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Abstract: Visual field (VF) testing dates back to fifth century B.C. It plays a pivotal role in the
diagnosis, management, and prognosis of retinal and neurological diseases. This review summarizes
each of the different VF tests and perimetric methods, including the advantages and disadvantages
and adherence to the desired standard diagnostic criteria. The review targets beginners and eye care
professionals and includes history and evolution, qualitative and quantitative tests, and subjective
and objective perimetric methods. VF testing methods have evolved in terms of technique, precision,
user-friendliness, and accuracy. Consequently, some earlier perimetric techniques, often still effective,
are not used or have been forgotten. Newer technologies may not always be advantageous because
of higher costs, and they may not achieve the desired sensitivity and specificity. VF testing is most
often used in glaucoma and neurological diseases, but new objective methods that also measure
response latencies are emerging for the management of retinal diseases. Given the varied perimetric
methods available, clinicians are advised to select appropriate methods to suit their needs and target
disease and to decide on applying simple vs. complex tests or between using subjective and objective
methods. Newer, rapid, non-contact, objective methods may provide improved patient satisfaction
and allow for the testing of children and the infirm.

Keywords: Amsler grid; objective perimetry; perimetric methods; principle of redundancy; visual
field tests

1. Introduction

Accurately tested visual fields (VFs) provide clues to several ophthalmological and
neurological diseases. The VF test is the most commonly performed clinical diagnostic
test for the evaluation of extrafoveal visual function for the diagnosis and monitoring of
neuro-retinal diseases [1]. It is an integral part of a comprehensive ophthalmic evaluation.

The objective of this narrative review is to bring all the perimetric methods together
for easy access to beginners and eye care professionals. It encompasses the history and
evolution of VF test methods, including different subjective perimetric methods, standard
automated perimetry (SAP), and objective perimetric methods. We discuss the advantages,
disadvantages, and ability to meet desired diagnostic standards of different methods so
clinicians are able to make the right choice when choosing perimetric methods.

2. Materials and Methods

We researched online for different VF testing and perimetric methods. We have mainly
used the Web of Science (WoS, Clarivate, London, UK) as the search tool. The keywords or
terms used to search for relevant literature were visual field tests, perimetric methods, stan-
dard automated perimeter, subjective perimetric methods, objective perimetric methods,
and principles of perimetry.
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3. Relevant Sections

We included the findings of our review of the literature under the following subheadings.

3.1. History and Evolution of Perimetry

Historically, peripheral VF evaluation was first performed by Hippocrates in fifth
century B.C., when he reported a hemianopia [2,3]. Ptolemy attempted to quantify the
VF and described it as roughly circular in 150 B. C., and the first recorded extramacular
VF testing was accomplished by Galen in 175 A.D. In 1602, Ulmas published the first VF
illustration. Mariotte defined the physiological blind spot, relating it to the optic disc in
1668 [2]. By the early 19th century, Thomas Young had measured the extent of normal VF
to be 50◦, 60◦, 70◦, and 90◦ superiorly, nasally, inferiorly, and temporally, respectively. Less
than a century later, Albrecht von Graefe pioneered the applications of perimetry and VF
testing in clinical ophthalmology [3].

VF testing methods are categorized into qualitative or quantitative. Qualitative meth-
ods were used early on when the technique was in its beginning stage. The confrontation
test was the most practiced method. The examiner and patient face each other approxi-
mately a meter apart, looking into each other’s eyes. Both cover one eye with the palm
of their hand. The examiner slowly moves their finger, or a target object, from the far
periphery to the central field midway between them, asking the patient to indicate when
the target is detected. The procedure is repeated for the four quadrants or in a different
meridian if required and with another eye. Alternatively, the examiner can test each quad-
rant in the patient’s VF by having them count the number of fingers that they are showing
(Figure 1) [4]. Assuming that the examiner has a normal VF, the findings of the patient are
then compared with those of the examiner [3].

Figure 1. Confrontation test. The patient faces the examiner at a 1 m distance with eyes at the
same level as the examiner’s. Each fixates their vision on the other’s opposite eye while covering
their contralateral eye with the palm of the hand (avoiding pressure on the eye). The examiner
moves a target object from the periphery towards the midline in all four quadrants: superonasal,
superotemporal, inferonasal, and inferotemporal field of vision. Alternatively, the examiner can test
each quadrant in the patient’s VF by having them count the number of fingers that they are showing.
The patient indicates when the target is visible. Photo courtesy of Corinne Carle. In the photo, Ted
Maddess is a patient and Bhim Rai is the examiner.

