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Abstract: Artificial intelligence (AI)- and deep learning (DL)-based systems have shown significant
progress in the field of macular disorders, demonstrating high performance in detecting retinal fluid
and assessing anatomical changes during disease progression. This study aimed to validate an AI
algorithm for identifying and quantifying prognostic factors in visual recovery after macular hole
(MH) surgery by analyzing major optical coherence tomography (OCT) biomarkers. This study
included 20 patients who underwent vitrectomy for a full-thickness macular hole (FTMH). The mean
diameter of the FTMH was measured at 285.36 ± 97.4 µm. The preoperative best-corrected visual
acuity (BCVA) was 0.76 ± 0.06 logMAR, improving to 0.38 ± 0.16 postoperatively, with a statistically
significant difference (p = 0.001). AI software was utilized to assess biomarkers, such as intraretinal
fluid (IRF) and subretinal fluid (SRF) volume, external limiting membrane (ELM) and ellipsoid
zone (EZ) integrity, and retinal hyperreflective foci (HRF). The AI analysis showed a significant
decrease in IRF volume, from 0.08 ± 0.12 mm3 preoperatively to 0.01 ± 0.01 mm3 postoperatively.
ELM interruption improved from 79% ± 18% to 34% ± 37% after surgery (p = 0.006), whereas EZ
interruption improved from 80% ± 22% to 40% ± 36% (p = 0.007) postoperatively. Additionally, the
study revealed a negative correlation between preoperative IRF volume and postoperative BCVA
recovery, suggesting that greater preoperative fluid volumes may hinder visual improvement. The
integrity of the ELM and EZ was found to be essential for postoperative visual acuity improvement,
with their disruption negatively impacting visual recovery. The study highlights the potential of AI
in quantifying OCT biomarkers for managing MHs and improving patient care.

Keywords: FTMH; artificial intelligence; OCT; IRF; SRF; EZ; ELM; HRF

1. Introduction

A macular hole (MH) is a full-thickness defect that occurs in the fovea. Since its initial
description by Herman Knapp in 1869, various theories have been proposed to explain
its development [1,2]. The pathogenesis of MH arises from the persistence of the vitreous
cortex in the macular region following its separation. Vitreoretinal interface force is a
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significant factor in MH progression. Dynamic forces exerted by the vitreous fluid focus on
the macular layers, leading to swelling in the middle and outer macular region, along with
elevation and retraction of the inner retinal layers [3]. According to the cystic degeneration
theory, intraretinal cystic changes occur and eventually merge, leading to the formation
of a full-thickness MH [4]. The main objective of surgery for an idiopathic full-thickness
macular hole (FTMH) is closing the MH and improving vision [5].

In recent years, significant advancements in surgical techniques have resulted in excel-
lent outcomes in terms of hole closure [6]. Currently, a standard approach for vitreoretinal
surgeons involves performing vitrectomy combined with internal limiting membrane (ILM)
peeling and gas tamponade. The decision to proceed with surgery is often based on the
patient’s reduced visual acuity or the severity of metamorphopsia reported [2].

The International Vitreomacular Traction Study (IVTS) Group has proposed OCT-
based anatomical definitions and classifications for closely related vitreomacular diseases,
encompassing not only FTMHs but also vitreomacular adhesion and vitreomacular traction [7].

In recent years, telemedicine and artificial intelligence (AI), especially deep learning
(DL)-based systems, have made significant progress, offering promising opportunities
for developing efficient tools to quantify key parameters in macular disorders [8–10].
Different AI-based algorithms show high performance in detecting retinal fluid [11,12] and
assessing anatomical changes throughout disease progression [13]. Furthermore, AI has
demonstrated its capability, particularly in eyes with age-related macular degeneration
(AMD), to detect the presence of intraretinal fluid (IRF) and subretinal fluid (SRF) and to
provide quantitative data in real-world scenarios [14].

