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Abstract: Non-invasive prenatal testing (NIPT) by random massively parallel sequencing 

of maternal plasma DNA for multiple pregnancies is a promising new option for prenatal 

care since conventional non-invasive screening for fetal trisomies 21, 18 and 13 has 

limitations and invasive diagnostic methods bear a higher risk for procedure related fetal 

losses in the case of multiple gestations compared to singletons. In this study, in a 

retrospective blinded analysis of stored twin samples, all 16 samples have been determined 

correctly, with four trisomy 21 positive and 12 trisomy negative samples. In the 

prospective part of the study, 40 blood samples from women with multiple pregnancies 

have been analyzed (two triplets and 38 twins), with two correctly identified trisomy 21 

cases, confirmed by karyotyping. The remaining 38 samples, including the two triplet 

pregnancies, had trisomy negative results. However, NIPT is also prone to quality issues in 
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case of multiple gestations: the minimum total amount of cell-free fetal DNA must be 

higher to reach a comparable sensitivity and vanishing twins may cause results that do not 

represent the genetics of the living sibling, as described in two case reports. 

Keywords: NIPT; cell-fee fetal DNA; multiple pregnancies; vanishing twin; aneuploidy; 

trisomy; random massively parallel sequencing 

 

1. Introduction 

Since its introduction into clinical practice in 2011, non-invasive prenatal testing (NIPT) for 

common fetal trisomies by random massively parallel sequencing (rMPS) of cell-free DNA in maternal 

plasma has been carried out successfully in thousands of singleton pregnancies. At that time, twin and 

other multiple pregnancies had to be excluded from the clinical practice because of the lack of clinical 

validation data [1]. Due to an increase in the use of assisted reproductive technologies (ART) over the 

last decades, multiple gestations have become ever more prevalent. As on the one hand first-trimester 

screenings in twin pregnancies have a false-positive rate (FPR) that is two to three times higher than 

that of single pregnancies [2] and on the other hand multiple gestations are prone to complications and 

bear an elevated risk for procedure related losses after amniocenteses [3], NIPT offers a valuable 

improvement for this group of pregnant women.  

The lower limit for detection of a fetal aneuploidy by rMPS of maternal plasma in single 

pregnancies has been defined in several studies to be a fetal fraction of 4% [4–7]. In principle, in 

monozygous twin pregnancies the fetuses should have concordant karyotypes and, thus, the same 

lower limit for detection should apply. If a trisomy occurs in a dizygous twin pregnancy, usually only 

one of the fetuses is affected. It is then crucial that each twin contributes enough cell-free fetal DNA 

(cffDNA) to discriminate between aneuploid and euploid pregnancies. More and more clinical data are 

showing that the sensitivity and specificity for the detection of fetal trisomy 21 by NIPT in  

twin pregnancies—monozygous as well as dizygous—are comparable to those in singleton 

pregnancies [8–10].  

A clear limitation for the use of NIPT is the existence of a vanishing twin, which may also  

occur in pregnancies after the use of ART. Here, we report the results of an NIPT study for the 

detection of common fetal trisomies in multiple pregnancies, comprising a retrospective and a 

prospective part, as well as two cases of vanishing twins that occurred in routine clinical practice and 

caused discordant results. 

2. Materials and Methods 

2.1. Subject Enrollment 

For the retrospective part of the study, 16 twin samples were provided by Sequenom Inc., USA, 

from the U.S. Trial No. NCT00877292, as blinded DNA sequencing libraries. The corresponding 

karyotyping results for the samples were available at Sequenom Inc. 
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For the prospective part of the study, 40 blood samples from women pregnant with multiple 

gestations (mono-, di- and trichorionic twin and triplet pregnancies) have been consecutively collected 

during NIPT laboratory routine for research and development (R&D) purposes between 6 November 

2012 and 16 November 2013. Two blood samples came from women pregnant with triplets, the 

remaining 38 samples came from twin pregnancies. From each pregnant woman carrying a multiple 

pregnancy, two samples each with 7–10 mL venous blood were collected using Streck cell-free DNA 

blood collection tubes. The blood samples were shipped to LifeCodexx diagnostics laboratory with a 

maximum delivery time of 4 days. 

