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Abstract: Background: This study evaluates the impact of hybrid dynamic stabilization using the
Dynesys-Transition-Optima (DTO) system on adjacent segment disease (ASD) in lumbar spinal
stenosis patients with spondylolisthesis. Methods: From 2012 to 2020, 115 patients underwent
DTO stabilization at a single center by a single neurosurgeon. After exclusions for lack of specific
stabilization and incomplete data, 31 patients were analyzed. Follow-up was conducted at 6, 12, and
24 months postoperatively, assessing disc height, listhesis distance, and angular motion changes
at L2–L3, L3–L4, and L5–S1. Results: L3–L4 segment (the index level), demonstrated a delayed
increase in listhesis distance, contrasting with earlier changes in other segments. At two years, L3–L4
exhibited less increase in listhesis distance and less disc height reduction compared to L2–L3 and
L5–S1. Notably, the L3–L4 segment showed a significant reduction in angular motion change over two
years. Conclusions: In conclusion, while ASD was not significantly prevented, the study indicates
minor and delayed degeneration at the index level. The L3–L4 segment experienced reduced angular
change in motion, suggesting a potential benefit of DTO in stabilizing this specific segment.

Keywords: adjacent segment disease; dynamic stabilization; Dynesys-Transition-Optima; lumbar
vertebrae; prostheses and implants; spinal fusion; spinal stenosis; spondylolisthesis

1. Introduction

Musculoskeletal disorders, impacting approximately 1.71 billion individuals world-
wide, are a predominant cause of disability. These conditions primarily involve impair-
ments in muscles, bones, joints, and connective tissues [1]. The most frequently reported
symptom across these disorders is pain, which varies from acute to chronic. A notable
aspect of these disorders is lumbar spinal stenosis, with moderate cases presenting a
prevalence of 21–30% and severe cases 6–7% [2]. This condition typically arises from
degenerative changes, including disc height reduction, bone spur formation, thickening
of the ligamentum flavum, and narrowing of the central spinal canal and lateral recesses.
Spondylolisthesis, characterized by one vertebra slipping over another, further contributes
to lumbar spinal stenosis, leading to a diminished space for spinal nerves and resultant
symptoms.

In the diagnosis and understanding of degenerative spinal conditions, a plethora of
analytical tools are utilized to investigate the pathogenesis [3–5]. Various intervention
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strategies are employed to manage the signs and symptoms of musculoskeletal conditions.
These include patient education, rehabilitation, pharmacological treatments, and non-
invasive techniques [6,7]. In cases where these methods prove insufficient, surgery is
considered as the ultimate intervention for addressing pathological spinal conditions.

In recent decades, spinal fusion has been widely used for pathological spinal con-
ditions. Even in such advanced lumbar interbody fusion techniques as conventional
posterior lumbar interbody fusion (PLIF)/transforaminal lumbar interbody fusion (TLIF),
second or revision surgery rates may still be as high as 36% [8]. Literature reviews have
revealed that spinal fusions may increase the stress on the non-operated adjacent lumbar
segments, causing the common complication of adjacent segmental degeneration over the
long term [9,10]. Clinically, adjacent segmental disease (ASD) is problematic because it
may necessitate further surgical management and risk adverse effects on daily functional
outcomes [11]. The risk factors for surgery-related adverse effects include age, female gen-
der, obesity, pre-existing degeneration, number of segments fused, and fusion procedure
methods [12–16].

