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Abstract: Background: Presbyopia is an age-related ocular condition, typically affecting individuals
aged over 40 years, characterized by a gradual and irreversible decline in the eye’s ability to focus on
nearby objects. Correction methods for presbyopia encompass the use of corrective lenses, surgical
interventions (corneal or lens based), and, more recently, the FDA-approved topical administration of
1.25% pilocarpine. While prior research has demonstrated the efficacy of daily pilocarpine eye drop
application in enhancing near visual acuity by increasing the depth of focus leveraging the pinhole
effect, limited knowledge exists regarding its influence on visual acuity under varying conditions
of contrast and ambient luminance. Methods: This study aims to investigate the impact of these
variables on visual acuity, employing the VA-CAL test, among 11 emmetropic and 11 presbyopic
volunteers who reported subjective difficulties with near vision. This study includes evaluations
under natural conditions with a pinhole occluder (diameter of 2 mm), and subsequent administra-
tion of 1% pilocarpine (Pilomann, Bausch + Lomb, Laval, Canada). Results: The VA-CAL results
demonstrate the expected, statistically significant effects of contrast and ambient luminance on visual
acuity in both emmetropic and presbyopic volunteers. Furthermore, in emmetropic individuals, the
application of pilocarpine resulted in a statistically significant reduction in visual acuity. In contrast,
presbyopes did not exhibit statistically significant differences in the visual acuity space under either
the pinhole or pilocarpine conditions when compared to natural conditions. Conclusions: The
pharmacological treatment of presbyopia with pilocarpine eye drops, intended to enhance near
vision, does not adversely affect visual acuity in presbyopes. This suggests that pilocarpine may offer
a viable alternative for individuals averse to wearing corrective eyewear.
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1. Introduction

Presbyopia is an age-related, progressive, and irreversible decline in the eye’s accom-
modative ability, typically initiating around the age of 40 [1]. This condition impairs the
eye’s capability to effectively focus on nearby objects, thereby affecting daily activities
and decreasing the quality of life. Accumulating evidence suggests that presbyopia is
caused by age-related changes in lenticular structures, mainly due to the loss of lens elas-
ticity [2,3]. Croft et al. provide an extensive introduction to the mechanisms underlying
accommodation and presbyopia [4].

Several studies imply that in 2015, over 1.8 billion people were suffering from pres-
byopia, and the prevalence is expected to peak at approximately 2.1 billion in 2030 [5,6].
Access to corrective measures that restore near vision is limited in some parts of the world.
It is estimated that reading glasses are available only for 6–45% of patients living in de-
veloping countries. The high prevalence of uncorrected presbyopia is linked to a lack of
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affordable treatment and adequate diagnosis [7–11]. Conversely, the broad accessibility of
corrective aids, such as reading glasses in developed countries, could mean that potential
alternative presbyopic treatment options are often overlooked [12]. Methods to correct pres-
byopia include corrective lenses or glasses, but also corneal- or lens-based surgery [5,13–18].
Furthermore, recent data imply that lens softeners, such as Novartis’ investigational pres-
byopia correcting drop UNR844, could restore some degree of lens elasticity, allowing
for better accommodation [19]. When the lens regains elasticity, the eye can focus better
on close distances. Accommodation occurs through the central displacement of cytosolic
proteins in the fibers of the eye lens. Aging is linked with oxidative stress. It leads to the
formation of disulfide bonds between lens proteins, resulting in impaired cytosolic flow,
lens stiffening, and presbyopia. Lipoic acid, a prodrug that hydrolyzes disulfide bonds in
its active form, could potentially lead to a softer eye lens, improve its elasticity, and as a
final effect improve the focus on close distances [19].

It has long been known that near vision improves by natural constriction of the pupils
through increased illumination [20]. Thereby, the depth of field (DOF) of the eye increases
as the diameter of the pupil decreases [21,22]. This effect can be leveraged to help people
with presbyopia to see adequately over a greater range of object distances [22,23].

The pinhole effect created by a small pupil blocks distorted and unfocused light rays
and isolates more focused central and paracentral rays through the central aperture, thereby
reducing aberrations of the optical system as a whole and enhancing image quality and
visual acuity [24,25].