2.2. Sample Processing and DNA Extraction 

Plasma preparation was performed by centrifugation (1600× g for 10 min at 4 °C) and plasma 

separation followed by a second centrifugation step (16,000× g for 10 min at 4 °C). Extraction of cfDNA 

was performed with QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the 

manufacturer protocol using 3.0–4.0 mL plasma with a final elution volume of 60 μL AVE-buffer. 

2.3. Quality Control of cffDNA (QuantYfeX) 

A measurement of the cell-free fetal DNA in relation to total cell-free DNA is required to determine 

the fetal fraction as a quality control. From the eluted cell-free DNA 11 μL were digested with the 

CpG methylation sensitive enzymes Hha1 (0.4 U/μL), HpaII (0.3 U/μL) and BstUI (0.3 U/μL) in a  

22 μL reaction using CutSmart™ Buffer (New England Biolabs, Frankfurt am Main, Germany). The 

reaction was incubated for 60 min at 37 °C and 60 min at 60 °C. For a duplicate measurement, two 

times 10 μL out of the digestion reaction were used as template DNA for quantitative PCR. For the 

PCR reaction, a two-fold concentrated PCR master mix (QuantiFast Multiplex PCR Kit, Qiagen) is 

used in a 25 μL reaction. Primers that span CpG methylation sensitive restriction enzyme sites are used 

in combination with FAM-labelled probes and primers that do not span the relevant restriction sites are 

used in combination with VIC-labelled probes (for primer sequences see Appendix Table A1 and for 

thermocycler profiles see Appendix Table A2). The assay design is based on two marker genes, which are 

described to be hypomethylated in maternal DNA and hypermethylated in fetal DNA [11–13]. Quantitative 

PCR was performed on a LightCycler 480 II Instrument (Roche, Mannheim, Germany) using serial 

dilutions of male genomic DNA (Promega, Mannheim, Germany) with known concentrations as 

standards. The fetal fraction is calculated by relative quantification of signals in the FAM channel versus 

the VIC channel and the total cfDNA amount is calculated by absolute quantification of signals in the VIC 

channel using LightCycler 480 Software release 1.5.0.  

2.4. Maternal Plasma DNA Sequencing and Data Analysis 

DNA sequencing libraries were prepared using NEBNext Ultra™ DNA Library Prep Kit from 

Illumina. Libraries were prepared according to the manufacturer protocol automated on a Hamilton 

STARplus robot. Library quality and quantity were measured using a Bioanalyzer instrument (Agilent, 

Santa Clara, CA, USA) and a Qubit Fluorometer (Life Technologies, Carlsbad, NM, USA). Based on 

the library quantification, dilutions and equimolar pools of 12 samples per pool were prepared. The 
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pooled samples were sequenced on one lane of an Illumina v3 flow cell on an Illumina HiSeq2000 

sequencer (Illumina, Hayward, CA, USA). Clonal clusters were generated using TruSeq SR Cluster 

Kit v3-cBot-HS on a cBot Cluster Generation System according to the manufacturer’s protocol. 

Bioinformatic analysis has been carried out as described before, with z-scores ≥3 indicating the 

presence of a fetal trisomy 21 [14]. 

Results were reported to the responsible physicians as non-validated R&D results within two weeks 

after receipt of the blood samples. The results were confirmed by invasive diagnostic methods only in 

the case of positive test results.  

For the retrospective part of the study, the results for the 16 samples were communicated to 

Sequenom. Subsequently, the samples were unblinded and the NIPT results were compared to the 

karyotyping results.  

3. Results and Discussion 

3.1. Retrospective Study on Stored DNA Libraries 

Data from the 16 samples from twin pregnancies provided by Sequenom are summarized in  

Table 1. Four of the samples had z-scores for chromosome 21 higher than the cut-off of 3, indicating a 

positive result for trisomy 21; the respective z-scores for chromosomes 13 and 18 were below the 

chromosome specific cut-off values (for chromosome 21: 3.0, for chromosome 18: 3.2, for 

chromosome 13: 3.9). The z-scores for chromosomes 21, 18 and 13 of the remaining 12 samples were 

also below the cut-off values. Following unblinding and comparing the NIPT results to the respective 

karyotypes, all NIPT results were correct with no false-positive or false-negative results, confirming 

the robustness of the method also for twin pregnancies. 

