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Abstract: Ovarian tissue cryopreservation (OTC) and subsequent transplantation (OTT) is a fertility
preservation technique widely offered to prepubertal girls and young fertile women who need to
undergo oncological treatment but are at a high risk of infertility. However, OTT is not considered safe
in patients with certain diseases like leukemia, Burkitt’s lymphoma, and ovarian cancer because of the
associated risk of malignant cell reintroduction. In vitro follicle development has therefore emerged as
a promising means of obtaining mature metaphase II (MII) oocytes from the primordial follicle (PMF)
pool contained within cryopreserved ovarian tissue, without the need for transplantation. Despite
its significant potential, this novel approach remains highly challenging, as it requires replication of
the intricate process of intraovarian folliculogenesis. Recent advances in multi-step in vitro culture
(IVC) systems, tailored to the specific needs of each follicle stage, have demonstrated the feasibility
of generating mature oocytes (MII) from early-stage human follicles. While significant progress has
been made, there is still room for improvement in terms of efficiency and productivity, and a long
way to go before this IVC approach can be implemented in a clinical setting. This comprehensive
review outlines the most significant improvements in recent years, current limitations, and future
optimization strategies.

Keywords: folliculogenesis; follicle activation; human ovarian tissue; bovine ovarian tissue; in vitro
culture; in vitro growth; in vitro maturation

1. Introduction

Young fertile cancer patients undergoing treatment like chemotherapy or radiother-
apy face the threat of iatrogenic fertility impairment due to the gonadotoxicity of these
interventions [1–4]. Among fertility preservation techniques developed to address this
issue, ovarian tissue cryopreservation (OTC) with subsequent transplantation (OTT) is
the only available option for prepubertal girls and patients who cannot postpone their
treatment [5,6]. However, auto-transplantation carries the potential risk of reintroduc-
ing neoplastic cells, especially in the case of blood-borne malignancies like leukemia and
non-Hodgkin’s lymphoma, as well as ovarian cancer [7–9].

In recent years, in vitro follicle development has emerged as a promising means
of obtaining mature metaphase II (MII) oocytes from the primordial follicle (PMF) pool
contained within cryopreserved ovarian cortex, without the need for OTT [10,11]. Indeed,
PMFs are a key target for fertility restoration, as they are the most abundant follicle
population and can tolerate freezing and thawing procedures [12,13].

Achieving complete in vitro folliculogenesis involves initial activation of quiescent
PMFs, further growth and progression through the different stages of development, and
then final oocyte maturation prior to in vitro fertilization (IVF). While encouraging, this
novel approach remains extremely challenging, since not all signaling mechanisms involved
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in follicle development are yet fully understood [11,14]. Although it was possible to
generate newborns from completely in vitro-derived ovarian follicles in mice well over
two decades ago [15], replicating this technique in larger mammals and humans has
proven much more problematic. Bovines share greater similarities to humans in terms of
reproductive cycles and ovarian follicle kinetics, being a mono-ovular species, in contrast to
pigs and mice, which are poly-ovular. Numerous studies were therefore conducted using
bovine ovarian tissue as a better model for research into human follicle development.

A few decades ago, insights obtained from ultrasound techniques in cattle paved
the way for a deeper understanding of follicle kinetics in humans [16]. Both species’
ovarian cycles exhibit follicle waves characterized by synchronized growth of follicle
cohorts, with one eventually emerging as dominant while others regress. During ovulation
in both species, LH levels increase, triggering ovulation of the dominant follicle. This
shared pattern highlights fundamental parallels in the mechanisms underlying follicle
wave generation, dominant follicle selection, and the ultimate release of a single egg in
both humans and bovines, making the bovine model an ideal framework for extrapolating
results to human clinical applications.

We searched the PubMed database (https://pubmed.ncbi.nlm.nih.gov/, accessed
on 1 August 2023) for English-language articles relevant to the subject, published up
to June 2023. The search specifically targeted in vitro folliculogenesis studies using the
following keywords: ‘in vitro culture’ AND ‘ovarian tissue’ AND ‘ovarian follicles’. A total
of 809 articles initially matched these criteria. After identifying original studies that used
human or bovine ovarian tissue and were methodologically adequate, the authors selected
and reviewed 43 articles. The present review summarizes key advances in in vitro follicle
development in humans and bovines in recent years, the main challenges that remain, and
strategies to optimize outcomes.

2. Different In Vitro Culture Systems

Since the successful creation of mouse embryos from a complete in vitro follicle devel-
opment system was first reported [15], various research groups have attempted to devise
different in vitro culture (IVC) strategies to mimic the same process in humans. Two prin-
cipal but opposing approaches have been described: isolated PMF culture versus in situ
culture of PMFs within ovarian cortex.

Early attempts to culture isolated PMFs failed to induce growth [17,18] and it became
clear that preserving interactions between PMFs and neighboring stromal cells in cortical
tissue is crucial to their survival and initial growth [19–21]. This approach typically involves
IVC of thin cortical fragments (no more than 1 mm thick) [10]. Physical factors, including
tissue surface area and stiffness, can also compromise in vitro cell behavior. The ovarian
cortex must therefore be fragmented and any excess medulla removed to optimize the
balance between cultured cells and nutrients. Indeed, disproportion between the tissue
surface and medium volume could lead to nutrient insufficiency and tissue necrosis,
especially during prolonged IVC [22].

Telfer and colleagues recently developed human MII oocytes from PMFs within
ovarian tissue using a multi-step IVC procedure [10] (Figure 1). The first step involved
activation and early growth of PMFs. Secondary follicles (100–150 µm) were then isolated
and individually cultured in V-shaped wells to reach the antral stage, forming cumulus-
oocyte complexes (COCs). The final step was maturation of the remaining COCs to the
preovulatory stage, enabling collection of mature MII oocytes.