The current study aimed to investigate the applicability of a validated AI algorithm for
identifying and quantifying different retinal biomarkers in MHs before and after surgery.
This study’s findings demonstrate that AI software serves as a dependable and consistent
tool in the identification and quantification of various OCT biomarkers in eyes affected by
MHs. These biomarkers are presently acknowledged as prognostic indicators, exerting an
impact on the outcomes of treatment.

2. Materials and Methods
2.1. Study Design and Dataset

This retrospective study evaluated patients affected by FTMH who were surgically
treated between January 2022 and June 2022 at the Eye Clinic of the University of Ancona.
All the patients underwent 25-G pars plana vitrectomy with ERM/ILM peeling and gas
tamponade. Blue vital dye (Twin Blue, Alchimia srl, Padova, Italy) was used for staining
the ERM/ILM and the peeling was performed over an area extending up to both temporal
arcades [15]. Octafluoropropane (C3F8) was employed for gas tamponade.

The exclusion criteria were as follows: MH sizes below 150 µm or above 400 µm; the
affected eye having a refractive error exceeding 5 diopters; phakic patients; amblyopia,
AMD, diabetic retinopathy or retinal vascular occlusion; previous intraocular surgery,
excluding uncomplicated cataract surgery. A total of twenty (20) eyes from 20 patients
(9 females, 45%) were included in this study.

Best-Corrected Visual Acuity (BCVA), measured as the Logarithm of the Minimum
Angle of Resolution (LogMAR), was recorded at baseline and 6 months after surgery
for every patient, together with a Spectral Domain Optical Coherence Tomography (SD-
OCT) exam in the same timelapse. All the SD-OCT scan images were obtained using the
Spectralis HRA + OCT2 platform (Heidelberg Engineering, Heidelberg, Germany). For
each eye studied, a volume scan of 20 × 20◦ (approximately 6 × 6 mm) with 49 horizontal
B-scans (with an automated real-time value set at 25 frames per scan) and a high-resolution
horizontal B-scan (30◦ in length with an automated real-time value set at 100 frames) were
analyzed by the AI algorithm at baseline and 6 months postoperatively. The minimum hole
width was measured at the narrowest point of the hole in the mid-retina using the inbuilt
caliper function. The measurements were performed on high-resolution horizontal scans
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passing through the center of the foveal depression, as a line drawn roughly parallel to the
Retinal Pigment Epithelium (RPE) [6,7].

This study was conducted in accordance with the principles of the Declaration of
Helsinki and written informed consent was obtained from all patients prior to study enrollment.

2.2. AI Algorithm Description and Analysis

In our research, we used the medical device “Ophthal” as AI (Ophthal software,
Version 1.0, Mr. Doc srl, Rome, Italy, 2023). As previously described, our AI algorithm was
based on adversarial generative networks, a deep learning technique [8–10]. It leverages
a combination of labeled data (manually defined by clinicians) and a large volume of
unlabeled data to create a fully labeled dataset, thereby propagating labels throughout the
database. This approach falls under the category of semi-supervised learning AI, capable
of self-training on pre-labeled datasets and predicting potential variations or noises that
characterize these datasets, enabling effective diagnoses in real-world scenarios [16,17].
The AI software allows the user to: upload images exported from OCT software (Heyex
Software Version 6.7., Heidelberg Engineering, Heidelberg, Germany). into appropriate
folders; organize images by type (single scan or volumetric), execution date, examination
name, physician, patient, and sequentially (follow-up); and process images by extracting
significant data, both numerical (synthetic) and graphical (maps), related to both individual
examinations and the differences observed between successive examinations.

The AI algorithm allows for the simultaneous evaluation of several OCT biomarkers,
as illustrated in Figures 1 and 2.
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volumes. The percentage of IRF volume within specific regions was analyzed, such as the 
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Figure 1. Summary of the distinct biomarkers assessed using Spectral Domain Optical Coherence
Tomography (SD-OCT): intraretinal fluid (red); hyperreflective retinal foci (yellow dots) localized
within the central 3 mm (yellow lines); interruption of the external limiting membrane (light blue) and
ellipsoid zone (teal); the external limiting membrane (orange) and ellipsoid zone (yellow) localized
within the central 1 mm (green lines).