Table 1. Characteristics and NIPT results for the stored DNA libraries.  

Sample 
Chr13 

z-score 

Chr18 

z-score 

Chr21 

z-score 

Fetal 

fraction (%)

Gestational 

age (p.m.) 
NIPT result 

Fetus A 

karyotype 

Fetus B 

karyotype

Invasive 

method 

RDLN015823 0.0 0.0 −0.4 37 10 + 6 negative 46,XX 46,XY CVS 

RDLN015835 −0.6 0.9 0.7 35 12 + 6 negative 46,XY 46,XX CVS 

RDLN015916 1.8 1.9 0.8 24 16 + 2 negative 46,XY 46,XY AC 

RDLN016042 0.9 0.5 1.0 23 17 + 4 negative 46,XX 46,XY AC 

RDLN016047 1.3 0.7 −1.6 45 13 + 5 negative 46,XY 46,XY CVS 

RDLN016114 −0.9 −0.2 8.4 29 14 + 4 T21 positive 47,XY,+21 46,XX CVS 

RDLN016116 −0.4 0.7 4.4 20 13 + 4 T21 positive 47,XX,+21 46,XX CVS 

RDLN016450 −0.1 1.4 8.4 31 16 + 0 T21 positive 47,XX,+21 46,XX AC 

RDLN016457 1.0 0.9 −0.3 22 17 + 5 negative 46,XX 46,XY AC 

RDLN016474 0.8 0.3 5.4 16 18 + 4 T21 positive 47,XX,+21 46,XX AC 

RDLN016519 0.2 −1.0 0.2 20 15 + 0 negative 46,XX 46,XX AC 

RDLN016778 0.2 −0.1 −0.1 12 16 + 0 negative 46,XX 46,XX AC 

RDLN017192 −1.2 −0.4 −1.0 13 16 + 1 negative 46,XY 46,XY AC 

RDLN017624 1.0 0.9 0.7 15 17 + 0 negative 46,XY 46,XY AC 

RDLN017641 −1.0 0.3 0.7 8 15 + 2 negative 46,XY 46,XY AC 

RDLN017670 0.8 0.1 −0.9 24 17 + 1 negative 46,XX 46,XX AC 
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3.2. Prospective Study on Blood Samples from Multiple Pregnancies Collected during  

Laboratory Routine  

Blood samples from multiple pregnancies included 38 twin and two triplet cases; they were 

collected in pregnancy week 9 + 3 to 23 + 0, with the median at 14 + 2. In 15 cases, conception 

occurred following ART, including seven cases with intracytoplasmic sperm injection (ICSI) and one 

case with egg donation. In five cases, spontaneous multiple pregnancy was reported, and from the  

20 remaining cases, information about conception is not available. Further characteristics and test 

results for the blood samples are given in Table 2. There were two positive test results indicating fetal 

trisomy 21. Both were confirmed by karyotyping after amniocentesis; thus, the FPR in the prospective 

part of the study was 0%. One blood sample represented monochorionic twins with concordant 

karyotypes (47,XY,+21) and the other one represented dichorionic twins with discordant karyotypes 

(47,XY,+21 and 46,XX). In both samples, the fetal fraction was as high as 18.0% and 24.8%, 

respectively. All other NIPT results were negative for trisomies 21, 18 and 13. There has been 

evidence of false-negative NIPT results so far in the pregnancies included in this study. Nevertheless, a 

number of pregnancies are ongoing (with the last birth of the patients expected in mid-May 2014) and 

therefore, the final detection rate is still uncertain.  

Table 2. Characteristics and NIPT results for the prospectively collected blood samples. 

Sample 
Chr13 

z-score 

Chr18 

z-score 

Chr21 

z-score 

Fetal  

fraction (%)

Gestational 

age (p.m.) 