While this approach served to demonstrate the feasibility of the technique, it also
revealed its limited effectiveness, yielding only 9 MII oocytes from 160 initial ovarian tissue
fragments. Further refinement of the technique is clearly essential before its implementation
in clinical practice.

https://pubmed.ncbi.nlm.nih.gov/
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Figure 1. Illustrative representation of the multi-step IVC system supporting in vitro follicle devel-
opment from PMFs contained within the ovarian cortex to mature MII oocytes, as described by 
McLaughlin et al., 2018 [10]. Step 1: PMF activation. Step 2: Isolation of secondary follicles (a) and 
subsequent individual culture in V-shaped wells until the antral follicle stage (b). Step 3: Mechanical 
dissection of COCs. Step 4: Oocyte IVM until reaching the MII stage. Created with BioRender.com, 
accessed on 1 January 2024. 
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and McCoy’s 5a [21,33–39]. Waymouth’s medium [40–46] is the most widely used me-
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sus on supplements that should be added to the basal culture medium to support follicle 
survival and growth. Glucose and amino acids like L-glutamine are usually used as en-
ergy sources. Insulin, transferrin, and selenium (ITS) are added to increase uptake of sol-
uble metabolic precursors. Antibiotics such as penicillin and streptomycin are given to 
prevent microorganism growth. In addition, soluble antioxidants like ascorbic acid are 
frequently added to culture medium, having been shown to reduce cell apoptosis and 
increase follicle integrity [47–49]. Follicle-stimulating hormone (FSH) and activin A are 
often included thanks to their effect on granulosa cell (GC) proliferation [10,21]. Medium 
supplements may also contain serum, such as fetal bovine serum, or serum substitutes, 
like human serum albumin commonly used as protein complements.  

It is essential to replace culture medium after a fixed amount of time in order to pre-
vent nutrient depletion and ensure elimination of toxic waste products, like ammonia and 
lactic acid. In studies involving IVC for more than four days, standard practice is to re-
place half of the culture medium every other day [10,21,38,50–53]. 
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velopment from PMFs contained within the ovarian cortex to mature MII oocytes, as described by
McLaughlin et al., 2018 [10]. Step 1: PMF activation. Step 2: Isolation of secondary follicles (a) and
subsequent individual culture in V-shaped wells until the antral follicle stage (b). Step 3: Mechanical
dissection of COCs. Step 4: Oocyte IVM until reaching the MII stage. Created with BioRender.com,
accessed on 1 January 2024.

3. Follicle Activation: From PMFs to Secondary Follicles

Table 1 summarizes different IVC systems, culture periods, medium components,
biomaterials, and isolation methods from publications reporting transition of PMFs to
secondary follicles in humans and bovines.

3.1. Culture Medium Composition for the First Step

Culture medium composition is pivotal to maintaining viability, growth, and prolif-
eration of cells in an IVC system. The most commonly used basal media for this phase of
human ovarian tissue IVC are alpha minimal essential medium (αMEM) [17,19,20,23–32]
and McCoy’s 5a [21,33–39]. Waymouth’s medium [40–46] is the most widely used medium
for bovine ovarian tissue culture (Table 1). In recent years, there has been a consensus
on supplements that should be added to the basal culture medium to support follicle
survival and growth. Glucose and amino acids like L-glutamine are usually used as energy
sources. Insulin, transferrin, and selenium (ITS) are added to increase uptake of soluble
metabolic precursors. Antibiotics such as penicillin and streptomycin are given to prevent
microorganism growth. In addition, soluble antioxidants like ascorbic acid are frequently
added to culture medium, having been shown to reduce cell apoptosis and increase follicle
integrity [47–49]. Follicle-stimulating hormone (FSH) and activin A are often included
thanks to their effect on granulosa cell (GC) proliferation [10,21]. Medium supplements
may also contain serum, such as fetal bovine serum, or serum substitutes, like human
serum albumin commonly used as protein complements.

It is essential to replace culture medium after a fixed amount of time in order to prevent
nutrient depletion and ensure elimination of toxic waste products, like ammonia and lactic
acid. In studies involving IVC for more than four days, standard practice is to replace half
of the culture medium every other day [10,21,38,50–53].

Table 1. Publications reporting transition of PMFs to secondary follicles in humans and bovines
(step 1).

Publication. Source Type of Culture Culture
Period

Culture
Medium

Culture
System Biomaterial Isolation

Method

Hovatta et al., 1997
[19] Human Ovarian tissue 21 days αMEM 2D Extracellular

matrix N/A

Wright et al., 1999
[20] Human Ovarian tissue 15 days αMEM 2D Matrigel N/A
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Table 1. Cont.

Publication. Source Type of Culture Culture
Period

Culture
Medium

Culture
System Biomaterial Isolation

Method

Abir et al., 1999
[17] Human Isolated follicles 1 day αMEM 3D Collagen gel Enzymatic

Hreinsson et al.,
2002 [24] Human Ovarian tissue 14 days αMEM 2D Extracellular

matrix N/A

Scott et al., 2004
[25] Human Ovarian tissue 7 days αMEM N/A No N/A

Amorim et al., 2009
[26] Human Isolated follicles 7 days αMEM 3D Alginate Enzymatic

Kedem et al., 2011
[54] Human Ovarian tissue 14 days αMEM 3D Alginate N/A

Camboni et al.,
2013 [27] Human Isolated follicles 7 days αMEM 3D Alginate Enzymatic

Lerer-Serfaty et al.,
2013 [28] Human Ovarian tissue 12 days αMEM 3D PEG-fibrinogen N/A

Wang et al., 2014
[55] Human Isolated follicles 8 days αMEM 3D Alginate Enzymatic +

mechanical
Laronda et al., 2014

[29] Human Isolated follicles 3 days αMEM 3D Alginate Enzymatic

Yin et al., 2016 [56] Human Isolated follicles 30 days αMEM 3D Alginate Enzymatic
Hosseini et al., 2017