A simple approach to leverage the pinhole effect for increasing DOF and thereby
improving the near visual acuity of presbyopes is pinhole glasses. It was shown that these
glasses improve uncorrected distance as well as near visual acuity [26–28], and reduce the
required accommodative power by about 15% [26]. However, the use of pinhole glasses
results in decreased visual quality, such as an impaired visual field, reduced reading speed,
and lower contrast sensitivity [27,28]. Furthermore, a shortened tear break-up time was
observed [28], probably leading to a worsening of subjective ophthalmic symptoms [28],
uncomfortable feelings, and excessive eye fatigue [26].

Alternative approaches, aiming to reduce the problem of visual field restriction, are
artificial pupils integrated into contact lenses, corneal inlays, or intra-ocular lenses (IOLs).
Here, vignetting effects are reduced, since the artificial pupil is much closer to the natural
pupil [29]. A scleral contact lens with a pinhole aperture and an opaque periphery was first
developed by Ziller [29] and was further pursued by several other groups in the following
decades [23,30,31]. The same optical principle has been applied in corneal inlays [32,33]
and IOLs [34]. At present, commercially available options include one corneal inlay, the
AcuFocus KAMRATM inlay [35,36], and two IOLs, namely the AcuFocus IC-8 [37,38] and
the Xtrafocus from Morcher GmbH [39,40]. In contrast to contact lenses, both corneal inlay
and IOL avoid the problem of decentration of the aperture [29]. For a thorough survey of
small aperture optics employed in the treatment of presbyopia and the various approaches
to creating a pinhole effect, see Charman [29].

Several researchers have revisited the original concepts of leveraging DOF as an aid
for presbyopia. The eye possesses an inherent aperture, the pupil, which, upon constriction,
extends the DOF, thereby potentially enhancing near visual acuity. Rather than introducing
an artificial pupil, a pharmacologically induced miosis can be employed to achieve the
same result. While originally described almost half a century ago [23], the use of miotic
drugs has drawn some attention in recent years [41,42]. For an overview of currently used
drugs for inducing miosis see the comprehensive reviews of Renna et al. [43] and Karanfil
and Turgut [44].

The most commonly used drug for inducing pupil constriction is pilocarpine, a cholin-
ergic muscarinic receptor agonist that acts through the M3 muscarinic receptors. Pilocarpine
binds and activates muscarinic M3 receptors located on the iris sphincter [45] and on the
ciliary body, inducing both pupillary miosis and, potentially, accommodative spasm [46].
Moreover, pilocarpine stimulates the contraction of the longitudinal ciliary muscle fibers,
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which pull on tendons terminating in the trabecular meshwork and the inner wall of
Schlemm’s canal. Pilocarpine is used routinely in ophthalmology, especially for glau-
coma therapy to stimulate pupils’ constriction, thereby increasing the outflow of aqueous
humor [47].

In 2021, the U.S. Food and Drug Administration approved AGN-190584 (VuityTM,
Allergan/AbbVie, North Chicago, IL, USA), a 1.25% pilocarpine hydrochloride (HCl)
solution, as the first commercially available eye drops for treating presbyopia based on the
results of two phase 3 clinical studies, GEMINI 1 [48] and GEMINI 2 (ClinicalTrials.gov
identifier: NCT03857542). The manufacturers reported that 31% of individuals aged
between 40 and 55 experienced an improvement of three-or-more lines in corrected near
visual acuity under mesopic conditions, without a loss of more than one line in corrected
distance visual acuity [48]. The results of the GEMINI 1 and 2 clinical trials showed
adverse reactions to the use of pilocarpine solution. About 15% of participants experienced
headaches. Other side effects were mostly mild to moderate. Some researchers suggest
combining miotics with other drugs, for example, aceclidine with tropicamide. Aceclidine
is a muscarinic agonist, weaker than pilocarpine, and tropicamide has an antimuscarinic
effect that allows for dilation without significantly affecting accommodation. Furthermore,
the combination of pilocarpine with oxymetazoline, an alpha-adrenergic agonist that causes
vasoconstriction and mydriasis, could reduce hyperemia but also reduce depth of field due
to the effect on pupil size [49].