No. of fetuses, chorionicity, 

amnionicity 
NIPT result

LCMPC01 0.8 −0.4 1.0 n.a. 11 + 0 2, monochorionic, n.a. Negative 

LCMPC02 0.0 0.3 0.2 n.a. 21 + 0 2, dichorionic, diamniotic Negative 

LCMPC03 0.4 1.0 0.1 n.a. 22 + 0 2, dichorionic, diamniotic negative 

LCMPC04 −0.3 −0.6 0.0 n.a. n.a. 3, n.a., n.a. negative 

LCMPC05 1.3 −1.0 −0.8 16.7 11 + 5 3, trichorionic, triamniotic negative 

LCMPC06 −0.4 1.1 8.5 18.0 13 + 2 2, monochorionic, n.a. T21 positive 

LCMPC07 −1.0 0.3 0.9 7.9 19 + 0 2, dichorionic, diamniotic negative 

LCMPC08 0.7 1.2 0.0 16.5 18 + 1 2, dichorionic, diamniotic negative 

LCMPC09 0.6 −0.8 0.7 8.9 11 + 5 2, monochorionic, diamniotic negative 

LCMPC10 0.3 0.7 −0.7 17.6 20 + 4 2, dichorionic, diamniotic negative 

LCMPC11 −0.9 −0.8 0.7 11.5 23 + 0 2, dichorionic, diamniotic negative 

LCMPC12 −0.9 −0.7 −2.0 13.3 11 + 1 2, monochorionic, diamniotic negative 

LCMPC13 1.3 0.1 0.3 21.4 16 + 0 2, dichorionic, diamniotic negative 

LCMPC14 0.2 −0.3 0.0 6.8 12 + 5 2, n.a., n.a. negative 

LCMPC15 2.2 0.1 14.7 24.8 16 + 0 2, dichorionic, diamniotic T21 positive 

LCMPC16 1.1 1.7 0.5 5.4 12 + 5 2, n.a., n.a. negative 

LCMPC17 0.7 1.4 0.5 16.5 14 + 2 2, n.a., n.a. negative 

LCMPC18 0.3 2.6 0.0 18.5 18 + 3 2, n.a., n.a. negative 

LCMPC19 −0.2 0.8 0.3 16.6 14 + 0 2, dichorionic, diamniotic negative 

LCMPC20 −0.7 −0.9 0.1 13.1 15 + 4 2, dichorionic, diamniotic negative 

LCMPC21 1.0 −0.7 1.2 8.4 9 + 3 2, dichorionic, diamniotic negative 

LCMPC22 −1.1 −0.2 0.3 5.6 16 + 2 2, monochorionic, n.a. negative 
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Table 2. Cont. 

Sample 
Chr13 

z-score 

Chr18 

z-score

Chr21 

z-score 

Fetal  

fraction (%)

Gestational 

age (p.m.) 

