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Abstract: Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-
2 virus. The clinical presentation of COVID-19 is variable, often including symptoms such as fever,
cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute “long” COVID-
19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations
remain one of the most effective preventative methods against severe COVID-19 outcomes and the
development of long-term COVID-19. However, individuals with underlying health conditions may
not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe
symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations.
This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and
severity of infection, both pre- and post-SARS-CoV-19 infection. Early in the SARS-CoV-19 infection,
cannabinoids have been shown to prevent viral entry, mitigate oxidative stress, and alleviate the
associated cytokine storm. Post-SARS-CoV-2 infection, cannabinoids have shown promise in treating
symptoms associated with post-acute long COVID-19, including depression, anxiety, post-traumatic
stress injury, insomnia, pain, and decreased appetite. While current research primarily focuses
on potential treatments for the acute phase of COVID-19, there is a gap in research addressing
therapeutics for the early and post-infectious phases. This review highlights the potential for future
research to bridge this gap by investigating cannabinoids and the endocannabinoid system as a
potential treatment strategy for both early and post-SARS-CoV-19 infection.
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1. Introduction

Since its emergence in Wuhan, China, coronavirus disease-19 (COVID-19) caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally,
with over 770 million confirmed cases of COVID-19 reported by the World Health Orga-
nization as of September 2023 [1]. COVID-19 infections are classified as asymptomatic,
pre-symptomatic, or symptomatic. Evidence from 113 studies completed across 17 coun-
tries showed that the viral load of SARS-CoV-2 peaks around the time of symptom onset or
a few days after.

Vaccinations are one of the most effective methods to prevent the severe outcomes
of COVID-19. People diagnosed with COVID-19 after completing their primary vaccine
series were significantly less likely to be hospitalized or die [2]. However, some patients
with co-morbid conditions are at increased risk of an inadequate protective response to
COVID-19 vaccines.

To date, the only FDA-approved agent for SARS-CoV-2 pre-exposure prophylaxis is
Evusheld, which is composed of the anti-SARS-CoV-2 monoclonal antibodies tixagevimab
and cilgavimab [3]. On-going clinical trials are investigating the pre-exposure use of
other agents, including hydroxychloroquine, ivermectin, zinc, vitamin C, and vitamin D.
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However, studies have not demonstrated evidence of a reduced rate of acquiring infection
and are not currently recommended for COVID-19 prophylaxis [4]. Effective COVID-19
prophylaxis is imperative for the health and wellbeing of high-risk populations and calls
for further research into novel agents.

Recent evidence has shown that symptoms can remain after the clearance of an acute
COVID-19 infection, in a condition referred to as post-acute COVID-19 syndrome, or more
commonly, “long COVID-19.” Long COVID-19 is characterized by persistent and/or long-
term complications that continue 3–4 weeks beyond the initial onset of acute COVID-19
symptoms [5]. Early reports found residual effects of the SARS-CoV-2 infection, including
cognitive disturbances, arthralgia, headaches, chest pain, loss of taste/smell, cough, fatigue,
and a decline in quality of life [6,7]. Various guidelines focus on managing long-term
COVID-19, but as symptoms of this condition are heterogeneous and often attributed to
underlying medical and psychiatric conditions, treatment plans mainly focus on symptom
management and holistic support. More research is needed to understand the etiology of
long-term COVID-19 and to provide insight on how to better treat this condition.

Cannabinoids have been shown to influence the course of infections both in vitro and
in vivo. Cannabinoids act through cannabinoid receptor type 1 (CBR1) and cannabinoid
receptor type 2 (CBR2). CBR1 is mainly expressed on neurons within the central nervous
system (CNS), while CBR2 is expressed on cells of the immune system. Activation of
CBR2 has effects on the host’s innate and adaptive immune responses, downregulating
inflammation. Activation of CBR1 also has a role in host immune defense by inhibiting
Ca2+ release, which in turn alters signal transduction pathways, the production of pro-
inflammatory cytokines and reactive nitrogen intermediates, and apoptosis [8].