All approaches using the small-aperture optics principle for increasing the DOF and
thus improving near vision, whether non-invasive, invasive, or pharmacological, have in
common that the amount of light reaching the retina is reduced and therefore a darker
image is produced [23,29]. Particularly at low-luminance and low-contrast conditions, this
results in a loss of resolution [50,51] and distance visual acuity [52,53]. This increases the
risk of accidents and falls, especially in invasive and pharmacologically induced miosis
because the pupils are prevented from opening wide in the dark. Poor twilight vision is
particularly dangerous when driving or operating machinery. These concerns are likely
to be greater in phakic presbyopes, whose ocular transmissibility is already significantly
reduced compared to young adults, mainly due to greater absorption in the crystalline
lens. Lenticular light loss increases slowly in early presbyopia but tends to increase rapidly
after about the age of 60 with the onset of early cataract development, although there is
considerable individual variation [54,55].

Accordingly, Vuity’s prescribing information states ‘Patients should be advised to
exercise caution in night driving and other hazardous occupations in poor illumination’ [46].

The purpose of this study was to investigate the effect of an artificially or pharmaco-
logically induced pinhole aperture on visual acuity under varying contrast and ambient
luminance conditions.

Standard visual acuity testing, with luminance between 80 and 320 cd/m2, a maximum
optotype contrast, and contrast vision testing, performed separately in clinical routine,
do not represent the range of luminance and contrast conditions present in everyday life
and thus are unable to assess the full range of visual performance. Therefore, the VA-CAL
test, which determines visual acuity as a function of contrast and ambient luminance, was
developed as an alternative test procedure to enable a realistic determination of the visual
acuity space [56].

In a recent study, we used the VA-CAL test to show that short-wavelength cutoff
filter glasses can improve visual acuity by approximately 0.6 logMAR in individuals with
achromatopsia, who are extremely sensitive to glare, especially in high-ambient-light and
low-contrast conditions [57]. In contrast, in this study, we specifically expect a reduction
in visual acuity under conditions of low ambient light and low contrast. The results may
help to set out recommendations for the possibilities and limitations of pharmacologically
induced miosis as a treatment for presbyopia.

ClinicalTrials.gov
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2. Materials and Methods

This study complies with the Declaration of Helsinki and is approved by the Institu-
tional Review Board of the Medical Faculty of the University in Tuebingen (734/2022BO2).

2.1. Participants

A sample size of at least 20 participants (10 per group) was estimated to detect a statis-
tically significant change in VA (α = 0.05, β-1 = 0.95, mean difference 0.3 ± 0.15 logMAR)
using G*Power [58,59], based on previous studies [56,57].

Volunteers were recruited from the staff of the Centre for Ophthalmology at the
University of Tuebingen according to the inclusion and exclusion criteria listed in Table 1.

Table 1. Summary of the in- and exclusion criteria of the study.

Inclusion Criteria Exclusion Criteria

Emmetropes

• Agreement to participate in the study
• Age ≤ 35 years
• No suspected or confirmed eye disease

(self-reported)
• Uncorrected monocular visual acuity

≤0.1 LogMAR
• Spherical equivalent < ± 0.5 D

• Incapable of giving consent
• Age < 18 years
• Uncorrected monocular visual acuity >0.1 LogMAR
• Spherical equivalent ≥ ±0.5 D
• Any eye disease influencing the endpoint according

to the judgment of the investigator and
study physician

Presbyopes

• Agreement to participate in the study
• Age ≥ 40 years
• Subjective complaints of poor near vision

that impact activities of daily living
• BCVA ≤ 0.1 logMAR
• No suspected or confirmed eye

disease (anamnesis)

• Incapable of giving consent
• Age < 40 years
• BCVA > 0.1 logMAR
• Any IOL implant, iritis, asthma, or any eye disease

influencing the endpoint according to the judgment
of the investigator and study physician

After signing informed consent, an initial ophthalmic examination was performed,
followed by measuring the best-corrected visual acuity (BCVA) using a Snellen chart and
examination of the anterior eye segment with a slit lamp.

2.2. General Examinations

Before and about 30 min after the installation of pilocarpine eye drops, each partici-
pant’s pupil diameter and amplitude of accommodation were assessed using the push-up
method by employing a RAF rule with Duane’s line figure for determining the near
point [60]. Furthermore, post-experiment measurements of intraocular pressure were
obtained.