Biomechanically, rigid instrumentation may risk the degenerative alteration of ad-
jacent level segments, especially cranial ones [17,18]. In a detailed biomechanical study,
Lee et al. [19] found that higher intradiscal pressure within the adjacent levels was strongly
associated with ASD. However, the greatest concerns in spine surgery are the risk factors
for the onset of ASD and the choice of technique (i.e., fusion or non-fusion). Motion-
preserving techniques might represent a feasible strategy to diminish the interruption of
spinal column balance. Thus, dynamic instrumentation implants, which reduce biomechan-
ical stress on the level adjacent to the instrumented segment and decrease the risk for ASD,
Refs. [15,19,20] represent a practicable answer. One example is the Dynesys-Transition-
Optima (DTO) system (Zimmer Spine Inc., Denver, CO, USA), which affiliates the dynamic
stabilization of the cranial segment to the rigid instrumented level. Baioni et al. [21] showed
that hybrid posterior lumbar fixation presented satisfying clinical outcomes in the treat-
ment of degenerative disease at a 5-year follow up. In contrast, Herren et al. [22] found
that dynamic instrumentation did not significantly ameliorate the development of ASD
compared with the established rigid fusion procedure.

Concerning the association between dynamic instrumentation and ASD, studies have
varied vastly in outcome. We posited that the variation in surgical indication and the dis-
crepancy between one-level and multiple-level surgery may explain some of this variance.
To reduce potential confounders, our study strictly focused on L4–L5 one-level fusion with
cranially dynamic instrumentation. To explore adjacent segmental degenerative changes
after DTO system instrumentation, this study centered on radiological changes after lumbar
instrumentation as indicators of ASD in patients with at least a 2-year follow up.

2. Material and Methods
2.1. Patient Selection

In order to evaluate the impact of hybrid dynamic stabilization using the DTO sys-
tem on ASD in lumbar spinal stenosis patients with spondylolisthesis, the present study
recruited 31 patients who received hybrid dynamic pedicle screw insertion using the DTO
system at a single medical center from a single neurosurgeon from 2012 to 2020 who also
had documented radiological evaluation. Demographic data for these patients are shown
in Table 1. The inclusion and exclusion process is shown in Figure 1. Follow up was
conducted at 6, 12, and 24 months postoperatively, assessing disc height, listhesis dis-
tance, and angular motion changes at L2–L3, L3–L4, and L5–S1. This study was approved
on 1 November 2022 by Taichung Veterans General Hospital Institutional Review Board
(No. 19-12345) according to the Declaration of Helsinki. All subjects provided written
informed consent to participate.
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Table 1. Demographic characteristics of the study cohort (n = 31).

Characteristic Value

Mean Age (years) 68.5 ± 7.5
Gender

Male 20 (64.5)
Female 11 (35.5)

Values are presented as number (%) or mean ± standard deviation.
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Figure 1. Flow diagram of inclusion and exclusion process.

2.2. Radiological Evaluation

Radiological imaging of the lumbar spine was performed (standard lumbar spine
radiographs in the dynamic lateral views, including in the flexion and extension positions
(Figure 2)). The radiological data were obtained at the preoperative visit, the day after
the operation, and at approximately 6, 12, and 24 months postoperatively. Assessment of
the adjacent segment included disc height, listhesis distance, and angular change while
in motion. Signs of implant failure and screw loosening were also documented. All
radiological assessments were applied at the L2–L3, L3–L4, and L5–S1 segments separately
and reviewed independently by two neurosurgeons and one neuro-radiologist.
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Figure 2. Schematic illustration showing radiological measurements of preoperative and postopera-
tive lateral radiograms. (A) For disc height measurement, anterior disc height (blue double headed
arrow) and posterior disc height (red double headed arrow) were measured. (B) Listhesis distance
is defined as the distance between the posterior–lower portion of the upper vertebral body and the
posterior border of the lower vertebral body. (C,D) Schematic drawing of angular motion change
measure in extension/flexion view. Difference between α and β represents motion angular change.

The anterior disc height (ADH) and posterior disc height (PDH) were measured on
the lateral radiographs. The ADH was defined as the distance between the anterior border
of the endplates in the consecutive vertebral body. Similarly, the PDH was defined as
the distance between the posterior border of the endplates in the consecutive vertebral
body. We used the average of ADH and PDH to represent the disc height value in this
study. The listhesis distance was defined as the translation distance between the posterior–
lower portion of the upper vertebral body and the posterior border of the lower vertebral
body. These radiological parameters were measured at the L2–L3, L3–L4, and L5–S1
levels separately.