In recent years, the legalization of cannabis for both medical and recreational use has
been approved in many countries [9]. With the legalization of cannabis being relatively new
in many countries at the onset of the pandemic, several studies have been conducted to
investigate changes in cannabis usage during the pandemic compared to the pre-pandemic
period. A study by Statistics Canada found a 7% increase in cannabis use among the overall
population, with 34% of previous cannabis consumers reporting an increase in their usage
compared to the pre-pandemic period. Similar trends were observed in European countries
such as France, Italy, and the Netherlands [10].

Given the reported increase in cannabis use during the pandemic and the potential
interaction between endocannabinoid system (ECS) modulation and COVID-19 severity,
this review aims to investigate the therapeutic potential of cannabinoids and the endo-
cannabinoid system in mitigating the early stages of COVID-19 and the symptoms of
long-term COVID-19.

2. Cannabinoids for Early SARS-CoV-2 Infection
2.1. Cannabinoids and Viral Entry

The viral spike protein of SARS-CoV-2 binds to the human angiotensin-converting
enzyme 2 (ACE2) receptor, which is widely expressed in respiratory epithelia and vascular
endothelium. The spike protein forms homotrimers that protrude from the SARS-CoV-2
surface and consist of an S1 and S2 subunit. The S1 subunit binds to ACE2 of host cells to
initiate infection, while the S2 subunit mediates virus fusion with host cells and a trans-
membrane domain [10]. ACE2 is the main route for receptor-mediated entry of the virus
into human hosts and is internalized upon binding. Studies by Xu et al. (2020) demon-
strated that ACE2 is highly expressed on the mucosa of the oral cavity, suggesting that the
oral cavity could be highly susceptible to SARS-CoV-2 infection [11]. Wang et al. (2020)
studied over 800 new Cannabis sativa cultivars and tested their ability to downregulate
ACE2 expression in SARS-CoV-2-targeted tissues. They found that high-cannabidiol (CBD)
C. sativa extracts were able to decrease ACE2 protein levels in artificial 3D human models
of oral, airway, and intestinal tissues. Additionally, they demonstrated that some extracts
downregulated the type II transmembrane serine protease TMPRSS2 [11]. TMPRSS2 has
been shown to bind and cleave the ACE2 receptor, leading to confirmational changes that
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allow the virus to fuse with the host membrane and enter the cell (Figure 1). Studies by
Shulla et al. (2011) demonstrated that cells most susceptible to SARS-CoV infections are
those in which ACE2 and type II transmembrane serine proteases (TTSPs) are simultane-
ously present [12]. Similarly, studies by van Breemen et al. (2022) found that cannabigerolic
acid (CBGA) and cannabidiolic acid (CBDA) isolated from C. sativa prevented cell entry of
SARS-CoV-2 into Vero E6 cells. CBGA and CBDA were equally effective against the SARS-
CoV-2 alpha variant B.1.1.7 and the beta variant B.1.351 [12]. Small-molecule inhibitors
of viral fusion have been effective against the human immunodeficiency virus, influenza,
and paramyxovirus [13–16]. Cannabinoids may similarly have the potential to prevent
infection by SARS-CoV-2.
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2.2. Cannabinoids and Oxidative Stress

Research has demonstrated that patients suffering from viral infections, including
respiratory diseases, show increased production of reactive oxygen species (ROS) [17].
Viral infections often disrupt the host’s redox homeostasis, increasing redox stress. Redox
imbalance plays a key role in the pathogenesis and development of COVID-19, as an excess
of ROS can damage cellular components, including DNA, proteins, and lipids, and alter
immune functions and inflammatory responses [18–20]. Previous research has shown
that oxidative stress contributes to the pathogenesis of respiratory viral infections, includ-
ing influenza and respiratory syncytial virus (RSV) [17]. Similarly, increased oxidative
stress in severe COVID-19 has been shown to contribute to inflammation, endothelial cell
dysfunction, and thrombosis and can lead to multiorgan damage [21].