2.3. VA-CAL Procedure

Landolt C rings were presented as randomly rotated in 45◦ steps at ambient luminances
(AL) of 0, 30, 320, 3000, 5000, and 10,000 cd/m2 NS at Weber contrasts of 10%, 30%, and
70%. The participants were seated at a 1 m distance to the screen with their heads stabilized
in a combined chin-and-head rest and instructed to indicate the opening direction of the
Landolt C ring using a wireless keypad within a maximum of 10 s. Misses were considered
incorrect. Visual acuity was determined using a four-alternative forced-choice (4AFC)
QUEST adaptive staircase routine [61]. The detailed setup and procedure have been
described previously [56,57].

The test was carried out monocularly (eye with better VA or leading eye) without pupil
dilation using the same best correction of refractive error as ascertained in BCVA and was
repeated for each of the three conditions, i.e., with best-corrected naked eye (corrected for
the test distance), with 2 mm pinhole occlude in a trial frame, and 30 min after application
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of commercially available 1% pilocarpine eye drops (Pilomann, Bausch + Lomb, Laval,
QC, Canada).

2.4. Statistics

The effect of the refractive status and the application of pilocarpine on near point and
pupil diameter were analyzed using linear mixed-effects models with the fixed factors:
group (control, presbyope) and time point (pre-, post-experiment), as well as their inter-
action, and the subject as a random effect to account for repeated measures and missing
data. The models were fitted using restricted maximum likelihood (REML). The variance
inflation factors (VIF) of the predictors were calculated and assuredly fell well below the
common threshold value, indicating no collinearity between them [62]. The residuals were
visually confirmed to follow a normal distribution and the homogeneity of the variances
was ensured using the Brown–Forsythe test and reported in case of violations [63,64]. Post
hoc comparisons of the least-squares means using two-tailed t-tests were conducted in the
case of statistically significant effects.

To investigate the hypotheses regarding the effects of pilocarpine or a pinhole occluder
on achievable visual acuity under different levels of contrast and ambient luminance, a
full-factorial weighted linear mixed-effects model was employed, with the fixed factors
being group (control, presbyopia) and condition (naked eye, pinhole, pilocarpine); contin-
uous contrast level (0.1, 0.3, 0.7) as a quadratic term; and continuous ambient luminance
(0, 30, 320, 3000, 5000, 10,000) modeled as 4-knotted spline to account for a non-linear
relationship with the dependent variable, visual acuity [65,66]. The subject was treated as
a random effect. The model was fitted using REML. To address the unequal variance in
visual acuity across the groups and conditions, weights were calculated using a two-step
procedure [67–69]: Firstly, a log variance model was fitted using the independent variables
age and condition to the residuals of a fit of the unweighted original model. Secondly, the
normalized reciprocal predictions of the log variance model were employed as weights for
the weighted linear mixed-effects model.

Subsequently, least-squares means were analyzed using pairwise multiple compar-
isons with Dunnett’s C test, which takes into consideration unequal variances [70,71]. If
not otherwise stated, an alpha level of 0.05 was used for all statistical analyses.

All statistical analyses were performed using JMP Pro 17 (SAS Institute, Cary, NA, USA).

3. Results
3.1. Participants’ Demographics

Eleven emmetropic (age 22–35 years, median 28 years, three women) and eleven
presbyopic (age 45–68 years, median 60 years, six women) volunteers were included in the
study according to the inclusion and exclusion criteria listed in Table 1.

Figure 1 depicts the accommodation amplitude of the participants as a function of age
before and following the experiment, i.e., after the application of pilocarpine eye drops.
The accommodation amplitudes follow the classical Duane curve [1]. The average pupil
diameter prior to the experiment was 3.3 ± 0.2 mm (mean ± SD), independent of the age
of the participants (Table 2).

Table 2. Effects of group (control, presbyope) and time point (pre-, post-experiment) on near point
and pupil diameter analyzed using linear mixed-effects models.