[30] Human Isolated follicles 10 days αMEM 3D Alginate Enzymatic

Hosseini et al.,
2019 [57] Human Ovarian tissue 8 days αMEM N/A No N/A

Ghezelayagh et al.,
2020 [31] Human Ovarian tissue 7 days αMEM 3D Agar scaffold N/A

Ghezelayagh et al.,
2021 [32] Human Ovarian tissue 7 days αMEM 3D Matrigel N/A

Telfer et al., 2008
[21] Human Ovarian tissue 10 days McCoy’s 5a N/A No Mechanical

Khosravi et al.,
2013 [35] Human Ovarian tissue 7 days McCoy’s 5a N/A No N/A

McLaughlin et al.,
2011 [33] Human Ovarian tissue 6 days McCoy’s 5a N/A No N/A

McLaughlin et al.,
2014 [34] Human Ovarian tissue 6 days McCoy’s 5a N/A No Mechanical

Asadi et al., 2017
[36] Human Ovarian tissue 6 days McCoy’s 5a N/A No N/A

Grosbois et al.,
2018 [37] Human Ovarian tissue 6 days McCoy’s 5a N/A No N/A

Hossay et al., 2023
[38] Human Ovarian tissue 6 days McCoy’s 5a N/A No N/A

Subiran Adrados
et al., 2023 [39] Human Isolated follicles 8 days McCoy’s 5a 3D Alginate Enzymatic +

mechanical
Dadashzadeh et al.,

2023 [58] Human Isolated follicles 7 days DMEM/F12 3D PEG hydrogels Enzymatic

Wandji et al., 1996
[40] Bovine Ovarian tissue 7 days Waymouth N/A No N/A

Fortune et al., 1998
[41] Bovine Ovarian tissue 7 days Waymouth N/A No N/A

Gigli et al., 2006
[42] Bovine Ovarian tissue 7 days Waymouth N/A No N/A

Yang and Fortune,
2006 [43] Bovine Ovarian tissue 10 days Waymouth N/A No N/A

Yang and Fortune,
2007 [44] Bovine Ovarian tissue 10 days Waymouth N/A No N/A

Yang and Fortune,
2008 [45] Bovine Ovarian tissue 10 days Waymouth N/A No N/A

Yang et al., 2017
[46] Bovine Ovarian tissue 12 days Waymouth N/A No N/A

N/A: not applicable.
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3.2. Molecular Signaling Pathways

Follicle activation is the first step in folliculogenesis and appears to be the key fea-
ture of in vitro follicle development. Due to an absence of gonadotropin receptors within
PMFs and their limited irrigation supply, PMF activation is most likely gonadotropin-
independent, with reliance on paracrine signaling both within follicles and throughout the
local intraovarian environment [59]. While still not fully understood, regulation of PMF ac-
tivation looks to involve intricate coordination between stimulating and inhibiting signals.

3.2.1. Oocyte-GC Crosstalk

Cell communication pathways between the oocyte and GCs are critical features in PMF
activation. Previous studies suggest that growth differentiation factor 9 (GDF9) and bone
morphogenetic protein 15 (BMP15), two members of the transforming growth factor beta
(TGFβ) superfamily specifically secreted by oocytes, may be involved in initiating follicle
growth and subsequent stage transition [60,61]. It has been documented that after follicle
activation, the recruited oocyte initiates GDF9 and BMP15 secretion, directly impacting both
GC proliferation and expansion, and thereby promoting follicle transition [62,63]. Indeed,
addition of human recombinant GDF9 and BMP15 to human ovarian tissue IVC has been
found to promote increased activation of PMFs and higher estradiol secretion [54]. On the
other hand, GDF9 knockout mice showed significant impairment of follicle development,
which hampers progression beyond the primary stage [64], while BMP15 knockout mice
exhibited subfertility, with lower ovulation and fertilization rates [65].

Another hormone regulating follicle activation is anti-Müllerian hormone (AMH) [66],
also a member of the TGFβ superfamily. AMH is secreted by GCs from the primary
follicle stage onwards and peaks during the secondary and small antral follicle stages [67].
AMH from growing follicles has an inhibitory effect on follicle activation in neighboring
quiescent PMFs [68], designed to maintain a balanced and coordinated process of follicle
recruitment and development. Certainly, studies in AMH-knockout mice revealed increased
numbers of antral follicles, coupled with a decrease in the PMF count [69]. It has also been
demonstrated that supplementing human [70] and bovine [46] ovarian tissue IVC with
AMH curbs follicle activation.

3.2.2. Hippo Signaling

Among the different molecular pathways, Hippo signaling appears to play a key role
in PMF activation (Figure 2). This pathway regulates organ size, tissue homeostasis, and cell
differentiation [71]. The Hippo pathway functions through downstream effectors, namely
transcriptional coactivator yes-associated protein (YAP) and transcriptional coactivator
PDZ-binding motif (TAZ) [72,73]. While active, this kinase-regulated suppressive pathway
eventually causes phosphorylation of the YAP/TAZ complex, resulting in its retention
and degradation within the cytoplasm, and thereby preventing its nuclear localization
and activation of transcription factors. Conversely, during ovarian tissue fragmentation,
transformation of globular actin into filamentous actin disrupts this signaling pathway, lead-
ing to accumulation of unphosphorylated YAP/TAZ in the nucleus, which subsequently
enhances cell proliferation-related gene expression [72,74–76]. Lunding and colleagues
demonstrated that fragmentation of human ovaries boosted actin polymerization, caus-
ing inhibition of the Hippo pathway by dephosphorylation and nuclear translocation of
YAP, and ultimately leading to follicle and oocyte growth [77]. Likewise, immunostaining
techniques (targeting YAP) on human ovarian tissue have revealed that in vitro tissue
fragmentation activates PMFs through the Hippo pathway [78]. Grosbois and colleagues
were even able to prove that after IVC, follicles situated closer to the fragmentation site
were more developed than those localized deeper in cortical tissue [37].
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blast growth factor (bFGF) are among those able to trigger oocyte activation by boosting 
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GCs activate the PI3K/AKT pathway [81,82]. Other growth factors such as vascular endo-
thelial growth factor (VEGF), epidermal growth factor (EGF), and hormones like insulin 
are able to directly stimulate the PI3K/AKT pathway upon binding to tyrosine-kinase re-
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phorylated and translocated to the nucleus, where it in turn phosphorylates the 