J. Clin. Med. 2024, 13, 628 4 of 13

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 1. Summary of the distinct biomarkers assessed using Spectral Domain Optical Coherence 

Tomography (SD-OCT): intraretinal fluid (red); hyperreflective retinal foci (yellow dots) localized 

within the central 3 mm (yellow lines); interruption of the external limiting membrane (light blue) 

and ellipsoid zone (teal); the external limiting membrane (orange) and ellipsoid zone (yellow) local-

ized within the central 1 mm (green lines). 

 

Figure 2. Summary of another case. The baseline OCT (A) and the postoperative OCT (B) are shown. 

The AI assessments of the biomarkers were overlaid (C): HRF (yellow dots) localized within the 

central 3 mm (yellow lines); ELM (orange) and EZ (yellow) localized within the central 1 mm (green 

lines); SRF (blue). 

For each eye studied, the AI automatic software was employed to segment all the 

OCT scans. The collected data from the entire volumetric scan included the IRF and SRF 

volumes. The percentage of IRF volume within specific regions was analyzed, such as the 

central 1 mm circle (IRF-1), the ring between 1 and 3 mm (IRF-3), and the region between 

3 and 6 mm (IRF-6). The eventual presence of SRF was recorded and quantified in the 

postoperative scans. Additionally, the AI algorithm assessed the percentage of external 

limiting membrane (ELM) and ellipsoid zone (EZ) interruption within the central 1 mm 

of the B-scan passing through the fovea. Moreover, the number of hyperreflective foci 

Figure 2. Summary of another case. The baseline OCT (A) and the postoperative OCT (B) are shown.
The AI assessments of the biomarkers were overlaid (C): HRF (yellow dots) localized within the
central 3 mm (yellow lines); ELM (orange) and EZ (yellow) localized within the central 1 mm (green
lines); SRF (blue).

For each eye studied, the AI automatic software was employed to segment all the
OCT scans. The collected data from the entire volumetric scan included the IRF and SRF
volumes. The percentage of IRF volume within specific regions was analyzed, such as the
central 1 mm circle (IRF-1), the ring between 1 and 3 mm (IRF-3), and the region between
3 and 6 mm (IRF-6). The eventual presence of SRF was recorded and quantified in the
postoperative scans. Additionally, the AI algorithm assessed the percentage of external
limiting membrane (ELM) and ellipsoid zone (EZ) interruption within the central 1 mm of
the B-scan passing through the fovea. Moreover, the number of hyperreflective foci (HRF)
within the central 3 mm, as previously described, was computed in the high-resolution
horizontal B-scan [18].

2.3. Retinal Biomarker Evaluation

The AI software included pre-trained convolutional artificial neural networks to
perform the necessary functions of segmenting the OCT images of the retina. Thanks to
segmentation, it was possible to identify intraretinal and subretinal fluid, hard exudates,
hyperreflective foci, and different retinal layers. The segmentation conducted by the neural
networks started from the intensity values of the input image pixels. These values were
utilized by the first layer of the network, and the output was passed as input to the next
layer, continuing until the final layer of the network. The last layer assigned to each pixel
one and only one membership class among those the specific network had been trained to
segment. Thus, the predictions of the membership class for each pixel formed the basis for
calculating the numerical values associated with segmentations and for creating output
images (masks), where pixels of different classes were colored with different colors for
identification purposes.



