Next Issue
Volume 5, March
Previous Issue
Volume 5, January
 
 

J. Clin. Med., Volume 5, Issue 2 (February 2016) – 15 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
510 KiB  
Review
Epicardial Epithelial-to-Mesenchymal Transition in Heart Development and Disease
by Michael Krainock, Omar Toubat, Soula Danopoulos, Allison Beckham, David Warburton and Richard Kim
J. Clin. Med. 2016, 5(2), 27; https://doi.org/10.3390/jcm5020027 - 19 Feb 2016
Cited by 32 | Viewed by 5835
Abstract
The epicardium is an epithelial monolayer that plays a central role in heart development and the myocardial response to injury. Recent developments in our understanding of epicardial cell biology have revealed this layer to be a dynamic participant in fundamental processes underlying the [...] Read more.
The epicardium is an epithelial monolayer that plays a central role in heart development and the myocardial response to injury. Recent developments in our understanding of epicardial cell biology have revealed this layer to be a dynamic participant in fundamental processes underlying the development of the embryonic ventricles, the coronary vasculature, and the cardiac valves. Likewise, recent data have identified the epicardium as an important contributor to reparative and regenerative processes in the injured myocardium. These essential functions of the epicardium rely on both non-cell autonomous and cell-autonomous mechanisms, with the latter featuring the process of epicardial Epithelial-to-Mesenchymal Transition (EMT). This review will focus on the induction and regulation of epicardial EMT, as it pertains to both cardiogenesis and the response of the myocardium to injury. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

966 KiB  
Review
Homeostatic Signaling by Cell–Cell Junctions and Its Dysregulation during Cancer Progression
by Yang Yu and Randolph C. Elble
J. Clin. Med. 2016, 5(2), 26; https://doi.org/10.3390/jcm5020026 - 18 Feb 2016
Cited by 48 | Viewed by 8616
Abstract
The transition of sessile epithelial cells to a migratory, mesenchymal phenotype is essential for metazoan development and tissue repair, but this program is exploited by tumor cells in order to escape the confines of the primary organ site, evade immunosurveillance, and resist chemo-radiation. [...] Read more.
The transition of sessile epithelial cells to a migratory, mesenchymal phenotype is essential for metazoan development and tissue repair, but this program is exploited by tumor cells in order to escape the confines of the primary organ site, evade immunosurveillance, and resist chemo-radiation. In addition, epithelial-to-mesenchymal transition (EMT) confers stem-like properties that increase efficiency of colonization of distant organs. This review evaluates the role of cell–cell junctions in suppressing EMT and maintaining a quiescent epithelium. We discuss the conflicting data on junctional signaling in cancer and recent developments that resolve some of these conflicts. We focus on evidence from breast cancer, but include other organ sites where appropriate. Current and potential strategies for inhibition of EMT are discussed. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

1879 KiB  
Review
Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype
by Georgia Lenihan-Geels, Karen S. Bishop and Lynnette R. Ferguson
J. Clin. Med. 2016, 5(2), 25; https://doi.org/10.3390/jcm5020025 - 15 Feb 2016
Cited by 18 | Viewed by 8410
Abstract
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, [...] Read more.
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease)
Show Figures

Figure 1

797 KiB  
Review
Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes
by Shih-Han Kao, Kou-Juey Wu and Wen-Hwa Lee
J. Clin. Med. 2016, 5(2), 24; https://doi.org/10.3390/jcm5020024 - 04 Feb 2016
Cited by 49 | Viewed by 12423
Abstract
Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA [...] Read more.
Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation (TET) proteins induces major epigenetic changes and controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine)-specific dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which also serves as a co-activator of HIF-1α transcriptional regulation to modulate HIF-1α downstream target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor for tumor progression, hypoxia-activated prodrugs (HAPs) may provide a favorable therapeutic approach to lessen hypoxia-induced malignancy. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

679 KiB  
Review
Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer
by Homer S. Black and Lesley E. Rhodes
J. Clin. Med. 2016, 5(2), 23; https://doi.org/10.3390/jcm5020023 - 04 Feb 2016
Cited by 25 | Viewed by 11844
Abstract
Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA) in the prevention of non-melanoma skin cancer (NMSC). Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation [...] Read more.
Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA) in the prevention of non-melanoma skin cancer (NMSC). Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR) induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX) and cyclooxygenase (COX) pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE2) in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease)
Show Figures

Figure 1

1120 KiB  
Review
Decoding the Secret of Cancer by Means of Extracellular Vesicles
by Nobuyoshi Kosaka
J. Clin. Med. 2016, 5(2), 22; https://doi.org/10.3390/jcm5020022 - 04 Feb 2016
Cited by 54 | Viewed by 8305
Abstract
One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed [...] Read more.
One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. Full article
(This article belongs to the Special Issue MicroRNAs: Novel Biomarkers and Therapeutic Targets for Human Cancers)
Show Figures

Figure 1

1684 KiB  
Article
Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer
by Kristine Von Maltzan, Yafan Li, Joyce E. Rundhaug, Laurie G. Hudson, Susan M. Fischer and Donna F. Kusewitt
J. Clin. Med. 2016, 5(2), 21; https://doi.org/10.3390/jcm5020021 - 03 Feb 2016
Cited by 7 | Viewed by 5037
Abstract
The Slug transcription factor plays an important role in ultraviolet radiation (UVR)-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT) occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related [...] Read more.
The Slug transcription factor plays an important role in ultraviolet radiation (UVR)-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT) occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2) pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