Figure 2. When the Hippo pathway is active (left), SAV1 and MST1/2 complex phosphorylates
LATS1/2 and MOB1. Activated LATS1/2 subsequently phosphorylates the YAP/TAZ complex,
resulting in cytoplasmic retention and no DNA transcription. Conversely, when the Hippo pathway
is disrupted (right) during ovarian tissue fragmentation, dephosphorylated YAP1/TAZ translocates
to the nucleus to bind with TEAD, leading to transcriptional activation of genes associated with cell
growth and survival. Created with BioRender.com. Abbreviations: LATS1/2 (large tumor suppressor
kinase 1/2); MOB1 (Mps one binder 1); MST1/2 (mammalian Ste20-like serine/threonine kinases
1/2); P (phosphorylated); SAV1 (protein salvador homolog 1; TEAD (TEA domain family members).

3.2.3. PI3K/AKT Pathway

The phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway has
also been implicated in PMF activation [34,50] (Figure 3). The PI3K/AKT pathway is
activated by various growth factors. Platelet-derived growth factor (PDGF) and basic fi-
broblast growth factor (bFGF) are among those able to trigger oocyte activation by boosting
oocyte-GC crosstalk through c-kit/kit ligand signaling [59,79,80]. Upon binding of the
c-kit receptor to the oocyte membrane, increased kit ligand expression and secretion from
GCs activate the PI3K/AKT pathway [81,82]. Other growth factors such as vascular en-
dothelial growth factor (VEGF), epidermal growth factor (EGF), and hormones like insulin
are able to directly stimulate the PI3K/AKT pathway upon binding to tyrosine-kinase
receptors [59,79,83]. After receptor activation, phosphatidylinositol-4,5-bisphosphate (PIP2)
phosphorylates into phosphatidylinositol 3,4,5-triphosphate (PIP3). AKT is then phospho-
rylated and translocated to the nucleus, where it in turn phosphorylates the transcriptional
factor forkhead box O (FOXO), resulting in its export into the cytoplasm. After transloca-
tion, inactive FOXO ceases its inhibitory influence over follicle growth [84,85]. Mammalian
target of rapamycin complex (mTORC), another AKT downstream effector, is also involved
in early-stage follicle activation and development. When active, mTORC regulates protein
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synthesis and cell growth through ribosomal biogenesis, enhancing follicle activation [86].
Conversely, phosphatase and tensin homolog (PTEN) has a negative impact on PI3K/AKT
signaling, counteracting conversion of PIP2 into PIP3 [75]. Past research has demonstrated
upregulation of the PI3K/AKT and mTORC pathways and a decrease in PTEN signal-
ing upon analysis of oocyte transcriptomic profiles during primordial-to-primary follicle
transition in human ovarian follicles [87].
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Figure 3. The PI3K/AKT pathway is activated following binding of several growth factors to
tyrosine-kinase receptors on cell membranes. This interaction leads to PIP2 transformation into
PIP3. AKT is then phosphorylated and translocated to the nucleus where it phosphorylates FOXO1,
resulting in its export into the cytoplasm. After translocation, inactive FOXO1 ceases its inhibitory
effect over transcriptional factors, enhancing follicle activation and growth. mTOR, another AKT
downstream effector regulates protein synthesis and cell growth through ribosomal biosynthesis,
also promoting follicle activation. PTEN, on the other hand, counteracts the conversion of PIP2 into
PIP3, inhibiting the pathway. Activators are represented in green and inhibitors in red. Created with
BioRender.com. Abbreviations: AKT (protein kinase B); bFGF (basic fibroblast growth factor); EGF
(epidermal growth factor); FOXO1 (forkhead box O1); mTOR (mammalian target of rapamycin);
P (phosphorylated); PDGF (platelet-derived growth factor); PDK1 (phosphoinositide-dependent
kinase-1); PI3K (phosphatidylinositol 3-kinase); PIP2 (phosphatidylinositol 4,5-bisphosphate); PIP3
(phosphatidylinositol 3,4,5-trisphosphate); PTEN (phosphatase and tensin homolog); rpS6 (ribosomal
protein S6); S6K1 (S6 kinase 1); TSC1 and TSC2 (tuberous sclerosis complex 1 and 2); VEGF (vascular
endothelial growth factor).
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3.3. Spontaneous In Vitro Follicle Activation: Friend or Foe?

In vivo, PMF quiescence is maintained by an intricate balance between stimulatory and
inhibitory autocrine and paracrine cues within the intraovarian setting. However, follicle
activation occurs spontaneously in vitro after a few days in both humans [10,21,38,50]
and bovines [40,41]. This might be due to disruption of follicle activation-suppressing
mechanisms after the cortical fragment is extracted from its natural environment [88]. Such
uncontrolled in vitro activation stands in sharp contrast to the natural physiological process,
where PMFs are gradually recruited in regulated waves. Indeed, this highly coordinated
development is estimated to take at least 80 days in vivo [89], raising questions about the
quality and genomic integrity of in vitro-derived follicles that reach the same growth stage
in around 10 days. Previous studies [10,21] have in fact found that despite rapid in vitro
activation, only a limited number of PMFs are capable of progressing to the next stage
of follicle growth, while the majority face follicle death or development arrest. Not all
activated follicles manage to grow and develop to further stages [10], but whether this
developmental defect lies in the initial uncontrolled activation or happens at some later
stage cannot yet be determined.