Fixed Effects and Interaction
Near Point (n = 41, R2

adj. = 0.97) Pupil Diameter (n = 43, R2
adj. = 0.89)

F-Statistic p-Value 1 F-Statistic p-Value 1

group F(1, 19.13) = 41.32 <0.0001 *** F(1, 20.28) = 0.39 0.5399
time point F(1, 18.29) = 6.86 0.0172 * F(1, 19.86) = 189.51 <0.0001 ***
group × time point F(1, 18.29) = 0.88 0.3593 F(1, 19.86) = 0.54 0.4692

1 Alpha level = 0.05; asterisks indicate the level of significance: * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2. Effects of Refractive State and Time Point on Accommodation and Pupil Diameter

The linear mixed-effects models revealed the statistically significant effects of the
refractive state (group) and the time point (pre- and post-treatment) on the maximally
achievable near point of accommodation and the statistically significant effect of the time
point on the pupil diameter (Table 2). Interestingly, no statistically significant effect of
group on the pupil diameter was found. It should be noted that the pupil diameter models’
residuals exhibited heteroscedasticity (Brown–Forsythe test: F(1, 41) = 4.3650, p = 0.0375).

Post hoc comparisons conducted using paired t-tests of the least-squares means of the
near point distances between emmetropic controls and presbyopic participants demon-
strated an expected statistically significant smaller near point distance for emmetropic
compared to presbyopic participants, with a mean difference of −12.9 cm (equivalent to
3.6 D). Furthermore, a small but statistically significant difference of −1.0 cm (equivalent
to 0.4 D) was observed between the least-squares means near points measured before and
after the experiment, irrespective of the participants’ refractive state (Figure 2a, Table 3).

Table 3. Results of post hoc comparisons using paired t-tests of the least-squares means obtained
from the linear mixed-effects models.

Comparison (LS Means ± SE) Diff. 95% CI t-Value p-Value 1

Near point (cm)
control (13.7 ± 1.4) presbyope (26.7 ± 1.5) 12.9 [8.7, 17.1] 6.53 <0.0001 ***

pre (21.0 ± 1.0) post (19.4 ± 1.1) −1.6 [−3.0, −0.3] −2.62 0.0172 *
Pupil diameter (mm)

pre (3.3 ± 0.1) post (2.3 ± 0.1) −1.0 [−1.1, −0.8] −13.77 <0.0001 ***
1 Alpha level = 0.05; asterisks indicate the level of significance: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 2. Least-squares means for the near point distance (a) and the pupil diameter (b) obtained
from the linear mixed-effects models with fixed factors group, time point, and their interaction. The
near point distance exhibits statistically significant effects for both group and time point, whereas
the pupil diameter is solely influenced by the time point. Notably, the interaction between group
and time point did not reach statistical significance in either model. Whiskers indicate the 95%
confidence interval.

The corresponding analysis of the pupil diameter revealed a statistically significant re-
duction of 1.0 mm in the pupil diameter after the experiment, independent of the refractive
state (Figure 2b, Table 3).

3.3. Effects of Pinhole Occluder and Pilocarpine on Visual Acuity at Varying Levels of Contrast and
Ambient Luminance in Presbyopes and Emmetropic Controls

The weighted linear mixed-effects model revealed the statistically significant effects
of ambient luminance and contrast on visual acuity. Additionally, statistically significant
effects were found for the factor condition (naked eye, pinhole occlude, pilocarpine) as well
as for the interactions of group × condition and group × condition × ambient luminance
(Table 4).

Table 4. Results of the linear mixed-effects model with the dependent variable visual acuity.

Fixed Effects and Interactions 1 F-Statistic p-Value 2

group F(1, 21.06) = 0.01 0.9304
condition F(2, 1141.10) = 143.40 <0.0001 ***
ambient luminance F(3, 1140.92) = 142.88 <0.0001 ***
contrast F(1, 1140.92) = 472.61 <0.0001 ***
contrast × contrast F(1, 1140.92) = 158.77 <0.0001 ***
group × condition F(2, 1141.10) = 56.19 <0.0001 ***
group × contrast F(1, 1140.92) = 0.21 0.6456
group × ambient luminance F(1, 1140.92) = 0.05 0.8193
condition × contrast F(2, 1140.92) = 1.50 0.2251
condition × ambient luminance F(2, 1140.92) = 1.27 0.2801
contrast × ambient luminance F(1, 1140.92) = 2.66 0.1034
group × condition × contrast F(2, 1140.92) = 0.14 0.8662
group × condition × ambient luminance F(2, 1140.92) = 3.85 0.0215 *
group × contrast × ambient luminance F(1, 1140.92) = 0.00 0.9770
condition × contrast × ambient luminance F(2, 1140.92) = 0.94 0.3917
group × condition × contrast × ambient luminance F(2, 1140.92) = 0.19 0.8252