No. of fetuses, chorionicity, 

amnionicity 
NIPT result

LCMPC23 −2.2 2.2 −0.8 20.6 19 + 5 2, monochorionic, n.a. negative 

LCMPC24 −1.6 −0.4 −0.5 14.7 22 + 2 2, monochorionic, diamniotic negative 

LCMPC25 −0.8 −0.2 −1.5 12.1 11 + 5 2, n.a., n.a. negative 

LCMPC26 −0.4 −0.6 −1.3 7.5 13 + 0 2, dichorionic, diamniotic negative 

LCMPC27 0.5 −0.8 −0.4 16.3 12 + 6 2, n.a., n.a. negative 

LCMPC28 −1.2 −0.3 −0.7 19.4 10 + 1 2, dichorionic, diamniotic negative 

LCMPC29 −0.8 0.7 −0.4 14.2 13 + 2 2, monochorionic, n.a. negative 

LCMPC30 0.7 0.3 0.9 14.9 12 + 2 2, monochorionic, monoamniotic negative 

LCMPC31 −0.2 0.3 −0.9 19.3 19 + 1 2, dichorionic, diamniotic negative 

LCMPC32 −1.1 2.5 −2.2 11.6 20 + 0 2, dichorionic, diamniotic negative 

LCMPC33 0.2 2.2 −1.6 8.6 11 + 0 2, dichorionic, diamniotic negative 

LCMPC34 −1.0 1.2 0.0 15.1 15 + 4 2, dichorionic, diamniotic negative 

LCMPC35 −0.3 −0.8 −0.3 19.2 12 + 0 2, dichorionic, diamniotic negative 

LCMPC36 −1.4 −0.5 −0.8 13.9 12 + 0 2, dichorionic, diamniotic negative 

LCMPC37 1.8 −0.7 0.1 13.8 17 + 6 2, dichorionic, diamniotic negative 

LCMPC38 −0.1 1.1 −0.7 13.4 13 + 1 2, dichorionic, diamniotic negative 

LCMPC39 −1.9 0.2 −2.2 15.0 17 + 0 2, dichorionic, diamniotic negative 

LCMPC40 0.6 −0.4 0.8 16.2 18 + 3 2, dichorionic, diamniotic negative 

The sample collection comprised two pregnancies with triplets; both of which exhibited 

inconspicuous NIPT results and in both cases the newborns were reported to be phenotypically normal. 

To date, there are only limited data available for triplet pregnancies. To our knowledge, apart from this 

study, only Canick et al. [8] included two triplet pregnancies, both euploid. Therefore, it is still 

necessary to collect data before applying routine NIPT for triplets. 

3.3. Minimum Fetal Fraction Needed for the Detection of Aneuploidies in Multiple Pregnancies 

The reliable detection of fetal aneuploidy in twin pregnancies by NIPT is dependent on a 

sufficiently high amount of fetal DNA from each fetus in the maternal blood. Different data and 

considerations have been published on how the lower limit of cffDNA should be defined to ensure that 

each twin’s contribution is above the detection threshold [10,15,16]. This is especially important for 

dichorionic twin pregnancies with discordant karyotypes. In our study, we used supporting information 

for the definition of the minimum fetal fraction for twin pregnancies derived from the Y-chromosomal 

representation, if only one of the two fetuses is male. Using the QuantYfeX assay, the total fetal 

fraction can be determined, which reflects the summary of cffDNA derived from both fetuses. Using 

the Y-chromosomal representation from the next generation sequencing, the cffDNA amount can be 

determined for male fetuses (as described in [14]). Thus, in the case of mixed fetal gender, the 

contributing amount of each fetus can be determined by subtraction of the amount of cffDNA 

determined by the Y-chromosomal representation from the fetal fraction measured by QuantYfeX. We 

compared the fetal fractions determined by QuantYfeX with the values obtained from Y-chromosomal 

reads from next generation sequencing for cases with known gender (see Figure 1). There is a 
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correlation of the amount of male specific DNA (y) to the fetal fraction measured by QuantYfeX (x). 

Thus, for twin pregnancies with male/male gender (y = x) is approximately true, for female/male 

genders it is (y = 0.5x), and for female/female (y = 1). The genders of cases with similar values are 

male/male and in case of differing values with low Y-chromosomal representation the genders are 

female/female. The intermediate cases, which show about half the percentage of fetal fraction as  

Y-chromosomal representation, are of mixed gender. On the one hand, the data presented in Figure 1 

show that using this calculation it is possible to determine the fetal genders using NIPT results for twin 

pregnancies, although the reliability of gender determination using this combination of methylation 

dependent and Y-chromosomal cffDNA measurement needs to be investigated further. On the  

other hand, the data allow the assumption that each fetus of a twin pregnancy contributes roughly 

about half of the total fetal fraction. This leads to the consideration that for twin pregnancies, twice the 

amount of cell-free fetal DNA is necessary, and thus the minimum fetal fraction for NIPT of a twin 

pregnancy is 8%.  

Figure 1. Correlation of the amount of male specific DNA to the fetal fraction measured 

by QuantYfeX for study cases with known fetal genders.  

 

For monochorionic twin pregnancies with concordant genotypes (apart from rare exceptions [17]), a 

fetal fraction of 4% would be enough to detect a fetal aneuploidy, just as for single pregnancies. 