J. Clin. Med. 2024, 13, 628 5 of 13

The AI-based evaluation assessed the presence of IRF, SRF, ELM/EZ interruption, and
the number of HRFs. All these factors were computed both at baseline (preoperatively)
and 6 months after surgery (postoperatively). For both volumetric and linear scans, we
evaluated a number of quality parameters, namely the accuracy of automated fovea center-
ing and of the segmentation of retinal layers (Figure 3). In case of potential errors in the
segmentation strategies, manual correction was allowed by the AI algorithm.
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2.4. Statistical Analysis

The statistical analysis was performed using IBM SPSS V. 25.0.0 software. The follow-
ing parameters were considered for statistical purposes: IRF, SRF, HRF, and the percentage
of ELM and EZ interruption. Moreover, differences in terms of the best-corrected visual
acuity (BCVA), both at baseline and 6 months after surgery, were also computed.

The quantitative data were analyzed using mean and standard deviation. The sta-
tistical tests used included the Wilcoxon non-parametric test for repeated measures and
Spearman’s Rank-Order Correlation. The statistical significance level was 0.05 for all the
endpoints included.

3. Results

Twenty (20) eyes from 20 patients (9 females, 45%) were included in this study. The
mean age was 63.3 ± 13.24 years. The mean diameter of the FTMHs, measured at the
narrowest point, was 285.36 ± 97.4 µm. The demographic data are summarized in Table 1.

Table 1. Demographic data. Data referring to years and FTMH diameter are presented as mean ± standard
deviation (SD).

Eyes (n) 20

Age (years) 63.3 ± 13.24

Female/Male n(%) 9 (45%)/11 (55%)

Right Eye/Left Eye n (%) 10 (50%)/10 (50%)

Mean FTMH Size/Diameter (µm) 285.36 ± 97.4

The mean BCVA measured in LogMAR was 0.76 ± 0.16 and the median value was
0.7 (Q1 0.7-Q3 0.82) preoperatively. Postoperatively, the BCVA measured in LogMAR was
0.38 ± 0.16 and the median value was 0.38 (0.29–0.52). The difference between the preop-
erative and postoperative BCVA evaluations was statistically significant (p-value = 0.001).
Thus, visual recovery was calculated as the difference between preoperative and postoper-
ative BCVA. The mean value was 0.37 ± 0.16 and the median value was 0.36 (0.29–0.44).

The mean IRF volume, assessed using AI software, was 0.58 ± 0.63 mm3 preoperatively,
with a median of 0.35 (0.18–0.60). Postoperatively, the mean IRF volume, assessed using
AI software was 0.01 ± 0.01 mm3, with a median of 0.01 (0.01–0.02), with a statistically
significant difference (p = 0.0001).

The SRF evaluation was not applicable preoperatively, as there was no detection of
this item. Conversely, the mean volume of postoperative SRF identified by the AI software
was 0.01 ± 0.01 mm3 (median 0.01 (0–0.01)).

The mean percentage of ELM interruption, detected by the AI software, was 79% ± 18%
preoperatively (median value of 82% (69–94)), and 34% ± 37% postoperatively (me-
dian of 12% (0–70%)), demonstrating a statistically significant improvement after surgery
(p = 0.006).

Similarly, the mean percentage of EZ interruption, determined by the AI software,
was 80% ± 22% (median of 77% (60–99)) preoperatively and 40% ± 36% (median of 46%
(17–94)) postoperatively, with a statistically significant difference between the two values
(p = 0.007).

There was no statistically significant difference (p > 0.05) in the number of hyperreflec-
tive foci (HRF) between the preoperative (mean of 60.86 ± 21.02; median of 66.5 (49–77.3))
and postoperative (mean of 70.79 ± 33.34; median of 71 (44–84.5)) assessments. The data
are summarized in Table 2 and Figure 4.
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Table 2. Preoperative and postoperative data evaluated in this study. (N/A: not applicable).