1 n = 1188, R2
adj. = 0.7462. 2 Alpha level = 0.05; asterisks indicate the level of significance: * p < 0.05, ** p < 0.01,

*** p < 0.001.

Figure 3 illustrates the least-squares means of visual acuity as a function of both group
and condition. The post hoc Dunnett’s C test revealed statistically significant reductions in
visual acuity within the control group, exhibiting −0.32 logMAR and −0.21 logMAR for the
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pilocarpine condition in comparison to the naked eye condition and the pinhole condition,
respectively. In contrast, within the presbyopia group, no statistically significant differences
were observed between the pinhole and the pilocarpine condition when compared to the
naked eye condition. Table 5 lists the differences across all combinations resulting from the
interaction between group and condition.
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Table 5. Results of the Dunnett’s C post hoc test comparing least-squares means differences of the
interaction between group and condition.

Comparison VA LS Means ± SE
(logMAR)

Diff. [95% CI] 1

(logMAR)

control, naked eye control, pinhole −0.30 ± 0.03 −0.21 ± 0.03 −0.08 [−0.21, 0.04]
control, pilocarpine 0.02 ± 0.04 −0.32 [−0.46, −0.18] *
presbyopia, naked eye −0.20 ± 0.03 −0.10 [−0.22, 0.03]
presbyopia, pinhole −0.12 ± 0.03 −0.17 [−0.30, −0.04] *
presbyopia, pilocarpine −0.15 ± 0.03 −0.15 [−0.27, −0.02] *

control, pinhole control, pilocarpine −0.21 ± 0.03 0.02 ± 0.04 −0.24 [−0.38, −0.10] *
presbyopia, naked eye −0.20 ± 0.03 −0.01 [−0.14, 0.11]
presbyopia, pinhole −0.12 ± 0.03 −0.09 [−0.21, 0.04]
presbyopia, pilocarpine −0.15 ± 0.03 −0.06 [−0.19, 0.06]

control, pilocarpine presbyopia, naked eye 0.02 ± 0.04 −0.20 ± 0.03 0.22 [0.08, 0.36] *
presbyopia, pinhole −0.12 ± 0.03 0.15 [0.01, 0.29] *
presbyopia, pilocarpine −0.15 ± 0.03 0.17 [0.03, 0.32] *

presbyopia, naked eye presbyopia, pinhole −0.20 ± 0.03 −0.12 ± 0.03 −0.07 [−0.20, 0.05]
presbyopia, pilocarpine −0.15 ± 0.03 −0.05 [−0.18, 0.08]

presbyopia, pinhole presbyopia, pilocarpine −0.12 ± 0.03 −0.15 ± 0.03 0.02 [−0.10, 0.15]
1 The asterisk (*) denotes a statistically significant difference as determined by the Dunnett’s C test (i.e., the 95%
confidence interval does not encompass 0).

Figure 4 illustrates the effects of the pinhole occluder and pilocarpine eye drops,
respectively, on visual acuity in emmetropes and presbyopes at different levels of contrast
and ambient luminance in comparison to the naked eye condition as predicted from the
linear mixed-effects model.
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4. Discussion

The encouraging increases in life expectancy seen in many parts of the world in recent
decades have led to a growing proportion of elderly individuals. Unfortunately, this has
been accompanied by an increase in the prevalence of presbyopia, in which the eye lens
loses its flexibility as part of the natural aging process, resulting in a loss of the eye’s ability
to accommodate nearby objects [1]. Since no method has yet been found to reduce this
inexorable process, presbyopes need some sort of correction to see objects at close distances
clearly [10]. Untreated visual impairment caused by presbyopia reduces the quality of life
by affecting social interactions, hobbies, and daily activities: while near vision is essential
for activities such as reading or using a smartphone, intermediate vision is required for
computer work, cooking, and social interactions [72–76].