However, for routine laboratory NIPT service, one major issue speaks against the implication of such 

different quality criteria for mono- and dichorionic pregnancies: the determination of chorionicity is 

dependent on the gestational age and the practical experience of the physician performing the 

ultrasound examination. The chorionicity is clearly detectable in the first trimester of a multiple 

pregnancy, but in later stages, detection becomes more difficult [18]. Therefore, it is a safer strategy to 
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generally define a minimum fetal fraction for twin pregnancies, which is applicable for monochorionic 

as well as for dichorionic multiple pregnancies. By targeting single nucleotide polymorphisms  

using massively parallel sequencing, the determination of zygosity is, in principle, possible [19] but  

this requires high sequencing coverage and is not, or not yet, applied in routine NIPT for  

multiple pregnancies. 

Of the samples presented in Table 2, five contained below 8% fetal DNA and thus would be 

excluded in routine procedures. For four cases, the amount of fetal DNA was not available since the 

QuantYfeX assay was not yet available at the time of analysis. It will be interesting to see the actual 

failure rate in laboratory routine, as the failure rate due to a too low fetal fraction in laboratory routine 

for single pregnancies currently is only about 1% [20]. 

3.4. Case Reports of Discordant NIPT Results Due to Vanishing Twins 

Case report A: An infertile couple (maternal age 39 years) underwent ART with ICSI. Following 

transfer of two embryos, a twin pregnancy with two gestational sacs and heart beats of both embryos 

were confirmed. At week 10, the heart beat for one fetus of the twin pregnancy was missing in a 

routine ultrasound scan. Nuchal translucency (NT) measurement at 11 weeks of gestation (p.m.) 

showed a normal NT (2.5 mm) for the living twin and an NT of 3.1 mm for the deceased twin. At  

17 + 2 weeks of gestation, the vanishing twin was still visible in ultrasound but NIPT was performed 

anyway with “advanced maternal age” as the indication given. The result was positive for trisomy 21 

(z-score 13.5, see Table 3, VTA01). Follow-up by amniocentesis revealed a discordant result for the 

viable child: the karyotype was 46,XY. The results from the back-up blood sample, analyzed after the 

discordant karyotyping result, were comparable to the first NIPT results (Table 3, VTA02) and thus 

confirmed the positive trisomy 21 result. For both blood samples, it was striking that the total fetal 

fraction measured by QuantYfeX was 20.7% and 24.8%, respectively, whereas the cffDNA according 

to the Y-chromosomal representation from next generation sequencing was 9.2% and 9.3%, respectively. 

Table 3. Data for the case reports for two pregnancies with vanishing twins, which caused 

discordant NIPT results not representing the ongoing singleton pregnancy. 

Sample 

code 

Sample  

type 

Gestational 

age 

Total reads 

(×106) 

Chr13 

z-score 

Chr18 

z-score 

Chr21 

z-score 

% cffDNA 

calculation by 

ChromRep Y 

Fetal fraction 

(QuantYfeX) 

VTA01 
maternal plasma 

sample 
17 + 2 14.94 1.3 −1.5 13.5 9.2 20.7 

VTA02 Back-up sample 17 + 2 17.08 0.4 −1.7 11.1 9.3 24.8 

VTA03 

maternal plasma 

sample collected  

prior birth 

38 + 2 17.76 0.8 1.9 −0.3 21.7 21.4 

VTB01 
initial maternal 

plasma sample 
13 + 2 16.79 −0.2 0.1 3.4 3.0 13.4 

VTB02 Back-up sample 13 + 2 11.97 −0.1 0.3 2.6 2.7 10.0 
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A further blood sample taken in the third trimester of the pregnancy (38 + 2) turned out to be 

negative for trisomy 21 and the cffDNA amount measured by Y-chromosomal representation 

correlated with the fetal amount measured by QuantYfeX (21.7% and 21.4%, Table 3, VTA3), which 

matched the male gender determined by karyotyping the living fetus. At birth, a fetus papyraceus was 

found in the placental tissue from which a sufficient amount of cells could be isolated for cell culture, 

and following GTG banding, a trisomy 21 positive, female karyotype was confirmed (47,XX,+21). 