In recent years, numerous investigations have sought to increase follicle activation
using pharmacological agents to enhance ovarian tissue IVC. Short-term in vitro exposure
to low doses of PTEN inhibitors like bisperoxovanadium(pic) [bpV(pic)] or bisperoxovana-
dium(HOpic) [bpV(HOpic)] was found to improve human PMF activation and growth
in vitro [34,90] and promote estradiol secretion [90]. Creating a favorable environment for
follicle growth could certainly be beneficial in clinical settings. Kawamura and colleagues
reported human pregnancies after grafting ovarian cortex previously exposed to a PTEN
inhibitor to patients with premature ovarian failure [72,91,92]. However, iatrogenically
forcing follicle activation may not be harmless to follicle health. Apart from its function in
follicle activation, PTEN also plays a role in maintaining genomic stability [93,94]. Indeed,
studies have demonstrated that PTEN inhibition causes greater follicle DNA damage, im-
pairs DNA repair mechanisms [95] and increases histomorphological follicle abnormalities,
such as loss of GC-oocyte contacts, steroidogenesis defects, and poor survival of growing
follicles [28,34,37].

Conversely, other researchers have hypothesized that an ideal IVC system should
limit extensive follicle activation to mimic the natural intraovarian environment. Phar-
macological inhibition of mTORC, a downstream effector of the PI3K/AKT pathway, has
been used to attenuate follicle in vitro activation. Exposure to rapamycin, an mTORC1
inhibitor, resulted in high rates of oocyte loss and an ‘empty follicle’ pattern in ovarian
tissue culture [33]. Surprisingly, better outcomes were observed with everolimus (EVE), an
analog of rapamycin. EVE has been reported to have a protective effect on maintaining PMF
dormancy and avoiding IVC-induced spontaneous activation [37]. Furthermore, adding
AMH to ovarian tissue IVC could be a valuable approach to control follicle activation. Re-
combinant AMH exposure was also shown to prevent PMF activation in cultured ovarian
tissue both in humans [70] and bovines [46].

Regulation of in vitro activation by ovarian tissue IVC offers a promising avenue for
fertility treatments but raises concerns about follicle health and genetic integrity. While
the results may look encouraging, it is essential to remain cautious regarding potential
impairments to follicle health, quality, and genetic and epigenetic integrity. Long-term
impacts of genetic instability on oocytes and subsequent offspring remain uncertain. Indeed,
these new reproductive techniques still have a long way to go before they can be safely
employed in a clinical setting [96].

3.4. Mimicking the In Vivo Environment: The Key to Success

Physical and biological parameters like base media and additives, nutrients, tem-
perature, oxygen (O2) tension, and light exposure should be meticulously analyzed to
determine the optimal IVC strategy. Ultimately, the IVC system that most closely mimics
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the intraovarian physiological environment is one that causes the least cell distress and
yields the best viability.

Optimal temperatures for IVC can vary from species to species depending on nor-
mal body temperatures, like 37 ◦C for human tissue and 38.5–39 ◦C for bovine tissue.
Determining species-specific temperature requirements is crucial to successful IVC.

In recent years, cell-based co-culture systems have attracted attention for their potential
to replicate the intraovarian microenvironment [97,98]. It appears that ‘feeder cells’, such as
different types of mesenchymal stem cells (MSCs), exert their influence on neighboring cells
due to their capacity to release a secretome containing cytokines, chemokines, and growth
factors. Among these cells, bone marrow-derived (BM)-MSCs were found to enhance follicle
growth and decrease follicle apoptosis in a human ovarian tissue co-culture model [57].
It has also been very recently demonstrated that addition of adipose tissue-derived stem
cell (ASC)-conditioned medium, which includes the secretome, to bovine ovarian tissue
IVC significantly boosts follicle viability, development, and estradiol secretion [99]. Indeed,
MSC derivatives like conditioned medium could emerge as powerful optimization tools, as
they reduce the risk of cell differentiation and nutrient competition within shared culture
media. They also provide a more secure option, given its ease of collection, storage, and
standardization, thereby ensuring consistent and reproducible outcomes.

Oxygen tension is another crucial environmental factor affecting IVC follicle outcomes.
Optimal O2 tension is difficult to determine in culture. It is estimated that quiescent PMFs
reside within the ovarian cortex at physiological O2 tension levels ranging between 2%
and 8% [100,101]. Elevated O2 tension causes accumulation of reactive oxygen species
(ROS), eventually leading to oxidative stress damage and cell dysfunction. Consequently,
culturing PMFs at O2 tension beyond physiological levels may result in increased follicle
distress and reduced viability. In line with these data, a study reported that human ovarian
tissue cultured at 5% O2 tension yielded lower follicle apoptosis rates, mainly by generating
less oxidative stress damage and fewer DNA double-strand breaks [51] than culture at 20%
O2 tension. It was also reported that hypoxia induces a dormant state in oocytes through
FOXO3, a downstream effector of the PI3K/AKT signaling pathway [102]. Atmospheric O2
tension could therefore be another factor contributing to large-scale spontaneous human
follicle activation invariably observed in vitro.

Conversely, there is no clear directive on O2 tension in bovine ovarian tissue IVC.
Jorssen and colleagues found no significant differences in follicle viability or growth
between 5% and 20% O2 tension [103]. Although the role of O2 tension has not yet been
fully elucidated, it is clear that it varies according to follicle stage. Low O2 tension is
most critical during the early stages of IVC, while higher tension may be required during
later stages to support normal development of GCs and steroidogenesis [42]. This mirrors
in vivo follicle dynamics, where PMFs migrate from the avascular periphery towards the
highly irrigated medulla as they grow.

Finally, it is worth noting that low in vitro survival and growing follicle rates are likely
due to suboptimal culture medium composition. Determining which culture supplements
should be added to enhance IVC outcomes is extremely challenging, as factors, proteins,
and signaling pathways involved in follicle activation, growth, and maturation are still
largely unknown. This lack of understanding of the complex processes of folliculogenesis
is undoubtedly a significant limitation to achieving favorable in vitro follicle outcomes.