Preoperative Postoperative
p-Value

Mean SD Median
(Q1–Q3) Mean SD Median

(Q1–Q3)

BCVA (logMAR) 0.76 0.16 0.7
(0.7–0.82) 0.38 0.16 0.38

(0.29–0.52) 0.001

Visual Recovery (logMAR) / / / 0.37 0.16 0.36
(0.29–0.44) N/A

IRF Volume (mm3) 0.58 0.63 0.35
(0.18–0.60) 0.01 0.01 0.01

(0.01–0.02) 0.0001

SRF Volume (mm3) / / / 0.01 0.01 0.01
(0–0.01) N/A

ELM Interruption (%) 79 18 82
(69–94) 34 37 12

(0–70) 0.0006

EZ Interruption (%) 80 22 77
(60–99) 40 36 46

(17–94) 0.0007

HRF [3 mm] 60.86 21.02 66.5
(49–77.3) 60.79 33.34 71

(44–84.5) 0.9999
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Figure 4. Histograms representing BCVA, IRF, and ELM and EZ interruption values in preoperative
and postoperative phases.

The correlation analysis was performed using Spearman’s Rank-Order Correlation test.
A negative correlation (Spearman’s Correlation Index, R = −0.50) was found between

the preoperative IRF and the recovery of BCVA after surgery, with a statistically significant
value (p = 0.026).

Both the preoperative percentage of ELM interruption and the percentage of EZ
interruption exhibited negative correlations (R = −0.50 and R = −0.53, respectively) with the
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recovery of BCVA after surgery. These correlations were statistically significant (p = 0.026
and p = 0.017, respectively).

A non-statistically significant correlation was found between the postoperative SRF
and BCVA recovery (R = 0.05; p = 0.836).

The correlation analysis data are summarized in Table 3, and the values of the variables
are depicted in scatter plots in Figure 5.

Table 3. Correlation analysis data.

Parameters Correlated R p

Preop IRF–Visual Recovery −0.50 0.026

% ELM Interruption–Visual Recovery −0.50 0.026

% EZ Interruption–Visual Recovery −0.53 0.017

Postop SRF–Visual Recovery 0.05 0.836
J. Clin. Med. 2024, 13, x FOR PEER REVIEW 9 of 14 
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Figure 5. Scatter plots representing the values of the variables previously analyzed in the correlation
analysis. The dashed line represents the trend line for the two parameters.

Moreover, a multivariate analysis was conducted, including IRF, SRF, HRF, EZ and
ELM interruption, and BCVA. The model was neither statistically significant nor predictive
of visual acuity improvement; therefore, it was not presented in the results.

4. Discussion

The available literature indicates that AI has the potential to achieve excellent per-
formance in identifying retinal fluid and evaluating anatomical changes during the pro-
gression of disease. Furthermore, in eyes affected by AMD, AI has proven its ability to
detect the presence of IRF and SRF, both qualitatively and quantitatively, in real-world
scenarios [14]. The confirmation and practical use of an AI algorithm for recognizing and
measuring the predominant OCT biomarkers in diabetic macular edema (DME) have been
documented [17].
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The parameters that were evaluated in previous studies, after conducting a literature
review using Pubmed and Google Scholar with the key words “MH, AI and OCT”, did not
include IRF, SRF, ELM and EZ interruption, and HRF. Instead, they considered BCVA and
hole dimensions to create a predictive model for postoperative anatomical and functional
outcomes [19–23].

In our study, the MH width ranged from 150 to 400 µm, as per the IVTS Group
classification on structural OCT [7]. All the MHs were successfully closed after surgery,
with no cases of relapse. No perioperative or postoperative adverse events were reported.

As Morawski et al. stated, postoperative BCVA substantially improved in patients
who showed restoration of the EZ line on OCT. Conversely, visual outcomes were poorer
in cases where the EZ line was not restored [24]. Moreover, Landa et al. emphasized the
importance of ELM integrity for recovery of the EZ. In their study, they highlighted that the
integrity of the ELM was crucial for the restoration of the EZ line, which was considered a
vital factor in achieving good postoperative visual acuity [25,26].