Another qualitative VF method is the Amsler Grid. It is a basic test for the central
VF, performed by placing a printed grid at a reading distance (30–33 cm), and the patient
reports any missing or distorted part of the grid with each eye consecutively [5]. The
technique has good efficacy for diagnosing central VF defects [6], and is commonly used
to monitor macular degeneration. There are different types of grids: the original Chart
1 has white lines on a black background (Figure 2). The outer grid encloses 400 smaller
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5 mm squares, each small square subtending an angle of 1◦ when viewed at 1/3 of a
meter. The modified version of Chart 1 has black lines on a white background [7]. The test
results are graded as normal, distorted grid part (metamorphoma), or missing grid portion
(scotoma) [7].

Figure 2. Amsler grid test. (A) Original Chart 1 Amsler grid with normal report [8]; (B) modified
Amsler grid with normal report; (C) report showing visual field defect—distortion and scotoma.
Reprinted from Kanski’s Clinical Ophthalmology, 8th Edition (2015) by Brad Bowling, with permis-
sion from Elsevier.

To suit different patient profiles, there are six other types of Amsler grids, charts 2–7,
as shown in Figure 3 [8].

Figure 3. Different types of Amsler grids. Chart 2 has two diagonals to help fixation for patients
with a central scotoma. Chart 3 has a red-on-black background to stimulate long wavelength foveal
cones and is useful in detecting subtle colour scotomata in toxic maculopathy, optic neuropathy and
chiasmal lesions. Chart 4 consists of only random dots and is used to distinguish scotoma from
metamorphopsia, as there is no form to be distorted. Chart 5 consists of horizontal lines and is
designed to detect metamorphopsia along specific meridians for patients with reading difficulty.
Chart 6 is applied for more fine evaluation. Chart 7, in addition, has a fine central grid with each angle
subtending half a degree, so it is more sensitive [8]. Reprinted from Kanski’s Clinical Ophthalmology,
8th Edition (2015) by Brad Bowling, with permission from Elsevier.
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Tangent screen technique, also known as Bjerrum’s screen, is a quantitative method
initially popularized by Jannik Bjerrum and further developed by Harry Traquair [9]. The
screen is a flat, usually black surface, used for detailed mapping of central 30◦ of VF
(Figure 4). It is made of black matte material and stitched with radial lines at 15◦ intervals
and circles at 5◦ intervals. It measures 64′′ high × 44′′ wide and is used at 1 m with Traquair
or similar stimuli.

Figure 4. Tangent screen. (A) Original Tangent screen [10], (B) Bjerrum’s Tangent screen. Reprinted
from measurement of the visual field limits: the perimeter, with permission from the Imaging and
Perimetry Society.

The main limitation of the Bjerrum Tangent Screen is that it only measures the cen-
tral 30◦ of the VF [3]. To overcome this limitation and provide a method of testing full
peripheral vision, with stimuli at a constant distance from the eye, Hermann Rudloph
Aubert (psychiatrist) and Carl Friedrich Richard Förster (ophthalmologist) invented the
Arc Perimeter in 1869 (Figure 5), which is commonly known as the Förster Perimeter [3].

Figure 5. Three views of the Förster Arc Perimeter [11]. Reprinted from measurement of the visual
field limits: the perimeter, with permission from the Imaging and Perimetry Society.
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The Arc Perimeter evaluated the full extent of peripheral VF but was again limited by
inconsistent background illumination and therefore adaptation. In 1945, Hans Goldmann
brought enormous improvement to modern perimetry by developing a hemispheric bowl
perimeter with uniform background illumination capable of performing both static and
kinetic perimetry using varied targets in terms of size, luminance, and colour. Acknowl-
edging his noble work, he was honoured by this perimeter being named the Goldmann
Perimeter [12].

3.2. The Age of Automation: Goldmann Bowl Perimetry

Disadvantages of manual perimetry included inaccurate results stemming from errors
by both patients and examiners. This led to the invention of automated perimetry [13].
Among many investigators, Franz Fankhauser and his co-workers were undoubtedly the
forerunners in developing Octopus, the first automated perimeter [14]. He was honoured
as the Father of the Automated Perimeter [15]. Anders Heijl and his colleagues developed
the Humphrey Field Analyzer, instituting different types of VF tests and analytical methods
within one device [16]. With the availability of new computer-controlled technology,
automated static perimeters were developed. Equipment made by Octopus and later
by Humphrey became nearly universal as the dominant VF tools [17]. Goldmann kinetic
perimetry originally used various dot sizes of stimuli to define isopters. Goldmann stimulus
size III (henceforth GSIII), with its 0.43◦ diameter and 4.0 mm2 area, is commonly used;
size V, with 1.72◦ diameter and 64 mm2, is used for patients with poor visual acuity, while
sizes I, II, and IV are rarely used clinically. Since the GSIII was deemed as being the most
useful of the set, both the Octopus and Humphrey settled on using the GSIII because, for
all SAP, the use of a single stimulus size was recommended [18]. In kinetic perimetry, when
the stimulus traverses the field, it can paint much of the field, so the area tested is greater,
and nearly complete coverage can be obtained. In static perimetry, the coverage is low. In
2007, the production of the Goldmann perimeter ceased and was replaced by the Octopus
900 perimeter (Haag Streit International, Koeniz, Switzerland). The Octopus 900 has a
kinetic perimetry program similar to the Goldmann kinetic perimetry, and the results are
comparable [19].

4. Subjective Perimetric Methods
4.1. Standard Automated Perimetry (SAP)

Automated perimetry is the cornerstone for the assessment of retinal functional loss
and detect its progression [20]. The strategies of the Goldmann Perimeter developed in 1945
are still applied today in SAP. It uses white stimuli against a dimmer white background
for adaptation to a standard background level to assess the threshold at which a GSIII
can be detected. In static perimetry, each stimulus of varying luminance is presented
at predetermined locations until it is recognized by the patient. In kinetic perimetry, a
stimulus of fixed luminance is moved from the periphery towards the central VF until
it is visible to the patient with their vision fixated in the centre [18]. For many years,
different test strategies and perimeters have been developed and applied in clinics. The
development of the Swedish Interactive Threshold Algorithm (SITA) strategy and Guided
Progression Analysis (GPA) has perhaps made SAP the method of choice [20]. SAP is
performed using one of four tests: 30-2 or 24-2 SITA StandardTM or 30-2 or 24-2 SITA
FastTM. SITA Standard provides relatively accurate reports and has a test time of about 4 to
8 min per eye, depending on the test point pattern used and the degree of VF loss. SITA
Fast takes only 2 to 6 min per eye with diagnostic sensitivity equal to that of a full threshold
test [21]. A new SITA perimetric threshold testing algorithm called the SITA Faster has
recently been introduced on the Humphrey Field Analyser (HFA) 3 device. Its test time
is 30% shorter than SITA Fast and 53.5% shorter than SITA Standard at comparable mean
deviation [22–24]. There is also a 30-2 version of SITA Faster, but it still takes 6 min to test
an eye [25].
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4.2. Redundancy Limits SAP

The detection of visual stimuli needs an intact neural pathway. VF loss is the result
of damage to all three types of RGCs, namely parvocellular (P), magnocellular (M), and
koniocellular (K). Although the transmission of light signals to the brain is the function
of all RGCs, the subtypes have different functions. P cells transmit information about
red/green colour and form and have high spatial resolution. M cells transmit lower spatial-
frequency flicker and motion information, are more sensitive to luminance contrast, and
have higher temporal resolution. K cells are involved with the transmission of signals
from shorter blue wavelengths relative to luminance [26]. The receptive fields of these cells
are highly overlapping, and it is this redundancy that is responsible for the non-selective
nature of SAP, with histological studies showing that a significant number of RGCs may
be lost before VF deficits are manifested on SAP [27,28], overlapping RGCs covering for
their lost partners. Similarly, if a specific subset of RGCs is damaged in a particular retinal
region, it may not be detected as other RGC subtypes are still functioning. However, by
isolating a single pathway or specific function, especially one with less redundancy, a
VF deficit may be revealed even when a smaller number of cells are damaged [28]. This
principle was suggested much earlier by Maddess et al. [29,30]. This rationale has led to
the development of specific SAP methods described below. This technique is also termed
selective automated perimetry or simply selective perimetry [31].

4.3. Short Wavelength Automated Perimetry (SWAP)

Humphrey Field Analyzer SWAP isolates short-wavelength sensitive K pathway and
functions with a narrow-band blue light stimulus on a yellow illuminated background
making it different from conventional SAP [32]. Comparatively, connections of the K layers
are broader than that of the M and P layers. These include connections to subcortical visual
centres, intracortical circuits, including V1 supragranular layers, and extrastriate cortical ar-
eas [33]. The latest version uses the SITA strategy to reduce test duration [32]. The grayscale
map on SWAP reports is darker even for normal subjects because of reduced visual per-
ception of blue cones, which should be read with caution. SWAP has higher sensitivity
than full-threshold SAP in diagnosing functional deficits [34,35]. Longitudinal studies have
shown that SWAP can detect VF defects 3–5 years earlier than full-threshold SAP [36,37].
SAWP is reported to be useful in DRD [38]. SWAP is limited by the yellow colour of early
cataracts and acts as a blue filter causing notable diffuse reduction in sensitivity. Other
disadvantages are longer test duration, patient fatigue, and discomfort [39].

4.4. Frequency Doubling Technology (FDT) Perimetry

In 1991, Maddess suggested the utility of frequency doubling illusion in the diagnosis
of glaucoma [40]. This illusion is an apparent doubling of spatial frequency when a contrast-
reversing stimulus pattern is presented at high temporal and low spatial frequency. It
is suggested that this phenomenon was mediated by a subset of M cells [41]. It has also
been suggested that the origin of response is cortical [42]. FDT Matrix (Carl Zeiss Meditec,
Dublin, MA, USA) is an example of the technology. The targets it uses are smaller than those
used in the original FDT machine, which helps 24-2 and 30-2 test patterns be congruent
with SAP. Matrix provides the same reliability indices as SAP, namely fixation losses, false
positives, and false negatives. The Statistical Analysis package comes with total and pattern
deviation plots, glaucoma hemifield test (GHT), global indices mean deviation (MD), and
pattern standard deviation (PSD). With its high sensitivity and specificity to diagnose early
VF defects, FDT perimetry predicts the future onset and location of functional loss during
later assessment by SAP [43]. Some prospective studies have shown that a patient with an
abnormal baseline FDT report was three times more likely to develop VF defects on SAP
than a patient without [44]. Other advantages of FDT perimetry are its portability, ease
of execution for both operator and patient, short test duration, and resistance to optical
blurring [45].
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4.5. High-Pass Resolution Perimetry (HRP)

HRP, also known as Ring Perimetry, is a full-threshold and convenient perimetry. The
test is designed for use on personal computers. It utilizes varying stimulus sizes of fixed
luminance and contrast to measure threshold levels. The annular stimuli are arranged in
a series of rings and have borders 5 cd/m2 darker and a core 5 cd/m2 brighter than the
background. This modification effectively eliminates low spatial frequency information
and creates vanishing optotypes, so the stimulus is not detectable at sizes below the acuity
threshold [46]. It is suggested that HRP findings do not indicate RGC density or damage
directly, even though they target the high spatial frequency parvocellular pathway [47,48].
The advantages of HRP are a shorter test duration of 5–6 min per eye, lower variability in
the peripheral VF, and that it is a suitable method for the detection of early VF loss [46]. The
limitations are its interference from low visual acuity and media opacities, and its large-size
stimuli may limit its ability to detect small scotomas [49].

4.6. Motion Automated Perimetry (MAP)

The central few degrees of VF are important for the perception of fine detail and colour;
the peripheral VF perceives motion [50]. MAP measures a coherent shift in the movement
direction of a group of dots (stimuli) against a background of non-moving dots [51]. The
motion size threshold is the smallest detectable circular area in which the subject can detect
motion. Subjects respond by touching a computer screen with a light pen, where they
detect coherent motion. Localization errors indicated as the number of pixels from the
target centre, and reaction times are calculated [51]. MAP has a sensitivity of 96% and a
specificity of 87% for glaucoma [52]. Long test duration of 15 min is its main limitation for
its clinical utility.

4.7. Moorfield’s Motion Displacement Test (MDT)

The original test involved presenting a single laterally oscillating vertical-line stimulus
and was shown to have higher sensitivity than SAP in detecting glaucomatous early VF
defects [53]. It perceives positional displacement, providing a motion sensation. Each
stimulus passes through three displacement cycles at 5 Hz [54]. The test is more resistant to
the effects of cataracts compared to SAP and FDT perimetry [55]. Its advantages include
being portable as the test can be conducted on a laptop computer, more robust against
media opacities, high accuracy, and short test durations of 1.3 to 3.2 min per eye. MDT may
provide a convenient subjective perimetric method for screening large populations [56].

4.8. Rarebit Perimetry (RBP)

RBP was developed by Frisen in 2002 to detect subtle VF damage [57]. Unlike other
SAP, which measures the threshold for light sensitivity, RBP uses spatially and temporally
placed tiny test stimuli called microdots or rare bits to avoid simultaneous stimulation of
other adjacent retinal receptive fields and so improves diagnosis of the VF defects. The
patient indicates whether one or two dots are observed during each presentation. RBP
detects early VF defects in neurologic disorders [57,58] and glaucoma [59]. Some of the
advantages of RBP are that it is simple, quick, and economical [60].

4.9. Microperimetry

Microperimetry, also known as fundus-controlled perimetry, incorporates static auto-
mated perimetry and a non-mydriatic fundus camera. It is directed towards testing the
macula with a 10-2 test pattern or similar coarser versions. The camera tracks fundal land-
marks to try to correct for any shifts in gaze and enables the manual centration of the testing
grid at the anatomic fovea [61]. It was designed for concurrent observation of the fundus
and correction of eye movements during perimetry [62]. It accurately locates preferred reti-
nal location and fixation stability in subjects with low vision as reliable predictors of visual
acuity estimates [63]. The scanning laser ophthalmoscope (SLO) microperimeter (SLO101)
(Rodenstock, Munich, Germany) was the earliest device invented [64]. The Nidek MP-1
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(Nidek Technologies, Padova, Italy) followed, which uses an LCD to present stimuli, an
SLO to scan the fundus, and a fundus camera to capture images with automated real-time
tracking [61,65]. OPKO/OTI (OPKO Instrumentation, Miami, FL) developed spectral opti-
cal coherence tomography (OCT) SLO, with the ability to correlate functional deficits with
SLO infrared images and take bi-dimensional cross-sectional OCT images of the retina [61].
Another advantage is that SLO imaging is nonmydriatic, and the function is quite immune
to changes in pupil size [66]. Nidek MP-3 comes with a wider range of stimulus intensity,
from 0 to 34 decibels (dB), and has improved test–retest reproducibility [67]. CenterVue
Macular Integrity Assessment (MAIA) (CenterVue, Padova, Italy) is the latest version and
is quite similar to the Nidek MP-3 [61]. Microperimetry is mostly used for DRD [38].

5. Objective Perimetric Methods
5.1. Electroretinogram (ERG)

ERG is an electrophysiological test which records electrical response from cells within
the retina as an algebraic summation of several component waves or impulses. The resting
membrane potential is the mechanistic basis of impulse generation and photochemical
cascade. The active electrode is placed either on the cornea or a skin electrode positioned
below the margin of the lower eyelid, and a reference electrode is planted on the forehead.
The potential across the two electrodes is amplified and displayed. Historically, Dewar
was the first investigator to record an ERG test in humans in 1877. Most studies were
performed on animals until 1941 when Riggs developed an electrode that was compatible
with humans [68].

Full-field ERG: The standard full-field (also known as Ganzfeld, meaning whole field
in German) ERG standardized by the International Society for Clinical Electrophysiology
of Vision (ISCEV) has five types of recordings recorded during stimulation of the entire
retina with a diffuse light [69]. It assesses generalized retinal disorders but is not suitable
for detecting localized lesions. The scotopic ERG is performed after dark adaptation
for 30 min. The rod responses elicited with a very dim flash of white or blue light are
shown as a large b-wave and a small or non-recordable a-wave. Combined rod and cone
responses are generated with a very bright white flash, providing prominent a- and b-
waves. Oscillatory potentials (OPs) are obtained with bright Ganzfeld flashes. The photopic
ERG is conducted after adaptation in moderately bright diffuse illumination for 10 min.
To elicit cone responses, a single bright flash is given, resulting in a- and b-waves with
subsequent small OPs. Flickering light stimulus at a frequency of 30 Hz stimulates cones
but not the rods, providing isolated cone responses [70]. Disadvantages of full-field ERG
are that the response is a total potential from different areas of the retina with different cell
densities [71] and it has poor sensitivity. The ERG is normal unless more than 20% of the
retina is affected [72].

Multifocal ERG (mfERG): To provide a form of objective perimetry, Erich Sutter utilized
binary m-sequences with which it is possible to isolate electroretinogram responses from
each small visual field location concurrently (hence multifocal). In fact, other sequences
can be used; the main requirement is that the sequences controlling stimulus deliveries for
each location be substantially uncorrelated with each other. The mfERG measures electrical
activity from up to 103 retinal areas per eye within a few minutes. Enhanced spatial
resolution helps the mapping and quantification of scotomas and retinal dysfunction [73,74].
The ISCEV guidelines are set out for the procedure [75]. Studies have reported that the
mfERG is very sensitive to detecting VF defects in different retinal disorders such as retinitis
pigmentosa [76], chloroquine- and hydroxychloroquine-induced retinal toxicity [77], age-
related macular degenerations [78], glaucoma [79], birdshot retinochoroidopathy [80], and
photoreceptor diseases [81]. The amplitudes were significantly smaller with longer implicit
time due to immaturity of processing in the central retina [82]. Focal or foveal ERG is used
to assess macular diseases. However, some studies agreed that the mfERG was not reliable
in detecting local ganglion cell damage [83].
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Pattern ERG (PERG): The PERG is generated by the RGCs and other inner retinal
structures [84,85]. The stimulus used is an achromatic grating or checkerboard pattern. The
PERG has a major clinical role in localizing subtle retinal pathology and optic neuropathy.
For example, glaucomatous patients displayed reduced amplitudes before the scotoma
was detectable [84]. The guidelines for the use of PERG are provided by the ISCEV [86].
The sensitivity of PERG to detect RGC dysfunction is increased with a high frequency
of stimulus inversion presented in steady-state mode [87]. Besides its application in the
diagnosis, management, and monitoring of macular, retinal, and optic nerve dysfunction,
the PERG is useful in differentiating macular diseases from optic nerve diseases [88].
Macular disease is characterized by significantly reduced P50 with normal implicit time or
undetectable PERG, and in optic nerve disease, the N95 amplitude is reduced, indicating
primary RGC dysfunction [88].

5.2. Visual Evoked Potential (VEP)

VEP, also known as visual or visually evoked potential, visual evoked response (VER)
or visually evoked cortical potential (VECP), are electrical potentials produced by a flash
of visual stimulus. The recording is performed from the scalp overlying the visual cortex,
and waveforms are extracted from the electroencephalogram by signal averaging. The test
checks the functional integrity of the visual pathway [89]. Potentials are recorded with
different arrays of electrodes, such as the 10–20 International system [90] or the Queen
Square System [91]. The reference electrode is placed on the earlobe, forehead, or head
midline. The ground electrode is fixed to the earlobe, mastoid process, or scalp. Pattern
reversal is the most preferred stimulus as it has less inter-subject variability than flash or
pattern onset stimuli. The stimuli are displayed on video monitors or CRT displays [89].

Multifocal VEP (mfVEP): An important development in VEPs is the introduction
of the mfVEP. It isolates smaller areas of dysfunction by presenting a large number of
stimulations in the same amount of time taken by the traditional methods [92]. It typically
uses same binary m-sequences modulation as the mfERG [73], except that image contrast
is modulated rather than luminance. The mfVEP is primarily generated in striate cortex
(V1) with some contribution from the extrastriate cortex [93–96]. The common stimulus
used is the dartboard or checkerboard pattern displayed on a monitor viewed at 32 cm and
subtending an angle of 44.5◦ although there are different modifications [97]. The display
is scaled cortically and consists of 64 sectors, each sector containing 16 checks, 8 black
and 8 white [98]. Single-channel or the bipolar recording is done in typical mfVEP with
two electrodes placed in midline over the calcarine fissure with ground electrode on the
forehead or the earlobe. In multi-channel recording extra electrodes are added lateral to the
inion to improve signal-to-noise ratios (SNR) [99]. The amplitudes and the waveforms are
compared [100,101].

Pupil Perimetry: Investigators coupled infrared video to trace pupillary size with
an HFA (HFA; Zeiss, Dublin, CA, USA). The software was developed to analyze pupil-
lary responses to focal light stimuli and display results graphically. All 76 test points
in the 30-2 HFA test program were tested twice to determine relative sensitivity (ampli-
tude of pupillary constriction) and latency at each point proving pupil-based objective
perimetry [102,103].

5.3. Multifocal Pupillographic Objective Perimetry (mfPOP)

Pupil-based multifocal testing was investigated earlier by several researchers. How-
ever, it was not appreciated because of low SNR and long test times [104]. The preliminary
study in mfPOP pioneered by Maddess investigated a means of concurrently assessing
VF defects of both eyes by recording pupillary responses to multifocal stimuli. They used
sparsely presented stimuli to increase response reliability. The biggest advantage is that
only one pupil needs to be functional to plot VFs of both eyes, and it requires no electrodes
for recording, besides being an objective, non-contact, non-invasive test with a shorter
test duration as both eyes are tested concurrently [104]. Responses at each tested field



J. Clin. Med. 2024, 13, 2458 10 of 18

location are sensitivity, from the amplitude of pupillary constriction, and response delays
as the time-to-peak. Response delay is an added advantage of mfPOP, which most other
perimetric methods cannot provide, except mfERG and mfVEPs. Rapid coloured stimuli
variants drive the parvocellular and koniocellular pathways [26,104,105] rather than the
slow mid-brain pathway [106]. Amplitude is larger in the temporal than in the nasal field
significantly despite the presence of the blind spot in the temporal field [49,107–110].

Different parts of the mfPOP are shown in Figure 6. Multiple stimuli are presented
dichoptically to both eyes independently, which are reflected by cold dichroic mirrors,
which transmit only infrared light. Infrared light emitting diodes (LEDs) illuminate eyes to
facilitate a separate infrared video camera to capture real-time pupillary diameters, which
are then extracted and retained in a computer. A pair of plano-convex lenses increases the
viewing distance to optical infinity, nullifying the accommodative effects.

Figure 6. Objective perimetry. (A) ObjectiveFIELD Analyser (OFA), the latest version of multifocal
pupillographic objective perimetry (mfPOP) developed by Konan Medical USA (Laguna Canyon
Rd 150, CA 92618, United States). (B) Schematic diagram of mfPOP: (a): plano-convex lenses;
(b): LCD monitors; (c): cold dichroic mirrors; (d): infrared emitting diodes; (e): infrared video camera;
(f): personal computer. Figure 6B developed by Prof. Ted Maddess et al.

At a given time, stimuli are presented in different VF locations of two eyes to reduce
any binocular rivalry. Both direct and consensual responses are recorded in each stimulus
region. Although the inter-individual variation is high, the intra-individual responses
are consistent, encouraging investigators to explore pupillography to provide objective
perimetry. Pupillary responses have been elicited by various stimuli, commonly change
in luminance [111,112], colour [113,114], depth perception and motion [115], and spatial
content [116].

The objectiveFIELD Analyser (OFA), the FDA-approved version of mfPOP, is used for
diagnoses and monitoring of various retinal and neurological diseases. Extensive studies
have been conducted on the application of mfPOP in glaucoma [117,118]. OFA identifies
changes in visual function according to the severity of diabetic retinopathy (DR) in type
2 diabetes (T2D) [119,120]. It identifies retinal functional loss before clinically detectable
DR and is useful in structure–function correlation [120]. It identifies regional functional
progression and recovery in T2D mild DR and DMO [121], including in children with
type 1 diabetes (T1D) [122,123]. It has recently been shown to have superior diagnostic
power compared to SITA_SWAP or Matrix 24-2 perimetry [124]. OFA is sensitive in
detecting age-related macular degeneration (AMD) [119,125,126], multiple sclerosis [127],
and epilepsy [128].

6. Discussion

Every perimetric method, qualitative or quantitative, has its own merits and demerits.
Qualitative tests such as the Amsler grid may not provide a detailed exposition of lesions,
but it is portable, simple, quick, and allows for home monitoring by patients [129]. It may
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be an ideal VF test method in regional health centres with limited resources. It relies heavily
on subjective interpretation and may also be compromised by completion phenomena,
which perceptually fill small gaps in line stimuli [129,130]. The tangent screen is more
sensitive in delineating the borders of scotomas and is more reproducible than Amsler’s
grid [130].

The placement of electrodes in the midline is essential while performing mfVEPs to
produce identical recordings from normal subjects. However, small discrepancies of about
4 to 5 ms are found normally across the midline due to the location of the calcarine fissure
relative to external electrodes and the differences in the local folding of the primary visual
cortex, posing difficulty in labelling normal or diseased recordings [100,101,119]. Like the
mfERG, there are no normative data for these methods; this is due to different recording
methods being used by different groups. This limits mainstream clinical use. Another
factor for VEPs generally is that due to the folding of Visual Area 1 around the calcarine
sulcus and different brain morphology between subjects’ scalps, recorded waveform shapes
can be quite variable [119,131].

SAP has been the main perimetric method for decades in clinical practices, but these,
too, have limitations. Elderly people not only find difficulty in understanding and per-
forming subjective perimetric methods but also find it stressful. In a study conducted on
the performance of gold standard perimeter, HFA SITA full threshold, the specificity in
normal subjects was only 38% at the first test and 73.7% after two tests [132]. So, there is a
learning curve associated with subjective perimetry that complicates the interpretation in
new patients, such that two to three VF tests need to be performed before a reliable result
is achieved. Therefore, any objective functional information is useful, particularly among
those who are poor performers in subjective perimetry [133]. SAP also has huge test–retest
variability partly due to under-sampling caused by the relative influence of fixation and
variation in sensitivity across a VF faster than the Nyquist for a standard sampling interval
of 6◦. High test–retest variability interferes with ability to track VF defect progression and
is common to all variants of SAP [134–136]. Another limitation is that different perimeters
produce quite nonlinearly related data [137–139]. SAP VF contains a mixture of locations
with normal values, non-seeing locations, and locations with mildly or moderately reduced
sensitivity values ranging from 0 to 43 dB. Matrix is provided with only 15 discrete val-
ues unevenly distributed between 0 and 38 dB, thus creating an uneven distribution of
values [138]. SAP is also limited by the principle of redundancy—the receptive fields of
RGCs are highly overlapping, and it is this redundancy that is considered responsible for
the non-selective nature of SAP, with histological studies showing that a significant number
of RGCs may be lost before VF deficits are manifested on SAP [27,28].

Static perimetry, the most commonly used SAP, has lower area coverage by stimuli
than kinetic perimetry. Other limitations include the need for greater patient concentration,
decreased efficacy in delineating complex lesions that extend into the peripheral VF and
localizing lesions within the occipital lobes [140,141].

Objective perimetry based on pupillography, such as OFA, is gaining popularity.
OFA is an objective, non-invasive, non-contact, functional perimetric method evaluating
both foveal and extra-foveal function. Newer versions of OFA have higher SNR, shorter
test duration and high diagnostic accuracy [38,142]. A head-to-head study validated the
cortical input of OFA using mfVEP and found comparable [119]. SAP and OFA show similar
structural and functional relationships with regard to retinal nerve fibre layer thickness
and VF changes [143].

Conventional and rapid OFA tests have performed well in diagnosing DR and func-
tional loss even prior to the classical DR in both adults with T2D and children living
with T1D [122,123]. It is sensitive in detecting AMD [119,125,126,144] and identifies anti-
VEGF-induced changes in the retinal function for exudative AMD [125,145]. There was
a significant reduction in amplitudes and significant response delay (p < 0.001), proving
OFA is a well-tolerated objective method in the diagnosis and assessment of multiple scle-
rosis [117,127,146]. Amplitude was found to be lower among the patients with migraines
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than in normal controls but did not reach statistical significance, and treatment of migraine
with Triptan improved amplitudes [117].

Recently, much more emphasis has been given to developing OFA as a user- and
patient-friendly diagnostic device. The rapid test protocols, M18 and W20, are developed,
which can test both eyes with high accuracy in less than 90 s [127,142]. M18 and W20 test
18 and 20 regions/eye extending to ±10◦ and ±30◦of VF, respectively. The sensitivity and
specificity of these rapid tests were compared head-to-head with the conventional mfPOP
tests taking 7 min and were reported as comparable [142]. More importantly, the M18 test
has stimulus regions matching the 9 subfields of the early treatment diabetic retinopathy
study (ETDRS) grid used to report macular thickness on OCT, allowing for easy functional
(OFA sensitivity and delay measures) and structural (OCT thickness) data [142]. Short
test duration and easy structure-function correlation make the application of these tests
ideal for use among children and young people living with T1D. It is recommended that all
diagnostic tests have standardized effect sizes of >2, and thus an Area under the Receiver
Operating Characteristic Curve (AUROC) of >0.92, providing good diagnostic power [147].
However, relatively few tests meet this criterion. Comparatively, OFA performs better and
meets these criteria [38]. Additionally, clinical guidelines are provided for the use of OFA
in different scenarios such as after mydrisis, which is commonly practised in eye clinics, in
particular the retinal clinics [110].

7. Conclusions

The selection of perimetric methods should be personalized, depending on the ability
and reliability of individual patients, available resources, and earlier VF tests that have
been performed. Subjective methods may not be ideal to rely on unless the patients are
experienced, and so there are no further learning effects. It may be prudent to follow
up and prognosticate a patient with the same perimetric method or at least one having
comparable report systems. An objective, non-contact, highly reproducible, and reliable
diagnostic test that takes less than 90 s to test both eyes and with easy structure–function
correlation will be a game changer in busy clinics for providing standard eye care services.

8. Key Messages

1. Visual field testing provides critical information on eye, brain and neurological dis-
eases and is an integral part of comprehensive ophthalmic evaluation.

2. Subjective visual field tests, including standard automated perimetry, are limited by
high test–retest variability, learning effects, variability due to under-sampling, and
the principle of redundancy.

3. Among the objective tests, electroretinograms and visually evoked potentials are
limited by the inconvenience of applying electrodes and are time-consuming.

4. Multifocal Pupillographic Objective Perimetry is an objective and reliable method
which can test both eyes in less than 90 s and has the critical advantage of measuring
response delay, which no other perimetric method provides. It has normative data.

5. Some Multifocal Pupillographic Objective Perimetry stimulus regions are matched
spatially to Early Treatment Diabetic Retinopathy Study 9 subfields for easy structural-
functional correlation and recommended diagnostic effect size of >2, and thus Area
under the Receiver Operating Characteristic Curve of >0.92 are better met by this
method than any others.

9. Future Directions

Current management of retinal diseases is directed to late-stage diseases such as
clinically evident DR and neovascular AMD. The immediate future of disease management
should target earlier-stage diseases such as functional DR and early or intermediate AMD
before the emergence of classical clinical stages. Therefore, diagnostic tests must have high
sensitivity and specificity to detect both disease-specific structural and functional changes.
Secondly, it is preferable to have diagnostic tools with short test times and high reliability
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and reproducibility, which saves time for high-quality healthcare services. Perimetric
methods of the future should be able to diagnose early subtle functional changes while
providing personalized or targeted early treatment. These should be able to monitor the
earliest changes to guide clinical trials and treatment of early stage diseases.
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