The living twin was born phenotypically normal. For further clarification and exclusion of 

mosaicism material from the placenta (three different biopsies), fetal cord blood of the surviving twin 

as well as peripheral blood from the mother were collected. Conventional cytogenetic analyses of 

maternal lymphocyte cultures showed after analysis of 30 GTG banded metaphases a euploid female 

karyotype (46,XX). Interphase FISH analyses with FISH probes XA 21, X and Y (Metasystems) on a 

direct preparation of peripheral lymphocytes (n = 100) confirmed a normal female without evidence 

for maternal trisomy 21 mosaicism. Conventional cytogenetic analyses of lymphocyte cultures from 

the surviving twin showed after analysis of 30 GTG banded metaphases a euploid male karyotype 

(46,XY). Interphase FISH analyses with FISH probes XA 21, X and Y (Metasystems) on a direct 

preparation of peripheral lymphocytes (n = 100) confirmed a normal male without evidence for 

trisomy 21 mosaicism. Conventional cytogenetic analyses of chorion long-term cultures  

(mesenchymal core) from the surviving twin were also performed. Analysis of 20 GTG banded 

metaphases of three different biopsies showed a euploid male karyotype 46,XY in all samples. 

Interphase FISH analyses with FISH probes XA 21, X and Y (Metasystems) on direct preparations of 

each sample (n = 100) confirmed a normal male without evidence for trisomy 21 mosaicism. In 

summary, there was no evidence for a trisomy 21 mosaicism, either in the mother or in the surviving 

child. In summary, these results clearly indicate, that the initial NIPT result (VTA01/VTA02) 

represented the trisomic cffDNA of the vanishing twin. The discrepancy of the cffDNA measurement 

by QuantYfeX and by Y-chromosomal representation in the initial sample and the back-up sample can 

be explained by the presence of the deceased female fetus and the living male fetus, both releasing 

cffDNA into the mother’s circulation.  

Case Report B: Routine NIPT on a maternal blood sample from gestational week 13 + 2 was 

performed due to an increased risk for aneuploidy based on first trimester screening in January 2014. 

The results of the initial sample indicated a positive result for trisomy 21 (z-score ≥ 3) with a z-score of 

3.4 (Table 3, VTB01). However, as this value falls into a defined borderline range (z-score 2.5–3.5) the 

analysis was repeated independently with the back-up sample (VTB02) and the results were 

comparable with a z-score for chromosome 21 of 2.6, still being in the borderline range. For both 

samples, a slightly increased Y-chromosomal representation was monitored indicating male specific 

cffDNA of 3.0% and 2.7%, respectively. As the fetal fractions for VTB01 and VTB02 measured by 

QuantYfeX were far above what (13.4% and 10.0%) we hypothesized, from this discrepancy in the 

fetal fraction measured, we found that two fetuses with discordant gender contribute to the fetal 

fraction with the male fetus being the one affected by trisomy 21. This suggestion was derived from 

the correlation of Y-chromosome specific cffDNA-amount of roughly 3% with the elevated z-score 

around the cut-off value of 3.0. The strong correlation of trisomy 21 positive z-score to the cffDNA 

amount is already described by Palomaki et al. [6] and is routinely observed in our NIPT laboratory 
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procedure. Since the examination was clearly requested for a singleton pregnancy, the male specific 

cffDNA was suspected to stem from a vanishing twin—maybe the carrier of a trisomy 21—that was 

either not recognized or not indicated on the consent form for NIPT. Thus, the result was reported to 

be indecisive for chromosome 21 and the conflicting data was reported to the responsible physician, 

including a notice regarding the potential vanishing twin, for further clarification via ultrasound. The 

responsible physician subsequently confirmed that the pregnancy had started as a twin pregnancy after 

application of ART and later continued as a singleton pregnancy. The gender of the living and 

apparently healthy fetus was confirmed to be female and thus, the cffDNA that caused the increased  

z-score for trisomy 21 can clearly be assigned to a deceased male fetus. The pregnancy is ongoing and 

further analysis of placental tissue and blood of the living fetus is not yet possible. 

In summary, two cases of vanishing twins show that NIPT results should be interpreted carefully 

and all available data of the analysis may help to detect potential distortions of the results that may be 

caused by a vanishing twin. Although Futch et al. [21] report false-positive NIPT results which were 

probably caused by a deceased co-twin, there is no clinical data to date on how long the placenta of a 

deceased co-twin can release cell-free DNA into the maternal bloodstream. In our case A, the deceased 

twin did not vanish completely and the mummified fetus was present throughout the pregnancy. At the 

gestational age of 17 + 2, about 50% of the total fetal fraction could be assigned to the vanishing twin. 