At the edges of the MH, the photoreceptors and other neuronal components undergo
atrophic changes. This can trigger the migration of glial cells towards the developing MH,
which ultimately influences the success of hole resolution after surgery. Several clinico-
pathological studies on repaired MHs have indicated that the movement of photoreceptors
away from the central fovea, the restoration of foveal depression, and the closure of the
hole following surgery are dependent on the proliferation of Müller cells, a type of glial
cell [27,28]. Disarrangement in the proliferation and migration of glial cells, which are
essential for closing the foveal defect, can delay the reestablishment of a continuous ELM.
Consequently, this may lead to unsuccessful closure of the MH. Moreover, if Müller cells
are unable to properly guide the repositioning of photoreceptors to the central fovea, the
growth of normal inner and outer segments may be hindered [27,28].

Our study confirmed what previous studies have shown: the integrity of outer retinal
structures, especially the EZ line, is related to better visual recovery, establishing itself as a
positive predictive factor for a good postoperative outcome. Moreover, the integrity of ELM
showed similar results, highlighting its central role in postoperative BCVA improvement.

In our study, for the first time, we were able to analyze EZ and ELM much more
precisely, efficiently, and with an automated approach through AI software. This allowed
us to calculate improvements in the EZ and ELM interruption percentage with extreme pre-
cision by comparing the integrity of these retinal layers preoperatively and postoperatively.
Currently, in clinical practice, the calculation of EZ and ELM disruption is manually per-
formed, and is therefore a time-consuming process. In contrast, the AI software simplified
all calculation processes, while ensuring absolute precision and reliability.

According to previous studies, we confirmed, with an AI-based approach, the correla-
tion between central ELM and EZ integrity and BCVA outcomes after surgery [17].

The term “hyperreflective foci (HRF)” was introduced to characterize hyperreflec-
tive lesions with a focal or dotted appearance, observed at various retinal layers using
OCT imaging. Nonetheless, the exact pathological connection of HRF remains unclear,
encompassing possibilities such as lipid leakage, the migration of RPE cells, the presence of
macrophages/microglia, and degenerated photoreceptor cells [29].

The identification of HRF has revealed prognostic and clinical implications across mul-
tiple retinal disorders. Furthermore, understanding and defining these foci has enhanced
the identification of a predominant inflammatory pathway due to glial cell activation. One
of the main limitations of their use as a biomarker is the need for an automated approach
to precisely quantify their numerosity [30].

In our study, artificial intelligence enabled us to accurately detect and quantify HRFs
automatically. However, no statistically significant differences were observed between
the preoperative and postoperative stages. Therefore, we speculate that the inflammatory
pathway may not play a crucial role in the surgical outcomes of patients with FTMH. The
predominantly mechanical nature of the disease associated with a minimally invasive
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PPV approach might be responsible for limited intraretinal glial activation or predominant
migration toward the vitreoretinal surface.

For the first time in MHs, our AI algorithm has rigorously quantified the IRF in both
preoperative and postoperative stages, demonstrating a significant reduction after surgery.
Moreover, a higher amount of preoperative IRF showed a statistically significant negative
correlation with the postoperative recovery of visual acuity. Various studies have explored
the relationship between the presence of cystoid cavities and postoperative visual results,
showing contradicting findings. On one side, it has been shown that the presence of IRF
could be a positive prognostic factor after surgery. Brockmann et al. identified a connection
between the presence of parafoveal cysts and a higher closure rate, although their analysis
evaluated cysts only in a qualitative manner [31]. Chhablani et al. associated the presence
of cystic edges with positive anatomical outcomes and improved final VA [32]. Although
in the studies conducted by Goto et al. and Sugiura et al., cystoid cavities showed no
significant correlation with postoperative BCVA, they exhibited negative correlations with
preoperative BCVA and the extent of postoperative metamorphopsia [33,34]. On the other
side, many studies linked IRF to a worse postoperative outcome. Joo et al. stated that cystic
change is considered to be an indicator of functional retinal tissue. The improvement in
visual acuity after surgery is attributed to the reduction of retinal cystic fluid, as significant
functional retinal tissue remains intact [35]. Ozturk et al. conducted an analysis of cyst and
MH dimensions, revealing a moderate negative correlation with postoperative BCVA [36].
Similarly, Nair et al. observed that the sizes of parafoveal intraretinal pseudocysts were
linked to a lower closure rate and diminished postoperative BCVA [37]. Ruiz-Moreno
et al. showed that individuals with cystic retinal changes had lower mean preoperative
and postoperative VAs compared to those without such changes [38]. Our results are
similar to the latter ones, showing that a major amount of preoperative IRF is related to
less consistent visual recovery. The pathophysiology is still controversial, but AI could
open the path for future studies on a larger number of patients in order to find precise
correlations between the amount of fluid and visual function. The negative correlations
between IRF, EZ interruption, and ELM interruption and visual recovery, together with
the concomitant lack of significance in the difference of HRF between preoperative and
postoperative phases, could underline the mechanical nature of visual impairment caused
by MHs rather than an inflammatory pathway.

Furthermore, the AI software allowed us to identify the presence of SRF. Obviously,
the SRF parameter was not applicable to MHs in the preoperative stage. However, in
the postoperative stage, a minimal volume of SRF was identified, which did not show a
statistically significant correlation with visual recovery.

Although the exact nature of SRF remains unclear, Shimozono et al. have suggested
that the mere existence of SRF appears to be a regular aspect, or at least not a detrimental
aspect, of the reparative mechanism in macular holes (MHs). Given that the presence of
SRF could impact the thickness of the photoreceptor outer segment, a lower SRF height
combined with an increased outer foveal thickness may be considered advantageous.
Nevertheless, the recovery of photoreceptor outer segments can contribute to positive
visual function outcomes, even in the presence of persistent SRF [39]. When the SRF
volume was noticeably shallow, it was not easily discerned from the cone outer segment
tips (COST) line by the AI software. The COST line is a highly reflective line detected
between the EZ and the bright retinal pigment epithelium line [40]. Moreover, Govetto et al.
recently investigated another specific biomarker located at this level, known as supra-RPE
granular deposits, which add complexity to the morphological features of these layers [41].

The multivariate analysis performed, considering all the variables in this study (IRF,
SRF, HRF, EZ interruption, and ELM interruption), did not find a model capable of predict-
ing visual recovery after surgery. Indeed, the small number of patients included may have
limited the results of this analysis. Since these are preliminary data in a pivotal trial, more
comprehensive studies are needed to delve into these issues further.
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In this study, the role of AI software was crucial for facilitating the quantification of
IRF, SRF, HRF, and the percentage of ELM and EZ interruption. Nonetheless, the union
of MH surgery and AI presents a remarkable opportunity to enhance patient care and
optimize surgical outcomes.

The limitations of the current study include its retrospective nature, small simple size,
and lack of long-term follow-up. This study highlights the potential of AI in quantifying
OCT biomarkers for MH management and calls for further studies to explore its broader
applicability in real-world settings.

5. Conclusions

The results of this study demonstrate that AI software is a reliable and consistent
tool for identifying and quantifying different OCT biomarkers in eyes with MHs. These
biomarkers are currently recognized as prognostic indicators, influencing treatment out-
comes. AI software has the potential to simplify the quantification of these biomarkers in
routine clinical practice in a more time-efficient manner. This study revealed a negative
correlation between preoperative IRF and postoperative BCVA recovery, suggesting that
greater preoperative fluid volumes may hinder visual recovery. The integrity of the ELM
and EZ was found to be crucial for improving postoperative visual acuity, with their dis-
ruption negatively affecting visual outcomes. The concomitant non-statistical significance
of HRF suggests the mechanical genesis of visual impairment rather than an inflammatory
one. However, additional studies are required to implement this AI software in larger real-
world settings, allowing for the evaluation of changes over time and clinical correlations
between these changes and the progression of the disease.
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