In addition to the first-described uses of glass lenses to correct presbyopia in the late
13th century [77], the utilization of the pinhole effect to enhance the depth of field in vision
has been recognized for many centuries [29,78] and is recommended as a treatment for a
wide variety of refractive disorders up to today [78–80]. However, by the 1970s, stenopeic
glasses were considered obsolete and became less popular, most likely due to issues related
to reduced light and peripheral vision as well as aesthetic reasons [29]. Interestingly, the
concept of pinholes has been revived with the development of several non-surgical and
surgical procedures intending to create artificial pupils using contact lenses [23,29–31],
corneal inlays [32,33], or intra-ocular lenses [34]. Nevertheless, none of the available
approaches could match the effectiveness of physiological accommodation in providing
high-contrast, sharp images at different distances [15,16] and suffer from limitations such as
problems with night vision, double vision, difficulties with contrast sensitivity, halos, glare,
ghost images, or corneal scaring [42,81,82]. Chang et al. classify the currently available
options for presbyopia treatment in view of expanding functional through focus, a term
they coined to describe the ability to see at all distances with minimal latency [83].

Rather than artificially creating the pinhole effect, miotics have recently regained
attention as a potential treatment option for presbyopia. Pupillary miosis can be achieved by
stimulating the iris sphincter muscle or inhibiting the dilator. The most potent miotic agents
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are parasympathomimetic drugs activating the parasympathetic pathway [43,44], with
pilocarpine as the most widely used agent. Pilocarpine is used routinely in ophthalmology,
especially in glaucoma therapy [47]. It is a cholinergic muscarinic receptor agonist that acts
by binding and activating the M3 muscarinic receptors on the iris sphincter [45], resulting
in pupil constriction. While originally described almost half-a-century ago [23], the use of
miotic drugs as treatment for presbyopia has drawn some attention in recent years [41,42],
and in 2021, the U.S. Food and Drug Administration approved VuityTM (Allergan/AbbVie),
a 1.25% pilocarpine hydrochloride (HCl) solution, as the first commercially available eye
drops for treating presbyopia. The pharmacological approach uses the eye’s iris to create a
small aperture that blocks aberrant rays from reaching the retina, and ultimately increases
the depth of field and the clarity of retinal images [84]. The opening is in the plane of
the pupil, which avoids excessive restriction of the field of view [29]. The quality is
sufficient for many users for simple close-up work that does not require particularly clear
vision [48]. However, after application, the amount of light entering the eye is reduced due
to the narrow pupil, causing impaired twilight vision. In addition, pilocarpine can lead
to contraction of the ciliary muscle, which may on the one hand improve accommodation
and in turn near vision, but on the other hand can impact visual acuity [85]. In rare cases,
pilocarpine could result in an accommodative spasm [46]. Nevertheless, safety studies
have shown that pilocarpine in concentrations up to 1.5% has an acceptable safety and
tolerability profile [49].

Varying contrasts and ambient luminance conditions affect visual acuity within a
natural scene [28,86]. Typically, a combination of aberration and diffraction, both varying
with the pupil diameter, define the retinal image quality and hence visual acuity. Under
natural conditions, the eye compensates for the effects of diffraction and aberration by
adjusting pupil diameter [50,87–89], a mechanism that is absent in pharmacologically
induced miosis.

To quantify the effect of miosis on visual acuity at different levels of contrast and
ambient luminance, a pinhole effect was induced artificially and pharmacologically us-
ing pinhole glasses and 1% pilocarpine eye drops (Pilomann, Bausch + Lomb, Laval,
Canada), respectively.