For the L2–L3 and L3–L4 levels, angular motion change at the adjacent segment was
measured between the inferior endplate line of the upper vertebral body and the superior
endplate line of the lower vertebral body on flexion/extension lateral radiographs. For
the L5–S1 level, angular motion change at the adjacent segment was measured between
the inferior endplate line of the L5 vertebral body and the superior endplate line of the S1
vertebral body on flexion/extension lateral radiographs.

2.3. Surgical Techniques

All patients received hybrid dynamic pedicle screw insertion using the DTO system
with bilateral L3–L4 and L4–L5 laminotomies and L4–L5 interbody fusion (Figure 3). The
Optima rigid part was instrumented between the L4 and L5 vertebrae and the Dynesys
dynamic stabilization part placed cranially to the rigid part. The operation was performed
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via a posterior midline incision with the patient in a prone position under general anesthe-
sia. The osteophytes, hypertrophic ligamentum flavum, and bulging disc were completely
removed to ensure that the bilateral neural foramina and lateral recesses were well decom-
pressed. To prevent postoperative spinal instability, bilateral facet joints, supra-spinous
ligaments, and spinous processes were all carefully preserved, especially in the segments
receiving Dynesys dynamic stabilization.
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Figure 3. Preoperative and postoperative images of a 71-year-old male patient. The preoperative
L-spine flexion (A) and extension (B) radiographs revealed L4–L5 segment spondylolisthesis and the
formation of multiple osteophytes. (C) Preoperative magnetic resonance imaging (MRI) T2-weighted
image sagittal view showed herniation of the intervertebral disc at the L4–L5 segment. (D) The axial
preoperative MRI T2-weighted image revealed severe spinal stenosis with facet hypertrophy at the
L4–L5 segment. Postoperative anterior–poster (AP) view (E) and lateral view (F) images revealed
well-instrumented implantations and promising correction of the spondylolisthesis.
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2.4. Statistical Analysis

All data analyses were performed with SPSS v23 statistical software (IBM Corp.,
Armonk, NY, USA). Kruskal–Wallis tests and Friedman tests were applied to determine
if there were statistically significant differences between the L2–L3, L3–L4, and L5–S1
segments. All continuous variables were presented as the mean ± standard deviation. A
p-value of 0.05 was set to be statistically significant.

3. Results
3.1. Demographic Data

The mean age of these 31 patients at surgery was 68.5 ± 7.5 years. For gender, the
study group had 20 female patients and 11 male patients. No patient received revision
surgery during the follow-up period.

3.2. Postoperative Segment Changes

For the L2–L3 segment, the preoperative mean disc height (average of the anterior
disc height + posterior disc height) differed significantly from the 2-year postoperative
value (0.74 ± 0.22 cm versus 0.48 ± 0.20 cm, p < 0.01). A significant increase in the
listhesis distance between the preoperative and the 2-year postoperative data was also noted
(0.24 ± 0.09 cm versus 0.51 ± 0.12 cm, p < 0.01).

A similar change in the L3–L4 segment was found. The preoperative mean disc
height differed significantly from the 2-year postoperative value (0.75 ± 0.26 cm versus
0.52 ± 0.20 cm, p < 0.01). The preoperative and 2-year postoperative listhesis distance also
differed significantly (0.25 ± 0.09 cm versus 0.43 ± 0.09 cm, p < 0.01).

For the L5–S1 segment, the preoperative mean disc height differed significantly from
the 2-year postoperative value (0.85 ± 0.28 cm versus 0.56 ± 0.21 cm, p < 0.01). An increase
in listhesis distance between the preoperative and 2-year postoperative data was also noted
(0.28 ± 0.08 cm vs. 0.48 ± 0.12 cm, p < 0.01). The detailed data are shown in Table 2.

Table 2. Preoperative and 2-year postoperative follow-up radiographic data for various segments.