4. Follicle In Vitro Growth (IVG): From Secondary to Antral Follicles

Table 2 summarizes different IVC systems, culture periods, medium components,
biomaterials, and isolation methods from publications reporting transition of secondary
follicles to antral follicles in humans and bovines.
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Table 2. Publications reporting transition of secondary to antral follicles in humans and bovines
(step 2).

Publication Source Culture Period Culture Medium Culture System Biomaterial Isolation Method

Roy et al., 1993
[104] Human 5 days D-MEM 2D Agar Enzymatic

Abir et al., 1997 [23] Human 28 days αMEM 2D Extracellular matrix Mechanical

Xu et al., 2009 [105] Human 30 days αMEM 3D Alginate Enzymatic +
mechanical

Xia et al., 2015 [106] Human 8 days αMEM 3D Alginate Enzymatic +
mechanical

Xiao et al., 2015
[107] Human 40 days αMEM 3D Alginate Mechanical

Yin et al., 2016 [56] Human 30 days αMEM 3D Alginate Enzymatic
Telfer et al., 2008

[21] Human 10 days McCoy’s 5a V-shaped
microwell No Mechanical

McLaughlin et al.,
2014 [34] Human 6 days McCoy’s 5a V-shaped

microwell No Mechanical

McLaughlin et al.,
2018 [10] Human 23 days McCoy’s 5a V-shaped

microwell No Mechanical

Xu et al., 2021 [108] Human 42 days αMEM N/A No Mechanical
Subiran Adrados

et al., 2023 [39] Human 8 days McCoy’s 5a 3D Alginate Enzymatic +
mechanical

Thomas et al., 2007
[109] Bovine 6 days McCoy’s 5a V-shaped

microwell No Mechanical

McLaughlin and
Telfer, 2010 [110] Bovine 15 days McCoy’s 5a V-shaped

microwell No Mechanical

Rossetto et al., 2013
[52] Bovine 16 days α-MEM, McCoy’s

5a and TCM-199
V-shaped
microwell No Mechanical

Paulino et al., 2018
[53] Bovine 18 days TCM-199 Droplets culture No Mechanical

N/A: not applicable.

4.1. Isolation Techniques

After reaching the secondary follicle stage consisting of a multilayer of GCs, follicles
cannot survive within the cortical environment, so isolation from surrounding ovarian cells
is a prerequisite for further in vitro development. This is not surprising as, during intrao-
varian development, follicles migrate from the rigid cortex towards the less dense medulla.
Secondary follicle isolation can be performed either enzymatically [56,58,104,111], mechani-
cally by microdissection [10,21,23,34,52,53,107,109,110], or a combination of both [39,105,106]
(Table 2). The microdissection approach, using fine-gauge needles, has been established
as the most appropriate, as it maintains an intact follicle basement membrane, thereby
preserving oocyte-GC communications [10,21].

4.2. Secondary Follicle Culture Systems and Medium Composition

The physical setting of isolated follicles is hugely important at this stage. In the past,
follicle IVG studies only took a few days, and 2D culture systems enabling follicles to attach
to a flat surface appeared to function adequately [104]. However, with establishment of long-
term IVC techniques, the 2D method exhibited significant limitations, such as loss of cell-
to-cell communication and follicle growth arrest [112]. Researchers, therefore, shifted to 3D
culture systems using biomaterials to encapsulate follicles to better mimic the intraovarian
environment (Table 2). Among these bio-matrices, natural compounds like alginate and
Matrigel (a commercialized solubilized basal membrane matrix) were found to support
IVG of isolated human secondary follicles [56,105]. Moreover, synthetic components such
as polyethylene glycol (PEG)-ylated fibrin hydrogels were successfully utilized to promote
human secondary follicle development in vitro [58]. Other approaches using decellularized
ovarian tissue [113] and 3D microporous scaffolds [114] were also shown to support follicle
IVG. However, IVG can in fact be performed without any extracellular matrix or scaffold
at all [10]. In the multi-step IVC system, isolated secondary follicles can be cultured
individually in V-shaped well culture dishes without any added biomaterial until the antral
stage [10]. Numerous studies on isolated bovine follicles have consistently demonstrated
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that V-shaped microwell plates facilitate follicle growth and proliferation [52,109,110],
although the droplet culture approach has also been successfully applied [53].

Medium composition is also crucial to IVG. The most commonly used media in
human IVG systems are αMEM [23,56,105,107,108], McCoy’s 5a [10,21,34,39], Dulbecco’s
MEM (DMEM) [104], or mixed media (DMEM+F12) [58], while McCoys’ 5a [109,110] and
TCM-199 [53] are typically utilized in bovines (Table 2).

Addition of activin A and low-dose FSH at this stage has been found to impart a stabi-
lizing influence on intercellular connections, improve the quality of oocytes and promote
antrum formation in both humans [10,21,107] and bovines [115]. In this context, it has
been reported that FSH receptors (FSHRs) are mainly present during growth stages [116]
and, upon binding to FSH, they initiate intracellular mechanisms involved in GC prolifer-
ation [117]. Activin has also been shown to act in coordination with FSH, preserving the
integrity of intercellular connections within follicles [118]. In oocytes, activin is involved
in modulation of nuclear gene transcription, promoting maturation [119,120]. Isolated
follicle growth and survival can also be enhanced with other culture additives such as
bFGF [55], antioxidants like ascorbic acid that mitigate oxidative stress damage [21,47], and
platelet-rich plasma or human platelet lysate containing high concentrations of growth
factors [30,39]. While various research groups have tested different additives, further
studies are needed to determine their effectiveness. It is crucial to establish clear guidelines
on exactly which supplements should be added to standard IVC growth medium.