The subjects’ pupil diameter showed a statistically significant reduction of 1.0 mm
(95% confidence interval: [1.1, 0.8] mm) on average after pilocarpine eye drop installation
(Figure 2b, Table 3), which corresponds to the reduction reported by Waring et al. [48]
and Price et al. [49]. The baseline pupil diameter of 3.3 mm is consistent with previously
published values [90]. Neither the refractive group nor its interaction with the time point
had a statistically significant effect on pupil diameter (Table 2), although a decrease with age
is usually observed [90–92]. However, at intermediate luminance, the difference between
age groups is small [90]. It should be noted that the residuals of the pupil diameter
model exhibited heteroscedasticity, resulting in an underestimation of the variance, biased
confidence intervals, and smaller p-values. However, linear mixed-effects models are
known to be robust to violations of distributional assumptions [93].

Interestingly, the amplitude of accommodation in the emmetropic group follows Du-
ane’s curve distribution, while in the presbyopic group, it is, by an average of 3.7 D, better
than expected (between 1 and 1.5 D, Figure 1) [1]. After the administration of pilocarpine,
the mean improvement in maximum near point distance was 1.6 cm (95% confidence
interval: [0.3, 3.0] cm), equivalent to approximately 0.39 D, as shown in Table 3. This
improvement was observed independently of the refractive group, as indicated by Table 2
and Figure 2a. The improvement in near point distance following pilocarpine-induced
miosis was relatively slight, particularly considering that the increased depth of focus
(DoF) should alleviate blurriness, which is utilized in determining the amplitude of ac-
commodation [94]. The pupil diameter was probably too large to create a noteworthy
boost in the depth of field. According to research by Charman and Whitefoot, the effects
are negligible unless the pupil diameter is less than 2 mm. The DoF is highly variable
between individuals [95] and depends on viewing conditions such as object luminance [96].
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Furthermore, prolonged refractive history may cause blur adaptation [97], which may
partly contribute to the improvement in near visual acuity in reading letters, as found
by Waring et al. [48]. For an in-depth review regarding DoF and the measurement of the
amplitude of accommodation, refer to Burns et al. [94]. For a review of the possible sources
of errors in the measurement of the amplitude of accommodation, see Burns et al. [98].

In accordance with previous research [56,99,100], a linear mixed-effects model re-
vealed the statistically significant effects of ambient luminance and contrast on visual
acuity. Interestingly, the refractive state (group: emmetrope, presbyope) was found to
have no statistically significant effect alone but its interaction with the condition (naked
eye, pinhole, pilocarpine) yielded statistically significant results (Table 4). A post hoc
Dunnett’s C test (Table 5), conducted to investigate the source of this effect in the presence
of heteroscedasticity, revealed that it occurred mainly from differences in visual acuity
between the comparisons of interactions involving the emmetropic control and the pres-
byopic group. Notably, no statistically significant changes in visual acuity were observed
between the naked eye condition and either the pilocarpine or the pinhole condition in the
presbyopic group. A higher concentration of pilocarpine might result in a larger difference;
however, several studies have shown that concentrations of 1.0% and 1.5% pilocarpine
provoke a similar mean gain in a mesopic, high-contrast UNVA letter test of 5 letters [49,53].
Conversely, within the emmetropic group, the use of pilocarpine appears to result in a
statistically significant deterioration in visual acuity of 0.32 logMAR compared to the naked
eye condition. However, this difference is most likely due to an accommodative spasm
experienced by a single young emmetropic subject following the administration of the
pilocarpine eye drops, a known side effect of pilocarpine [101], resulting in transitory
myopia [102]. This adverse reaction makes the drug almost unusable in the younger age
group [101,103].

5. Conclusions

Pharmacologically induced miosis, specifically through the use of pilocarpine eye
drops, has demonstrated minimal impact on visual acuity, even under conditions of low
contrast and reduced luminance. This suggests that pharmacological interventions utiliz-
ing pilocarpine to enhance near vision could represent a viable alternative for individuals
averse to wearing glasses, offering a convenient and inconspicuous option. While patient
preferences may vary, a less conspicuous therapeutic approach, devoid of visible indicators
of age-related visual decline, presents optometrists with an alternative tool in the manage-
ment of presbyopia. However, it is imperative to acknowledge that the long-term effects
of daily application of low-dose pilocarpine eye drops warrant further investigation [104].
The results of this study raise the interesting question of whether the improvement in visual
acuity achieved through the induction of the pinhole effect by miosis could be realized
by simpler, non-pharmacological means, such as adequate bright lighting and the use of
high-contrast black text on white paper instead.
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