Location
Preoperative 2-Year Postoperative

p Value
mean ±SD mean ±SD

L2–L3 segment
Average disc height (cm) 0.74 ±0.22 0.48 ±0.20 <0.001

Anterior disc height 0.86 ±0.33 0.60 ±0.27 <0.001
Posterior disc height 0.62 ±0.23 0.37 ±0.16 <0.001

Listhesis distance (cm) 0.24 ±0.09 0.51 ±0.12 <0.001
Angular motion change

(degrees) 5.46 ±3.67 5.18 ±3.22 0.943

L3–L4 segment
Average disc height (cm) 0.75 ±0.26 0.52 ±0.20 <0.001

Anterior disc height 0.91 ±0.33 0.65 ±0.27 <0.001
Posterior disc height 0.58 ±0.23 0.39 ±0.19 <0.001

Listhesis distance (cm) 0.25 ±0.09 0.43 ±0.09 <0.001
Angular motion change 6.58 ±3.78 4.34 ±3.29 0.020

L5–S1 segment
Average disc height (cm) 0.85 ±0.28 0.56 ±0.21 <0.001

Anterior disc height 1.04 ±0.37 0.72 ±0.29 <0.001
Posterior disc height 0.65 ±0.26 0.40 ±0.18 <0.001

Listhesis distance (cm) 0.28 ±0.08 0.48 ±0.12 <0.001
Angular motion change 7.90 ±3.92 8.19 ±3.38 0.096

SD: standard deviation.

3.3. Disc Height Reduction

The mean disc heights for the L2–L3, L3–L4, and L5–S1 segments all showed continu-
ous decreases (Figure 4). The L3–L4 segment showed relatively less disc height reduction
than the other groups (L2–L3: −35%; L3–L4: −29%; L5–S1: −34%, p = 0.549) (Figure 5).
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Furthermore, our study showed that the L3–L4 segment took longer than other segments to
show a significant reduction in disc height. For the L3–L4 segment, significant disc height
reduction appeared 1 year after the operation; however, the alteration in other segments
was shown earlier, at merely 6 months after the surgery.
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3.4. Listhesis Distance

For the 2-year change in listhesis distance, the L3–L4 segment showed a significantly
lower increase than the L2–L3 and L5–S1 segments (L3–L4: 0.18 cm; L2–L3: 0.27 cm; L5–S1:
0.20 cm, p = 0.001) (Figure 6).
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4. Discussion

To evaluate the impact of hybrid dynamic stabilization using the DTO system on
ASD in lumbar spinal stenosis patients with spondylolisthesis, the present study analyzed
31 patients from 2012 to 2020. The results showed that, at the L3–L4 segment (the index
level), listhesis distance increased later than in other segments. At the two-year follow
up, the L3–L4 segment exhibited a lower increase in listhesis distance and less disc height
reduction, compared to L2–L3 and L5–S1.