4.3. Antrum Formation

This step involves enlargement of the oocyte, further replication and expansion of
GCs, and formation of a central fluid-filled cavity known as the antrum. As preantral
follicles develop, areas of fluid initially accumulate between GCs, eventually leading to the
creation of a large central antrum. This central fluid-filled space serves as a reservoir for
various substances and plays a crucial role in providing essential support and nourishment
to the oocyte as it continues to mature. Based on in vivo migration of growing follicles
from the cortex to the medulla during physiological development, it is thought that antrum
formation and expansion might be influenced by biomechanical environmental factors.
Follicles in collagen-dense ovarian cortex are less likely to grow, while those in the medulla
benefit from a biomechanical environment that supports further development and antrum
formation [121]. Xiao and colleagues found that while human follicles encapsulated in
alginate could grow to a diameter of 110 µm after 30 days, oocytes within these follicles were
unable to progress to the MII stage, instead remaining at the germinal vesicle (GV) stage
or deteriorating, most probably due to limitations imposed by the physical surroundings.
However, when antral follicles were removed from the alginate hydrogel and further
cultured in low-attachment plates using a dynamic two-step system, they were able to
reach the MII stage [107]. Indeed, these findings emphasize the importance of providing a
dynamic in vitro environment for follicle development.

5. Oocyte In Vitro Maturation (IVM): The Final Step

This technique has advanced significantly over the last 30 years [122–124]. It involves
oocyte maturation to achieve meiosis resumption, chromatin condensation, development of
the meiotic spindle, and expulsion of the initial polar body, reaching the mature stage of MII
oocyte [125] (Figure 4A). This technique can be performed either on (i) immature oocytes
obtained from oocyte pick-up or (ii) oocytes from in vitro-derived follicles. The former
technique entails puncturing small and mid-antral follicles before they reach periovulatory
size ranges (between 6–12 mm) without previous hormone stimulation, and final oocyte
maturation is achieved in vitro [123]. In this review, our focus is on the latter option,
where IVM is performed on completely in vitro-derived follicles. Table 3 summarizes
different IVC systems, culture periods, medium components, and use of biomaterials from
publications reporting oocyte IVM from in vitro-derived follicles.
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Table 3. Publications reporting the generation of mature oocytes MII from in vitro-derived hu-
man follicles.

Publication Source Type of Culture Culture Period Culture Medium Culture System Biomaterial

Xiao et al., 2015
[107] Human Isolated follicles 40 days αMEM 3D Alginate

McLaughlin et al.,
2018 [10] Human Ovarian tissue 23 days McCoy’s 5a N/A No

Xu et al., 2021
[108] Human Ovarian tissue 42 days αMEM N/A No

N/A: not applicable.

IVM from In Vitro-Derived Follicles

Achieving successful IVM from in vitro-derived follicles poses considerable technical
challenges. Oocyte competence is gained progressively throughout follicle development
and involves gradual accumulation of RNA molecules and proteins throughout oocyte
growth, which will constitute the oocyte genome [79]. Previous research in mammals has
shown that the oocyte genome may be strongly influenced by the environment [126], so fol-
licle IVC will clearly have an impact on oocyte RNA and protein regulation. Environmental
epigenomic modifications mainly include DNA methylation, chromatin reorganization, and
histone modifications [127], all of which contribute to proper segregation of chromosomes
during meiosis.

To date, only three research groups have documented successful maturation of oocytes
from cultured human follicles (Table 3), albeit invariably showing suboptimal oocyte devel-
opmental competence. Unlike animal models where fertilization rates can be measured, the
only viable options to assess human oocyte developmental competence are morphological
parameters like establishment of the meiotic spindle, chromosomal alignment, polar body
formation, and cytoplasmic ultrastructure, obviously due to ethical concerns (Figure 4A–D).

J. Clin. Med. 2024, 13, 1791 12 of 20 
 

 

achieved in vitro [123]. In this review, our focus is on the latter option, where IVM is per-
formed on completely in vitro-derived follicles. Table 3 summarizes different IVC systems, 
culture periods, medium components, and use of biomaterials from publications reporting 
oocyte IVM from in vitro-derived follicles. 

Table 3. Publications reporting the generation of mature oocytes MII from in vitro-derived human 
follicles. 

Publication Source Type of Culture Culture  
Period 

Culture Medium Culture System Biomaterial 

Xiao et al., 2015 [107] Human Isolated follicles 40 days αMEM 3D Alginate 
McLaughlin et al., 

2018 [10] 
Human Ovarian tissue 23 days McCoy’s 5a N/A No 

Xu et al., 2021 [108] Human Ovarian tissue 42 days αMEM N/A No 
N/A: not applicable. 

5.1. IVM from In Vitro-Derived Follicles  
Achieving successful IVM from in vitro-derived follicles poses considerable technical 

challenges. Oocyte competence is gained progressively throughout follicle development 
and involves gradual accumulation of RNA molecules and proteins throughout oocyte 
growth, which will constitute the oocyte genome [79]. Previous research in mammals has 
shown that the oocyte genome may be strongly influenced by the environment [126], so 
follicle IVC will clearly have an impact on oocyte RNA and protein regulation. Environ-
mental epigenomic modifications mainly include DNA methylation, chromatin reorgani-
zation, and histone modifications [127], all of which contribute to proper segregation of 
chromosomes during meiosis. 

To date, only three research groups have documented successful maturation of oo-
cytes from cultured human follicles (Table 3), albeit invariably showing suboptimal oo-
cyte developmental competence. Unlike animal models where fertilization rates can be 
measured, the only viable options to assess human oocyte developmental competence are 
morphological parameters like establishment of the meiotic spindle, chromosomal align-
ment, polar body formation, and cytoplasmic ultrastructure, obviously due to ethical con-
cerns (Figure 4A–D). 

 
Figure 4. (A) Schematic representation of morphological parameters used to assess oocyte compe-
tence. Created with BioRender.com. (B) Bright field image showing a MII oocyte with and enlarged 
abnormal polar body. Reproduced with permission from [10]. Confocal images displaying (C) 

Figure 4. (A) Schematic representation of morphological parameters used to assess oocyte compe-
tence. Created with BioRender.com. (B) Bright field image showing a MII oocyte with and enlarged
abnormal polar body. Reproduced with permission from [10]. Confocal images displaying (C) equato-
rially aligned chromosomes (blue) and meiotic spindles (green), and (D) chromosomal misalignment.
Reproduced with permission from [128].