At a later stage of the pregnancy (week 38 + 2), the deceased twin seemed to have stopped releasing 

cffDNA into the maternal circulation (see Table 3, VTA02). In case B, the vanishing or absorption 

procedure seemed to have nearly been finished at the point of blood sampling at week 13 + 2, since 

only a small proportion of total cffDNA could be assigned to the vanishing twin (about 25% of the 

total fetal fraction). Further studies are warranted to understand in more detail the dynamics of the 

vanishing or absorption process and the impact on NIPT results. 

4. Conclusions 

From the results described in this study, we conclude that NIPT is applicable for multiple 

pregnancies if sufficient fetal DNA of all fetuses is present in the maternal plasma. Measurement of the 

fetal fraction is necessary quality control for both single and multiple pregnancies. In the case of twin 

pregnancies, a minimum of 8% fetal DNA is required to detect common fetal trisomies, which is 

double the minimum amount required for singleton pregnancies (4%). NIPT results should be 

interpreted with care; especially for cases with a low fetal fraction and in case of multiple gestations, 

all available results from the analysis which support the interpretation of the results should be 

evaluated. For multiple pregnancies with more than two gestations, the interpretation of the results 

becomes even more complicated, thus further study is required to gain insight into the distribution of 

the proportions of cffDNA from each fetus.  

Vanishing twins are a clear confounding factor for NIPT and should be carefully monitored to aid 

in interpreting NIPT results. It has not yet been described whether the size of a vanishing twin or the 

size of its amniotic cavity correlate with the amount of cell-free DNA in the maternal plasma. 

Furthermore, it needs to be clarified whether a vanishing twin event may lead to immediate flooding of 

specific cffDNA into the mother’s circulation due to dying cells causing increased release of fetal 

DNA and an increased duration of this process. Further documentation of the progress of vanishing 
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twin cases in combination with NIPT results is required for a deeper understanding and clearer 

interpretation of results for such cases. 
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Appendix 

Table A1. PCR components. 

 Component Sequence Concentration 

Final  

concentration 

(μM) 

1× μL 

 master mix  2× 1× 12.5 

RASSF1 

sens/insens 

primer for p0009 ATT GAG CTG CGG GAG CTG GC 100 μM 1.4 0.35 

primer re p0010 TGC CGT GTG GGG TTG CAC 100 μM 1.4 0.35 

probe s0001 FAM-ACC CGG CTG GAG CGT-MGB 100 μM 0.14 0.035 

primer for p0003 GGT CAT CCA CCA CCA AGA AC 100 μM 1.4 0.35 

primer re p0004 TGC CCA AGG ATG CTG TCA AG 100 μM 1.4 0.35 

probe s0002 
VIC-GGG CCT CAA TGA CTT CAC 

GT-MGB 
100 μM 0.14 0.035 

TBX3 

sens/insens 

primer for p0011 GGT GCG AAC TCC TCT TTG TC 100 μM 1.4 0.35 

primer re p0012 TTA ATC ACC CAG CGC ATG GC 100 μM 1.4 0.35 

probe s0010 
6FAM-CCC TCC CGG TGG GTG ATA 

AA-MGBNFQ 
100 μM 0.14 0.035 

Primer for p0021 TGT TCA CTG GAG GAC TCA TC 100 μM 1.4 0.35 

primer re p0022 CAG TCC ATG AGG GTG TTT G 100 μM 1.4 0.35 

probe s0011 
VIC-GAG GTC CCA TTC TCC  

TTT-MGBNFQ 
100 μM 0.14 0.035 
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Table A1. Cont. 

general 

reagents 

DMSO  100% 0.025 0.625 

MgCl2  50 mM 2 1 

template    10 

water    - 

summary    25 

Table A2. Cycler profile. 

 Temperature Time Cycles Analysis mode 
pre-incubation 95 °C 5 min 1 none 
denaturation 95 °C 10 s 45 quantification 

annealing 60 °C 10 s  none 
elongation 72 °C 8 s  single 

cooling 40 °C   none 
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