Regarding the clinical outcomes associated with DTO instrumentation, neither
Maserati et al. [20] nor Baioni et al. [21] reported any cases of implant-associated fail-
ure during a maximum follow up of 5 years. In contrast, Herren et al. [22] found an
implant-dependent failure rate of 21.43% (n = 3) associated with the topping-off procedure.
A relatively high rate of failure was also reported by Putzier et al. [23], who found both
screw breakage (n = 2, 9.09%) and longitudinal rod breakage (n = 1, 4.55%) during a 6-year
follow up in a prospective clinical trial of the Allospine Dynesys Transition System (Zimmer
Biomet, GmbH, Winterthur, Switzerland), the prototype of the DTO. In our study, only one
implant failure was noted at the 2-year postoperative follow up (Figure 8). Right L5 screw
breakage was noted in the follow-up radiographs without any symptomatic problems. In
addition, one patient excluded from the final data analysis, due to incomplete imaging
follow up, suffered from implant loosening related to an automobile accident before his
2-year postoperative follow up. According to this patient’s radiographs, screws of the L3,
L4, and L5 segments showed loosening signs (Figure 9). We checked the bone mineral
density of this patient before surgery but found no evidence of osteoporosis.
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To further examine implant failure in the DTO device, we reviewed the literature
focused on finite element analysis during dynamic performance [24]. Theoretically, the
ability to reduce disc stress and posterior annulus bulging depends upon the flexible spring
cord and expandable spacer (2 mm longer after distraction). The spacer length is thought to
play a key role during extension and lateral bending, stabilizing the adjacent and transition
segments with minimal effect in rotation. Liu et al. [25] showed that an increase in Dynesys
cord pretension resulted in an increase in flexion stiffness from 19.0 to 64.5 Nm/deg, with
a prominent increase in facet contact force of 35% in extension and 32% in torsion. Also
found was a significant increase in stress applied onto the pedicle screws in flexion and
lateral bending. Thus, the trade-off of lower cord pretension might afford higher mobility
in sharing the loading force, to lower the pedicle screw stress in flexion and minimize the
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facet contact force in extension [26]. A similar concern about excess cord pretension was
expressed by Ferraro et al. [27] in a 2020 study. In the DTO system, the screw-spacer linkage
acts to balance the application of the vertebral loading force and cord pretension at the two
sides. Chien et al. [28] revealed that the Dynesys screw-spacer supplies only 33% of the
contact force; the other 67% of load comes from cord pretension, muscular contractions,
and the body weight still borne by the vertebrae when the cord was extended to 300 N. As a
result, excessive shearing loads in unstable spondylolisthesis accompanied by contact stress
imposed on the screw-spacer linkage subsequently lead to material fatigue under a heavy
vertebral load and extreme flexion. This phenomenon might be a reasonable explanation
for the implant loosening in the trauma case.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. A 58-year-old male patient suffered from right L5 screw breakage. The 2-year 
postoperative follow-up image revealed right-side L5 screw breakage (blue arrow). (A) Lateral 
view. (B) AP view. 

 
Figure 9. A 76-year-old male suffered from trauma-related implant loosening. (A) The 18-month 
postoperative radiographic follow up indicated the appropriate position of instrumentation. (B) The 
24-month postoperative radiographic follow up revealed deviation in the bilateral L3, L4, and L5 
screws after an automobile traffic accident. 

To further examine implant failure in the DTO device, we reviewed the literature 
focused on finite element analysis during dynamic performance [24]. Theoretically, the 
ability to reduce disc stress and posterior annulus bulging depends upon the flexible 
spring cord and expandable spacer (2 mm longer after distraction). The spacer length is 
thought to play a key role during extension and lateral bending, stabilizing the adjacent 
and transition segments with minimal effect in rotation. Liu et al. [25] showed that an 
increase in Dynesys cord pretension resulted in an increase in flexion stiffness from 19.0 
to 64.5 Nm/deg, with a prominent increase in facet contact force of 35% in extension and 
32% in torsion. Also found was a significant increase in stress applied onto the pedicle 
screws in flexion and lateral bending. Thus, the trade-off of lower cord pretension might 
afford higher mobility in sharing the loading force, to lower the pedicle screw stress in 
flexion and minimize the facet contact force in extension [26]. A similar concern about 
excess cord pretension was expressed by Ferraro et al. [27] in a 2020 study. In the DTO 
system, the screw-spacer linkage acts to balance the application of the vertebral loading 
force and cord pretension at the two sides. Chien et al. [28] revealed that the Dynesys 

Figure 9. A 76-year-old male suffered from trauma-related implant loosening. (A) The 18-month
postoperative radiographic follow up indicated the appropriate position of instrumentation. (B) The
24-month postoperative radiographic follow up revealed deviation in the bilateral L3, L4, and L5
screws after an automobile traffic accident.