J. Clin. Med. 2024, 13, 1791 13 of 20

Xiao and colleagues reported the generation of MII oocytes from mechanically isolated
secondary follicles, with a typical meiosis spindle configuration. However, polar body
fragmentation was observed [107], which denotes low oocyte quality for potential IVF. Like-
wise, McLaughlin’s team achieved MII oocyte production from early-stage follicles cultured
in a multi-step IVC system, but this approach exhibited limited effectiveness, yielding only
9 MII oocytes from 160 ovarian tissue fragments. Furthermore, these oocytes displayed
abnormally large polar bodies [10]. Similarly, Xu’s team demonstrated development of
MII oocytes from early-stage follicles cultured in situ within cortical fragments in a more
recent study. By the end, 3 out of 14 MII oocytes showed normal spindle configuration,
adequate polar body size, and typical intracellular ultrastructure [108]. All in all, these
results highlight the challenges associated with achieving optimal oocyte competence using
in vitro folliculogenesis systems.

6. Future Directions

Creating a successful and efficient long-term IVC system for human follicles is a
demanding pursuit. Researchers have recently been exploring ways of generating dynamic
microfluidic culture systems in assisted reproduction devices, such as reproductive organs-
on-a-chip [129], in vitro spermatogenesis [130], and testis culture [131]. The dynamic
microfluidic approach aims to establish a constant flow of culture medium around tissue,
closely mimicking the physiological ovarian microenvironment by facilitating continuous
exchange of metabolites and cell waste. This innovative technique might have the potential
to overcome limitations associated with static IVC approaches, hopefully improving follicle
survival and development. Moreover, employing a dynamic O2 tension IVC system
could be advantageous. As previously mentioned, quiescent PMFs initially reside in the
avascular cortical region and gradually migrate to the highly irrigated medulla, as they
progress through developmental stages [89]. This increasing O2 gradient is crucial to GC
proliferation, steroidogenesis, and oocyte maturation during follicle growth [132]. Indeed,
applying dynamic O2 tension throughout IVC could positively impact follicle quality
and competence, as it mimics O2 gradients experienced during physiological ovarian
follicle development.

Another avenue for advancement involves implementation of ovarian organoids.
This concept refers to in vitro generation of miniature histological structures resembling
ovarian source tissue [133]. Such a 3D approach could be used not only as an alternative
for fertility restoration purposes, but also as a novel opportunity to investigate disease
mechanisms, the impact of gonadotoxic agents, and potential therapeutic strategies. Li and
colleagues recently developed an ovarian organoid using mouse female germline stem
cells, resulting in differentiated heterogenic tissue containing germ cells and somatic cells
like GCs and theca cells [134]. This model demonstrated reproductive functions, including
oocyte and offspring production, and endocrine activity, with secretion of progesterone
and estradiol. Use of ovarian organoids in humans certainly holds great promise as a
brand-new approach to fertility restoration, offering the potential for improved outcomes
and broader applications in the field of reproductive medicine.

To validate such innovative strategies for human tissue in clinical practice, it is im-
perative to follow a structured approach. The European Society of Human Reproduction
and Embryology (ESHRE) task force on ethics and law outlines a comprehensive research
pathway to evaluate the efficacy and safety of new assisted reproductive technologies,
including four key steps: (i) conducting animal studies; (ii) undertaking preclinical embryo
research; (iii) performing clinical trials on human subjects; and (iv) conducting follow-up
studies to monitor long-term outcomes [135]. Research in animals has already been de-
veloped according to these principles, but perhaps the most challenging step is human
embryo research, because of ethical regulations that restrict this practice in many European
countries. That said, it is also very important to stress that regulatory considerations,
including obtaining ethical approval and compliance with medical device regulations from
institutional boards, are crucial throughout the entire validation process. This systematic
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approach should be adhered to, so that approval for these innovative techniques can be
granted before their integration into clinical settings.

7. Patient Perspectives

A diagnosis of cancer represents a profound challenge for young women, triggering
both the psychological shock of the diagnosis itself and the potential repercussion on
fertility due to gonadotoxic treatments [136]. Concerns about fertility can indeed dash
their hopes of a family, causing considerable emotional distress. Moreover, facing the
complex landscape of treatment decisions and medical interventions associated with cancer
therapy can be hugely overwhelming. Among oncological patients, those with pathologies
that contraindicate OTT are most acutely affected by this uncertainty. For this category of
patients, we may advocate OTC for fertility preservation in very young girls, in the hope of
continued (albeit slow and difficult) progress in the field in the future.

8. Conclusions

In vitro follicle development has shown significant potential as a novel method for
fertility restoration in young cancer patients with OTT contraindications. Despite ongoing
challenges associated with the in vitro technique, some studies have demonstrated the
ability to generate mature human MII oocytes from early-stage follicles. Indeed, there is a
widely accepted consensus on the benefits of culturing PMFs in situ within ovarian cortex
to achieve follicle activation, along with mechanical microdissection of secondary follicles
for further growth. In addition, IVC medium composition has been standardized over the
years, albeit with slight variations between species, the most common being αMEM and
McCoy’s 5a for humans and Waymouth and TCM-199 for bovines.

New strategies, such as dynamic microfluidic culture systems and dynamic O2 tension
IVC systems, aim to better replicate the physiological ovarian microenvironment, poten-
tially enhancing follicle survival and development rates. The use of ovarian organoids offers
exciting prospects for both fertility restoration and investigation of disease mechanisms
and therapeutic strategies.

Further optimization and refinement could ultimately make in vitro follicle develop-
ment a safe, accessible, and cost-effective option for fertility restoration in a clinical setting,
providing a valuable alternative for subjects who cannot undergo OTT.
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