. Luo, X.Y.; Liu, Q.; Yang, H.; Tan, Q.; Gan, L.Q.; Ren, F.L.; Wang, H. OSMR gene effect on the pathogenesis of
chronic autoimmune Urticaria via the JAK/STAT3 pathway. Mol. Med. 2018, 24, 28. [CrossRef] [PubMed]

57. Yang, C.S.; Jividen, K.; Spencer, A.; Dworak, N.; Ni, L.; Oostdyk, L.T.; Chatterjee, M.; Kusmider, B.; Reon, B.;
Parlak, M.; et al. Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Mol. Cell
2017, 66, 503–516. [CrossRef] [PubMed]

58. Shen, Y.; Sun, Y.; Zhang, L.; Liu, H. Effects of DTX3L on the cell proliferation, adhesion, and drug resistance
of multiple myeloma cells. Tumour Biol. 2017, 39, 39. [CrossRef] [PubMed]

59. Bachmann, S.B.; Frommel, S.C.; Camicia, R.; Winkler, H.C.; Santoro, R.; Hassa, P.O. DTX3L and ARTD9
inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic
prostate cancer cells. Mol. Cancer 2014, 13, 125. [CrossRef]

60. Thang, N.D.; Yajima, I.; Kumasaka, M.Y.; Iida, M.; Suzuki, T.; Kato, M. Deltex-3-like (DTX3L) stimulates
metastasis of melanoma through FAK/PI3K/AKT but not MEK/ERK pathway. Oncotarget 2015, 6,
14290–14299. [CrossRef]

61. Zhang, Y.; Mao, D.; Roswit, W.T.; Jin, X.; Patel, A.C.; Patel, D.A.; Agapov, E.; Wang, Z.; Tidwell, R.M.;
Atkinson, J.J.; et al. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to
enhance interferon signaling and control viral infection. Nat. Immunol. 2015, 16, 1215–1227. [CrossRef]
[PubMed]

62. Richmond, J.M.; Harris, J.E. Immunology and skin in health and disease. Cold Spring Harb. Perspect Med.
2014, 4, a015339. [CrossRef] [PubMed]

63. Choi, D.; Park, E.; Jung, E.; Seong, Y.J.; Yoo, J.; Lee, E.; Hong, M.; Lee, S.; Ishida, H.; Burford, J.; et al. Laminar
flow downregulates Notch activity to promote lymphatic sprouting. J. Clin. InvestIG. 2017, 127, 1225–1240.
[CrossRef] [PubMed]

64. Jian, Q.; An, Q.; Zhu, D.; Hui, K.; Liu, Y.; Chi, S.; Li, C. MicroRNA 340 is involved in UVB-induced dendrite
formation through the regulation of RhoA expression in melanocytes. Mol. Cell. Biol. 2014, 34, 3407–3420.
[CrossRef]

65. Yan, J.; Qin, Y.; Yu, J.; Peng, Q.; Chen, X. MiR-340/iASPP axis affects UVB-mediated retinal pigment
epithelium (RPE) cell damage. J. Photochem. Photobiol. B 2018, 186, 9–16. [CrossRef] [PubMed]

66. Hou, T.; Liao, J.; Zhang, C.; Sun, C.; Li, X.; Wang, G. Elevated expression of miR-146, miR-139 and
miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice.
Int. Immunopharmacol. 2018, 54, 68–77. [CrossRef]

67. Bian, J.; Liu, R.; Fan, T.; Liao, L.; Wang, S.; Geng, W.; Wang, T.; Shi, W.; Ruan, Q. miR-340 Alleviates Psoriasis
in Mice through Direct Targeting of IL-17A. J. Immunol. 2018, 201, 1412–1420. [CrossRef]

68. Carreras-Badosa, G.; Bonmati, A.; Ortega, F.J.; Mercader, J.M.; Guindo-Martinez, M.; Torrents, D.;
Prats-Puig, A.; Martinez-Calcerrada, J.M.; Platero-Gutierrez, E.; De Zegher, F.; et al. Altered Circulating
miRNA Expression Profile in Pregestational and Gestational Obesity. J. Clin. Endocrinol. Metab. 2015, 100,
E1446–E1456. [CrossRef]

69. Giardina, S.; Hernandez-Alonso, P.; Diaz-Lopez, A.; Salas-Huetos, A.; Salas-Salvado, J.; Bullo, M. Changes in
circulating miRNAs in healthy overweight and obese subjects: Effect of diet composition and weight loss.
Clin. Nutr. 2017. [CrossRef]

70. Li, S.; Zhang, R.; Yuan, Y.; Yi, S.; Chen, Q.; Gong, L.; Liu, J.; Ding, F.; Cao, Z.; Gu, X. MiR-340 Regulates
Fibrinolysis and Axon Regrowth Following Sciatic Nerve Injury. Mol. Neurobiol. 2017, 54, 4379–4389.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s10020-018-0025-6
http://www.ncbi.nlm.nih.gov/pubmed/30134804
http://dx.doi.org/10.1016/j.molcel.2017.04.028
http://www.ncbi.nlm.nih.gov/pubmed/28525742
http://dx.doi.org/10.1177/1010428317703941
http://www.ncbi.nlm.nih.gov/pubmed/28653881
http://dx.doi.org/10.1186/1476-4598-13-125
http://dx.doi.org/10.18632/oncotarget.3742
http://dx.doi.org/10.1038/ni.3279
http://www.ncbi.nlm.nih.gov/pubmed/26479788
http://dx.doi.org/10.1101/cshperspect.a015339
http://www.ncbi.nlm.nih.gov/pubmed/25452424
http://dx.doi.org/10.1172/JCI87442
http://www.ncbi.nlm.nih.gov/pubmed/28263185
http://dx.doi.org/10.1128/MCB.00106-14
http://dx.doi.org/10.1016/j.jphotobiol.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29982095
http://dx.doi.org/10.1016/j.intimp.2017.10.003
http://dx.doi.org/10.4049/jimmunol.1800189
http://dx.doi.org/10.1210/jc.2015-2872
http://dx.doi.org/10.1016/j.clnu.2017.11.014
http://dx.doi.org/10.1007/s12035-016-9965-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Design 
	Cell Culture of Primary Human Epidermal Keratinocytes 
	Next-Generation Sequencing 
	clusterProfiler 
	Gene Set Enrichment Analysis (GSEA) 
	Functional Enrichment Analysis Tool (FunRich) 
	STRING and NetworkAnalyst Databases for Protein–Protein Interaction Network Analysis Database 
	Ingenuity Pathway Analysis (IPA) 
	miRmap Target Prediction Database 

	Results 
	Identification of Differentially Expressed Genes in Human Type 2 Diabetic Epidermal Keratinocytes (DM-HEK) 
	The Differentially Expressed Genes in DM-HEK Were Enriched in Interferon (IFN) Signaling and Viral Defense Response 
	Identification of Potential Mechanistic Regulatory Network and Gene Clusters Involved in IFN Signaling and Defense Response of HEK Cells 
	Identification of Potential miRNA–mRNA Interactions in DM-HEK Cells 

	Discussion 
	Conclusions 
	References