According to the ASD rates reported in the literature, Kashkoush et al. [29] reported
a promising reduction in the subsequent development of adjacent-segment disease with
his 10 years’ experience with DTO instrumentation. However, Herren et al. [22] showed
comparable rates of radiologically detectable ASD (28.6% for PLIF vs. 26.7% for topping-off,
total 29 patients). In a 2018 study by Kuo et al. [30], neither postoperative antero- nor retro-
listhesis (15.2% in dynamic fusion vs. 17.4% in PLIF, p = 0.92) nor endplate degeneration
evaluated with Modic classification (1.8% in PLIF vs. 6.5% in dynamic fusion, p = 0.30)
could show statistical significance. One reason for the lack of significance in reducing the
ASD rate in this study might be that all patients had a certain degenerative alteration in
the disc adjacent to the instrumentation level. In other words, it might be more clinically
important to focus on how to delay ASD rather than prevent it. As mentioned above,
existing degenerative changes might play a prominent role in the development of ASD.
As a result, we should consider degeneration as an ongoing process rather than stages
with definite cut points or thresholds. If the incidence rate of ASD is the only parameter
analyzed, the existing degenerative change will become a confounding factor. To correct
this bias, we additionally analyzed data for the L2–L3 segment. In our hypothesis, the
L2–L3 segment represents the non-instrumented segment which is relatively “intact” or
“neutral.” In the present study, degenerative change in the L3–L4 segment, including both
disc height reduction and listhesis distance, showed a minor increase compared to the
L2–L3 segment. In our opinion, this result may indicate that this dynamic stabilization
technique can decelerate the degenerative process. Similar favorable findings in motion
angular change were noted in the L3–L4 segment as well.

In terms of the surgical technique, some studies used total laminectomy when dis-
cussing hybrid instrumentation techniques [25,31]. In our opinion, the better surgical
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decompression strategy is bilateral laminotomies, which avoid the destruction of the
spinous process and posterior ligamentous complex. To prevent postoperative adjacent
segmental disease, the posterior complex should be preserved as much as possible during
surgery [32]. Iorio et al. [33] also proposed that both the interspinous and supraspinous
ligaments contribute greatly to spinal stability by providing resistance to flexion via a long
moment arm from the spinous process to the instantaneous axis of rotation. Thus, the
destruction of the posterior complex during the operation may be a potential confounding
factor related to postoperative ASD.

Biomechanical and clinical studies have suggested that the increased stress under
different loading conditions (flexion, extension, lateral bending, axial rotation) [34] and the
change in range of motion [35] at the upper adjacent level after rigid fixation may lead to
the risk of ASD at the index level. In our study, disc height and listhesis distance revealed
that ASD change at the index level was delayed and also minimal. This phenomenon
might be attributed to the shear-load effect on the dynamic instrumentation, which shifted
the tensile and compression forces to the upper rigid transition screw in the construct. In
addition, we also noted less angular change at the index level while in motion.

There are some limitations to this study. The sample size in this study was small, en-
rolling only 31 patients in the final analysis due to our strict inclusion and exclusion criteria.
Second, the last follow-up period was set at 24 months after the operation. Observation
for a longer period may have shown an increased effect of dynamic instrumentation in
delaying ASD. Lastly, the lack of clinical outcomes and postoperative magnetic resonance
imaging follow up are both limitations to this study.

5. Conclusions

Our study on the use of hybrid dynamic stabilization with the DTO system in lumbar
spinal stenosis patients with spondylolisthesis reveals that the L3–L4 segment, targeted
by our intervention, experienced less disc height reduction, a delayed increase in listhesis
distance, and a slower onset of ASD compared to the L2–L3 and L5–S1 segments. Addi-
tionally, a significant reduction in angular motion change at the L3–L4 level suggests a
stabilizing effect of the DTO system. While our findings indicate a delay in the progression
of ASD rather than its outright prevention, they highlight the potential of this technique in
minimizing degenerative changes in the treated segment. Despite limitations, such as a
small sample size and a two-year follow-up period, our results suggest that hybrid dynamic
stabilization may be a promising strategy for delaying ASD in this patient population,
warranting further investigation with larger cohorts and extended follow up.
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