1239 KiB  
Review
Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion
by Nisha Durand, Sahra Borges and Peter Storz
J. Clin. Med. 2016, 5(2), 20; https://doi.org/10.3390/jcm5020020 - 03 Feb 2016
Cited by 40 | Viewed by 9590
Abstract
The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have [...] Read more.
The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

942 KiB  
Review
Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids
by Jennifer L. Watts
J. Clin. Med. 2016, 5(2), 19; https://doi.org/10.3390/jcm5020019 - 02 Feb 2016
Cited by 38 | Viewed by 10714
Abstract
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many [...] Read more.
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease)
Show Figures

Figure 1

2121 KiB  
Article
Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats
by Agustina Creus, María R. Ferreira, María E. Oliva and Yolanda B. Lombardo
J. Clin. Med. 2016, 5(2), 18; https://doi.org/10.3390/jcm5020018 - 28 Jan 2016
Cited by 37 | Viewed by 7008
Abstract
This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an [...] Read more.
This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease)
Show Figures

Figure 1

1040 KiB  
Review
Role of EMT in Metastasis and Therapy Resistance
by Bethany N. Smith and Neil A. Bhowmick
J. Clin. Med. 2016, 5(2), 17; https://doi.org/10.3390/jcm5020017 - 27 Jan 2016
Cited by 369 | Viewed by 20168
Abstract
Epithelial–mesenchymal transition (EMT) is a complex molecular program that regulates changes in cell morphology and function during embryogenesis and tissue development. EMT also contributes to tumor progression and metastasis. Cells undergoing EMT expand out of and degrade the surrounding microenvironment to subsequently migrate [...] Read more.
Epithelial–mesenchymal transition (EMT) is a complex molecular program that regulates changes in cell morphology and function during embryogenesis and tissue development. EMT also contributes to tumor progression and metastasis. Cells undergoing EMT expand out of and degrade the surrounding microenvironment to subsequently migrate from the primary site. The mesenchymal phenotype observed in fibroblasts is specifically important based on the expression of smooth muscle actin (α-SMA), fibroblast growth factor (FGF), fibroblast-specific protein-1 (FSP1), and collagen to enhance EMT. Although EMT is not completely dependent on EMT regulators such as Snail, Twist, and Zeb-1/-2, analysis of upstream signaling (i.e., TGF-β, EGF, Wnt) is necessary to understand tumor EMT more comprehensively. Tumor epithelial–fibroblast interactions that regulate tumor progression have been identified during prostate cancer. The cellular crosstalk is significant because these events influence therapy response and patient outcome. This review addresses how canonical EMT signals originating from prostate cancer fibroblasts contribute to tumor metastasis and recurrence after therapy. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

2933 KiB  
Article
Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells
by Mandi M. Hopkins, Zhihong Zhang, Ze Liu and Kathryn E. Meier
J. Clin. Med. 2016, 5(2), 16; https://doi.org/10.3390/jcm5020016 - 26 Jan 2016
Cited by 43 | Viewed by 7349
Abstract
Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of [...] Read more.
Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease)
Show Figures

Figure 1

1134 KiB  
Review
Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy
by Donatella D’Eliseo and Francesca Velotti
J. Clin. Med. 2016, 5(2), 15; https://doi.org/10.3390/jcm5020015 - 26 Jan 2016
Cited by 236 | Viewed by 16702
Abstract
Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) [...] Read more.
Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease)
Show Figures

Figure 1

1207 KiB  
Case Report
Learning and Memory Recoveries in a Young Girl Treated with Growth Hormone and Neurorehabilitation
by Jesús Devesa, Hortensia Lema, Eva Zas, Borja Munín, Pilar Taboada and Pablo Devesa
J. Clin. Med. 2016, 5(2), 14; https://doi.org/10.3390/jcm5020014 - 26 Jan 2016
Cited by 20 | Viewed by 4270
Abstract
Background—To describe the results obtained after treating a non growth hormone-deficient 10-year-old girl who suffered asphyxia during delivery, resulting in important cognitive deficits, with growth hormone (GH) and neurorehabilitation. Methods—GH was administered (mg/day) at doses of 0.5 over three months followed by 0.9, [...] Read more.
Background—To describe the results obtained after treating a non growth hormone-deficient 10-year-old girl who suffered asphyxia during delivery, resulting in important cognitive deficits, with growth hormone (GH) and neurorehabilitation. Methods—GH was administered (mg/day) at doses of 0.5 over three months followed by 0.9, every two weeks over three months, and then alternating 1.2 three days/week and 0.3 two days/week. Neurorehabilitation consisted of daily sessions of neurostimulation, speech therapy, occupational therapy and auditive stimulation. Treatment lasted nine months. Results—Scores obtained in all the areas treated showed that, at discharge, the patient clearly increased her cognitive abilities, memory and language competence index; her intelligence quotient score increased from 51 to 80, and the index of functional independence measure reached a value of 120 over 126 (maximal value). Conclusions—This case suggests that GH administration may play a role in improving cognitive deficits during neurorehabilitation in children with brain damage suffered during delivery. This agrees with the known effects of GH on cognition. Full article
Show Figures

Graphical abstract

826 KiB  
Review
Epithelial-Mesenchymal Transition and Breast Cancer
by Yanyuan Wu, Marianna Sarkissyan and Jaydutt V. Vadgama
J. Clin. Med. 2016, 5(2), 13; https://doi.org/10.3390/jcm5020013 - 26 Jan 2016
Cited by 154 | Viewed by 18017
Abstract
Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT) in tumor cell progression, invasion, and metastasis. During the [...] Read more.
Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT) in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs) and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop