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Abstract: Background: Although acute kidney injury (AKI) is a common complication in patients un-
dergoing hematopoietic stem cell transplantation (HSCT), its prophylaxis remains a clinical challenge.
Attempts at prevention or early diagnosis focus on various methods for the identification of factors
influencing the incidence of AKI. Our aim was to test the artificial intelligence (AI) potential in the
construction of a model defining parameters predicting AKI development. Methods: The analysis
covered the clinical data of children followed up for 6 months after HSCT. Kidney function was
assessed before conditioning therapy, 24 h after HSCT, 1, 2, 3, 4, and 8 weeks after transplantation, and,
finally, 3 and 6 months post-transplant. The type of donor, conditioning protocol, and complications
were incorporated into the model. Results: A random forest classifier (RFC) labeled the 93 patients
according to presence or absence of AKI. The RFC model revealed that the values of the estimated
glomerular filtration rate (eGFR) before and just after HSCT, as well as methotrexate use, acute graft
versus host disease (GvHD), and viral infection occurrence, were the major determinants of AKI
incidence within the 6-month post-transplant observation period. Conclusions: Artificial intelligence
seems a promising tool in predicting the potential risk of developing AKI, even before HSCT or just
after the procedure.

Keywords: acute graft versus host disease; acute kidney disease; artificial intelligence; random forest
classifier; tubular damage

1. Introduction

Acute kidney injury (AKI) is a common complication affecting up to 84% of children
undergoing hematopoietic stem cell transplantation (HSCT) [1–4]. A recent meta-analysis
has established the overall pooled incidence of pediatric AKI after HSCT to be 47% [5]. The
scale of this complication necessitates the constant improvement of procedures mitigating,
or at least diminishing, the frequency of AKI occurrence in this population [1]. The list
of potential risk factors for AKI after pediatric HSCT is still incomplete. According to a
recent analysis, the main factors are a matched unrelated donor, cord blood transplantation,
and sinusoidal obstruction syndrome [5]. Other studies confirm the influence of unrelated
donors, underlining the additional roles of viral infections, malignant disease as the indi-
cation, drug nephrotoxicity, complications like thrombotic microangiopathy, or an older
child’s age, in aggravating the risk of AKI development after HSCT [6–10]. Recent data
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also point to the impact of initially increased estimated glomerular filtration rate (eGFR)
values on further AKI recurrence [11].

Artificial intelligence (AI) tools have already been used to assess the risk factors
for AKI development in specific groups of patients, including those after cardiosurgery
or on intensive care units [12–14]. AI implementation in the analysis of pediatric AKI
has been highly successful in the neonatal population, but has not covered the issue of
post-HSCT AKI sufficiently [15]. Our preliminary results suggested the potential of AI
when predicting incipient renal dysfunction in children undergoing HSCT, with the use of
damage markers [16].

Therefore, our current aim was to analyze the classical risk factors for AKI in the
population of children undergoing HSCT, with the use of a machine learning methodology.
Our goal was to create an AI model with sufficient positive and negative predictive power
to assess the risk of AKI incidence in the pediatric population within the first 6 months
after HSCT.

2. Materials and Methods
2.1. Patient Characteristics

This retrospective analysis centered on the medical records of 173 children who un-
derwent their first allogeneic HSCT in the years 2016–2018 in the Department of Pediatric
Bone Marrow Transplantation, Oncology and Hematology. The patients were observed
from the introduction of conditioning therapy. Then, follow-up lasted for 6 months and
covered the early post-HSCT period (24 h after HSCT and then 1, 2, 3, and 4 weeks after
transplantation), the intermediate interval (8 weeks and 3 months post-HSCT), and the late
observation period (6 months after HSCT).

The exclusion criteria for HSCT children were an age over 18 years or below 2 years
(in the latter case, owing to disproportionate eGFR values, which are significantly lower
compared to those of older children). In total, 135 children (57 girls and 78 boys, with a
mean age of 8.27 ± 5.14 years) met the above-mentioned criteria.

Conditioning therapy was based on a myeloablative (busulfan- or treosulfan-based,
with the addition of any of the following: cyclophosphamide, fludarabine, or thiotepa) or
non-myeloablative (cyclophosphamide, fludarabine) regimen. The patients followed the
prophylaxis against graft versus host disease (GvHD), consisting of the pre-transplant anti-
thymocyte globulin (ATG), cyclosporine A given from the day preceding transplantation,
and three methotrexate doses provided on the 1st, 3rd, and 6th days post-HSCT.

2.2. Serum Creatinine and eGFR Values

The frequency of kidney function evaluation at fixed time points relied on hemato-
logical protocols. The serum creatinine concentration was measured in a sequential way:
before conditioning, at 24 h after HSCT, 1, 2, 3, 4, and 8 weeks after HSCT, and then 3 and
6 months after HSCT. The eGFR values were calculated based on the Schwartz formula [17].
The eGFR current values were compared to the pre-transplantation ones.

2.3. AKI Diagnosis

AKI diagnosis was made based on the pRIFLE criteria, assessing the degree of eGFR
decrease, and KDIGO classification, evaluating the serum creatinine rise [18]. The urine
output and fluid overload criteria could not be assessed due to unavailability of the
retrospective data. Hyperfiltration was defined as eGFR ≥ 140 mL/min/1.73 m2, based on
the pediatric experience and data from a meta-analysis [19,20].

2.4. Classical Statistical Analysis

Continuous variables were presented as mean ± standard deviation (SD), while
categorical variables were shown as frequencies and percentages. The continuous variables
were compared by the means of ANOVA and Student’s t-test. Correlations between
categorical variables were identified with the use of chi-square or Fisher’s exact tests. A
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p-value < 0.05 was considered significant. Calculations were performed with the use of
TIBCO Statistica v.13.3 (TIBCO Software, Inc., Palo Alto, CA, USA).

2.5. Machine Learning Methods
2.5.1. Machine Learning Is a Domain of Artificial Intelligence Aimed at Imitating the
Decision-Making Process Carried out by Humans

The choice of random forests as the preferred method of analysis was justified by the
simplicity of data preparation, lack of need to scale them, and transparency in model analysis.

2.5.2. Model Performance Measures Are Classically Described as the Ratio of True Matches
to Both Domains: Positives and Negatives

Precision is the machine learning equivalent of positive predictive power and is
expressed as the ratio of true positive observations to all positive observations. In this
way, it determines the chance that a positive value is true. Recall is the probability of a
positive test result, depending on whether the observation is actually positive. In statistics,
recall is called sensitivity. The F1-score is the harmonic mean of precision and recall. The
Matthews correlation coefficient (MCC) is an indicator converging to 1.0 as the overall
model performance improves in all four fields of the confusion matrix [21]. The more true
classifications there are and the fewer false ones, the higher the MCC value that the model
achieves [21]. The MCC design provides insensitivity to set imbalances. This is particularly
important when there are more representatives of the selected class in the validation set.
Then, even an ineffective classification model can achieve high accuracy due to typing a
larger group of labels.

The random forest classifier can be used to select input data for other machine learning
models due to its fast model building [22]. A random forest requires less computational
complexity, allows for searching the probability space of many possible solutions, and
offers a visual form that is acceptable for interpretation. Neural networks require more
data than random forests to converge to an optimal solution. In our work, we focused
on discovering the predictors of acute kidney injury in patients after HSCT. Scientific
publications confirm the particular effectiveness of RFCs in selecting critically important
parameters for endpoint prediction [23,24].

2.5.3. Selection of Input Data and Development of the Model

The original database was tested for the completeness of timely observations, covering
the period from the first day before conditioning to the sixth month after HSCT, and thus,
finally, 93 patients were included. The final database was divided into training and testing
sets in a ratio of 80:20 [25]. Random forest models were created on the training data, the best
of which was validated on the testing set. The model input data were selected by applying
the brute force method and checking all combinations of input parameters. The subsets
were obtained by recursively calling the random forest classifier generating function. The
obtained model was evaluated based on 5-cross validation against MCC, and the results
were saved in an external file. The model with the highest score was then selected and
records from the testing set were used as inputs (Figure 1).

2.5.4. Feature Importance

The input is an unclassified set of data associated with labels. The purpose of the
classification model is to divide this set in such a way as to obtain possibly uniform subsets
of data. An ordered arrangement of such divisions, described in numerical terms, is
represented by a decision tree. A set of such decision trees, built on the basis of random
divisions, is a random forest classifier. Feature importance tells us what contribution a
specific variable makes to this classification of input data. The higher the value, the more
crucial the feature [26].

Constructing a decision tree uses a minority or equality relationship, when formulating
conditions at partition nodes. Therefore, the random forest classifier does not distinguish
between discrete and continuous variables, or between quantitative or qualitative variables.
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It is important to prepare the database in such a way that the data placed on the number
line are ordinal. So, as the numerical value increases, there is a relative change in the
described phenomenon. For this reason, categorical variables should retain the properties
of numerical order.
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Figure 1. A graphical representation of the methodology for generating a random forest model. The
input set is divided in a ratio of 80:20 into a training and testing set. The training set allows for
generating the optimal set of input data needed for effective prediction. The testing set is used to
simulate new patient data beyond the data originally available for training.

3. Results
3.1. Clinical Data Concerning the HSCT Patients

Detailed demographic and clinical data are shown in Table 1.

Table 1. Basic demographic and clinical data of 135 patients undergoing hematopoietic stem cell
transplantation (HSCT).

Patient Characteristics Number of Children Percentage

Boys/girls 78/57 58/42
1 eGFR < 90 mL/min/1.73 m2 11 8
eGFR > 140 mL/min/1.73 m2 55 40

Unrelated donors 98 72
Matching 10/10 86 63

Peripheral blood stem cells 114 84
Conditioning therapy

Fludarabine 119 88
Thiotepa 86 63

Treosulfan 69 51
Cyclophosphamide 31 22
2 GvHD prophylaxis

Cyclosporin A 132 98
Anti-thymoglobulin 108 80

Methotrexate 105 77
Mycophenolate mofetil 20 15
Infectious complications

BK virus 86 63
Cytomegalovirus 47 35

Adenovirus 38 28
Epstein–Barr virus 35 26

Bacterial 23 17
Fungal 2 1

Acute GvHD 77 57
Chronic GvHD 21 15

1 eGFR—estimated glomerular filtration rate; 2 GvHD—graft versus host disease.
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3.2. Serum Creatinine and eGFR Values

Serum creatinine concentrations before alloHSCT were within the normal range in
all patients. They decreased significantly 24 h post-transplant and remained lower un-
til the first week after HSCT. The return of the serum creatinine concentration to pre-
transplantation values occurred after 3 weeks. Then, the values started increasing from
the fourth week after transplantation and continued rising until the sixth month post-
HSCT (Table 2).

Table 2. Kidney function and AKI occurrence according to pRIFLE criteria in the studied group in
subsequent time points before and after HSCT.

Time Point
Serum Creatinine

[mg/dL]
Mean Value ± SD

eGFR
[ml/min/1.73 m2]

Mean Value ± SD

Risk Incidence
[Number of
Patients/%]

Injury Incidence
[Number of
Patients/%]

Before HSCT 0.58 ± 0.19 141 ± 44 0 0
24 h after HSCT 0.49 ± 0.15 a 164 ± 51 b 1/0.7 2/1.4

1 week after HSCT 0.49 ± 0.17 a 166 ± 55 b 1/0.7 0
2 weeks after HSCT 0.53 ± 0.18 a 156 ± 55 b 11/8 1/0.7
3 weeks after HSCT 0.58 ± 0.17 141 ± 50 16/12 1/0.7
4 weeks after HSCT 0.61 ± 0.18 a 133 ± 43 b 25/18 0
8 weeks after HSCT 0.69 ± 0.30 a 123 ± 42 b 39/29 3/2

3 months after HSCT 0.69 ± 0.26 a 122 ± 41 b 29/21 7/5
6 months after HSCT 0.64 ± 0.18 a 127 ± 38 b 23/17 0

AKI—acute kidney injury; HSCT—hematopoietic stem cell transplantation; SD—standard deviation;
eGFR—estimated glomerular filtration rate; a p < 0.05 vs. serum creatinine before HSCT; b p < 0.05 vs. eGFR
before HSCT.

In none of the patients was eGFR < 60 mL/min/1.73 m2 before HSCT. In the vast
majority of cases (92%), eGFR values exceeded 90 mL/min/1.73 m2. Forty percent of
patients had hyperfiltration before the procedure, and after HSCT, this share increased to
63%. The highest eGFR values were observed 24 h and 1 week after HSCT. The eGFR records
returned to the values observed before HSCT only after 3 weeks (Table 2). Subsequently,
the mean eGFR values continued diminishing from the fourth week post-transplant and
did so until 6 months after HSCT (Table 2).

3.3. The Incidence of AKI

During the entire time of follow-up, the features of AKI, according to the pRIFLE
criteria, were noted in 54% of the patients. A fall in eGFR value > 25% (risk or stage 1)
occurred in 58 patients, whereas a 50% eGFR decrease (injury or stage 2) was seen in
14 patients (Table 2). None of the patients experienced failure, i.e., a decrease in eGFR by
75% (stage 3).

Only 26% of the children fulfilled the criteria of AKI according to the KDIGO guide-
lines. Twenty-seven children presented with AKI stage 1, whereas nine patients were
diagnosed with stage 2.

3.4. Preparing the Dataset to Build the Model

The data for the random forest classifier did not require scaling or normalization. The
data used to construct the model were complete.

Building the model required dividing the database in an 80:20 ratio into two subsets,
one for preparing the model through training, and the other for verifying the model’s
predictive ability on new data [25]. The data from the testing set were completely new for
the model. Model building was based on selecting the top model using five-cross validation
on the training set (Table 3).
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Table 3. Confusion matrix for the presented model. TP = true positives, FP = false positives, FN = false
negatives, TN = true negatives.

Predicted

Actual

TP FP
11 2

FN TN
1 5

The way to construct a random tree is to use conditions written using minority or
equality relations. Therefore, no special preparation of variables is required before imple-
menting modeling.

3.5. Model Predicting AKI Incidence during the Observation Period

Based on patient data, a model was built using the random forest method. Such a
model is based on a set of decision trees that classify the input data into one of the labels.
For this study, these were the absence of AKI or the presence of AKI during the follow-
up period. The random forest model correctly classified 84.21% of the records from the
test set. It showed a precision (positive predictive ability) and sensitivity of 0.8528 and
0.8421, respectively. The MCC value of 0.6548 gave a satisfactory predictive value, with
the potential for further improvement. The discriminatory ability was also at a significant
level, and so was the area under the ROC (0.8397). The lower and upper limits of the
confidence interval (CI) for the area under the receiver–operator curve were 0.6588 and
1.0000, respectively (Figure 2).
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Figure 2. The satisfactory discriminatory ability of the developed model allows for its practical
application. The area under the ROC curve was 0.8397, with corresponding lower and upper limits
of the confidence interval (CI) of 0.6588 and 1.0000, respectively.

The confusion matrix in Table 3 reflects the full characteristics of the classification of
patients from the test group into appropriate categories in the model developed on the
basis of the training data, which constituted 80% of the original data.

The positive predictive value of the absence of acute kidney injury was 0.71, the
sensitivity was 0.83, and the F1-score value was 0.77. The positive predictive power of
acute kidney injury during the follow-up period was 0.92, the sensitivity was 0.85, and the
F1-score was 0.88. Hence, it could be inferred that this model had an improved ability to
detect acute kidney injury. The feature importance for the input parameters is presented
in Table 4.
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Table 4. The best random forest model used two quantitative variables and six qualitative variables.

Feature Feature Importance

eGFR after HSCT b 37.04%
eGFR before HSCT b 35.78%

Methotrexate a 8.54%
Cytomegalovirus a 5.99%

Adenovirus a 4.99%
Acute GvHD a 4.04%

Mycophenolate mofetil a 2.63%
Glucocorticoids a 0.98%

a qualitative variables, b quantitative variables.

The significance of the variables can be seen in an example decision tree, which is a
part of the random forest classifier (Figure 3). The statistics presented in Table 4 apply to
the entire model, but we can observe at what stage a given condition defines the division
of the input set. The occurrence of acute GvHD divides the data in the first stage, but they
are more often divided based on the values of eGFR before HSCT and eGFR after HSCT.
When eliminating outliers, the complexity of decision trees can be reduced. Some divisions
lead to the clarification of individual values and do not contribute much to the overall
classification. In the current study, similar data manipulations were omitted.
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Figure 3. The variables: eGFR before HSCT and eGFR after HSCT appear significantly more often
than average in the above tree. A random forest consists of many similar trees. In the case of the
model in question, there are 17 of them. A single tree allows for selecting one predicted endpoint.
Several trees cast their votes and the final result is chosen by majority rule.

4. Discussion

AKI is one of the most common complications in the course of the HSCT procedure
and during the post-transplantation period. The background of kidney dysfunction in pa-
tients after HSCT is multifactorial [27]. AKI may result from pre-renal, renal, or post-renal
etiologies, although simultaneity of various pathological mechanisms is more the rule than
the exception [28,29]. Moreover, a cumulative impact of medications given during condi-
tioning, engraftment, as well as prevention of complications such as GvHD or infections
make the distinction of a single factor’s influence impossible. The existence of overlap-
ping mechanisms necessitates the creation of models able to validate a single variable’s
importance in confrontation with other factors, and AI fulfills these conditions [30,31].

Therefore, we identified the factors associated with the occurrence of pediatric AKI
until 6 months after transplantation, with the use of random forest models. This allowed
the identification of key features predicting the AKI incidence. One of the strengths of
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this approach is that it uses only two quantitative variables, routinely assessed during the
procedure of HSCT: eGFR before conditioning therapy, and eGFR just after HSCT.

On the other hand, it was surprising that eGFR values turned out to be the major
determinants of kidney function in the population affected by sarcopenia and metabolic
disturbances. The above-mentioned anomalies, both altering serum creatinine values and
subsequently aggravating hyperfiltration, justify such assessment, although imperfect,
among the hematological protocols of kidney function evaluation [32–34]. The concomitant
existence of two eGFR values, before and just after HSCT, in one model indirectly confirms
previous observations of high eGFR values’ influence on AKI recurrence in HSCT chil-
dren [11]. It also suggests the significance of a preserved renal functional reserve (RFR),
represented here by the most prominent increase in eGFR value 24 h after HSCT versus the
pre-transplantation record, for the prediction of AKI incidence [35,36].

Indeed, discussion of the impact of the RFR on recovery from AKI is not new, and
we now have a broad perspective on RFR’s usefulness across clinical nephrology [37].
However, technical challenges concerning the methods of GFR stimulation and its further
adequate measurement under dynamic conditions require standardization [38]. Con-
sequently, prospective adjustment of the currently available methodology for pediatric
specificity is needed, though it appears challenging. However, the first promising results
correlate an RFR > 20% before HSCT with a subsequent recovery from AKI after transplan-
tation [39]. Therefore, larger studies, aimed at defining RFR thresholds in children planned
for HSCT, or at finding surrogate markers for such assessment, are awaited.

Proteinuria seems another candidate quantitative variable for the evaluation of AKI
risk. Surprisingly, though one of the most evident predictors of chronic kidney disease pro-
gression, this has not attracted comparable attention regarding its impact on acute kidney
damage. A meta-analysis published in 2015 established the role of an increased albumin-
to-creatinine ratio (ACR) as a strong risk factor for AKI development, whereas the level
of pre-AKI proteinuria conditioned renal recovery or non-recovery in patients requiring
dialysis [40,41]. Similarly, according to a recent systematic review, pre-operative proteinuria
was connected with a greater risk of post-operative AKI in adults undergoing radical or
partial nephrectomy due to renal cancer [42]. However, all those studies concerned adults
with proteinuria accompanied by decreased eGFR, as opposed to our pediatric post-HSCT
population with hyperfiltration. Moreover, routine urinalysis in HSCT children was not
accompanied by urine creatinine evaluation, so ACR values were not available.

On the contrary, our prospective study on the role of novel damage markers, such as
NGAL, KIM-1, and IL-18, in AKI assessment in HSCT children gave satisfactory results
regarding the prediction of incipient kidney dysfunction 4 weeks after transplantation [16].
Unfortunately, we could not verify these results on the current database, owing to its
retrospective character.

Apart from the quantitative variables found to be significant for our RFC model,
the important qualitative variables were as follows: essential elements of the therapeutic
regimen, complication incidence, and random events related to infections. This proved how
complex the interrelations can be between various destructive factors acting during HSCT.

In our model, aGvHD, methotrexate use, and CMV/ADV infection were qualitative
variables of known impact on AKI incidence. According to the literature, the use of
conditioning regimens is one of the established AKI risk factors [2,43,44]. Moreover, the
cumulative toxicity of busulfan, cyclophosphamide, cytarabine, melphalan, thiotepa, and
total body irradiation may amplify a negative effect.

However, the list of potentially nephrotoxic drugs, requiring dose adjustment to
the level of kidney dysfunction, contains methotrexate, calcineurin inhibitors, cyclophos-
phamide, antibiotics, and anti-fungal and anti-viral drugs [45]. Methotrexate shows direct
toxicity towards renal tubules, whereas calcineurin inhibitors act through multiple unfa-
vorable mechanisms, including endothelial damage by increased oxidative stress, arteriolar
vasoconstriction due to suppression of vasodilators and vasoconstrictor predominance, as
well as thrombotic microangiopathy [46].
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Moreover, the renal mechanism of AKI is usually accompanied by pre-renal azotemia
in the course of dehydration. The latter results from general side-effects of chemotherapy
such as vomiting, diarrhea, or insufficient fluid intake because of mucositis [43]. When
added to the negative caloric balance and cachexia, increased generation of uremic toxins
is inevitable.

Acute GvHD, identified by our model as a factor associated with AKI at 6 months
after HSCT, is per se an independent risk factor for kidney injury [2,46], and our model has
confirmed its significance in the pediatric HSCT population. The paradox of this situation
is that prophylaxis against GvHD also carries the risk of triggering AKI, or at least of
increasing its occurrence. Acute GvHD also turns out to be a risk factor of developing acute
kidney disease (AKD), which is another unfavorable outcome in the long-term observation
until 6 months after HSCT [47].

Recent data have also confirmed that the incidence of AKI is significantly higher in
children with documented viral infections [9]. These results are in concert with our data
deciphering the impact of ADV/CMV infections on AKI incidence.

Our study has limitations. The number of patients with complete available data was
low and the time of observation was relatively short. Furthermore, certain data, such
as 24 h diuresis, fluid overload, protein-to-creatinine ratio, serum cystatin C, or damage
markers, were unavailable owing to either incongruity to hematological protocols or the
retrospective character of the analysis. Nonetheless, due to the limited size of the database,
numerous statistics were used to confirm the quality of the model.

Based on the collected data on children undergoing HSCT, it was possible to build
a predictive model assessing acute kidney injury’s incidence, according to the pRIFLE
criteria, within 6 months after the procedure. Such predictions can be made based on the
information about the use of various medications or the history of infection. However, the
key parameters turned out to be the glomerular filtration rate before the procedure and on
the first day after the procedure.

Future testing on the growing number of variables and observations in the database
may improve the model performance. Furthermore, artificial intelligence tools can help
identify risk factors leading to AKI in HSCT patients. In this case, the input parameters used
in the model were those determined before or shortly after transplantation, which allows
for more effective early risk management. It is hereby possible to identify the patients at
particular risk of AKI, with satisfactory quality of the presented random forest classifiers.

5. Conclusions

Generating an optimal random forest model allowed us to determine which features
are associated with kidney damage and which input data are most important in the pre-
diction of AKI. The kidney function before HSCT and just after the procedure turned out
to be the strongest predictors of AKI in the 6-month post-transplant period. Other major
AKI risk factors were previous chemotherapy and viral infections. AI tools revealed their
potential in identifying patients at risk of AKI development before HSCT, giving way to
personalized treatment and effective prophylaxis.

The tested random forest model allows for effective classification of pediatric patients,
according to the risk of AKI occurrence within 6 months after HSCT. The presented solu-
tion is scalable and can be easily expanded, thus enabling improvement and driving for
perfection with the growing amount of data.
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