ACE2, which is involved in viral entry, also plays a role in the induction of redox
stress. SARS-CoV-2 infection reduces cell membrane ACE2 expression, leading to the
accumulation of its primary substrate, angiotensin II (Ang II). Ang II binds the Ang II type
1 receptor (AT1R) and induces ROS production through nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase in the brain, vasculature, and kidneys (Figure 2) [20]. Thus,
elevated Ang II causes increased AT1R activation, which contributes to increased ROS
levels [20,22]. Cannabidiol (CBD), a phytocannabinoid that acts through the CBR2 receptor,
has been shown to affect redox balance. Like other antioxidants, CBD interrupts free
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radical chain reactions, transforming free radicals into less active forms [23]. CBD has been
shown to downregulate oxidative conditions by preventing the initiation of superoxide
radicals produced by NAPDH oxidase and xanthine oxidase [24]. Studies by Pan et al.
(2009) showed that CBD reduced oxidative conditions by preventing the formation of
superoxide radicals generated by NADPH oxidase in a murine model of cisplatin-induced
nephropathy [25].
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An imbalance in the amount of oxidants and antioxidants has been reported in multi-
ple medical conditions, including cancer, diabetes, obesity, infertility, neurodegenerative
disorders, and lung diseases, where oxidative stress promotes tissue and cell damage [26].
Recently, cannabinoids have been studied as potential therapeutics for the oxidative stress
associated with these conditions. Rajesh et al. (2022) studied the effects of pharmacological
activation of CBR2 in a murine model of diabetes. They found that the selective CBR2
agonist JWH-133 attenuated diabetes-induced myocardial oxidative and nitrative stress.
Furthermore, they observed that diabetic CBR2-/- mice exhibited aggravated oxidative
stress and inflammation compared with WT diabetic mice [27]. Similarly, Basha et al. (2016)
demonstrated that administration of the CBR2 agonist beta-caryophyllene (BCP) signifi-
cantly improved levels of antioxidant enzymes, decreased lipid peroxidative markers, and
reversed levels of proinflammatory cytokine levels to near normal levels in STZ-induced
diabetic mice, indicating a potential anti-inflammatory role of CBR2 agonists in preventing
diabetes-induced oxidative stress [28]. Lastly, cannabinoids have been shown to play an
antioxidative and neuroprotective role in neurodegenerative disorders such as Parkinson’s
disease (PD). In a mouse model of PD, treatment with CBR1 agonists WIN55,212-2 and
HU210 was found to increase the survival of nigrostriatal dopaminergic neurons in the
striatum, suppress NOX and ROS production, and reduce pro-inflammatory cytokines [29].
Similarly, AEA was shown in vitro to protect hippocampal neurons from oxidative injury
by decreasing ROS in a CBR1 receptor-mediated manner [30].

Together, these results suggest a potential protective role for cannabinoids in mit-
igating oxidative stress. Future studies should examine the antioxidative properties of
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cannabinoids as potential treatments for minimizing the pathogenesis and development of
COVID-19.

2.3. Cannabinoids and the Cytokine Storm

During severe infection, SARS-CoV-2 suppresses innate anti-viral mechanisms while
provoking a non-specific inflammatory response that is detrimental to the host. SARS-CoV-
2 inhibits the production of type I interferons (IFN-Is), essential factors in early anti-viral
defense, leading to unfettered viral replication. As more cells are infected, widespread
induction of inflammatory cell death pathways causes a rapid increase in pro-inflammatory
mediators that attract inflammatory cells, including neutrophils and monocytes, into
lung tissue [5,6]. Studies have shown that a dysregulated and/or exaggerated cytokine
response by SARS-CoV-2-infected cells could play a role in the pathogenesis and severity
of COVID-19. For example, the associated endothelial barrier degradation and capillary
leakage have been shown to contribute to alveolar cell damage, and inflammatory cytokine
release, delayed neutrophil apoptosis, and NETosis have been shown to contribute to
pulmonary thrombosis [7]. These mechanisms are in line with the observed clinical markers
in COVID-19, including high expression of inflammatory cytokines (i.e., TNF-α/IL-6),
elevated leukocyte and neutrophil counts, and an elevated neutrophil-to-lymphocyte ratio
(NLR) [7,31]. Increased IL-6 is an early indicator of cytokine release syndrome, or the
“cytokine storm.” A meta-analysis by Coomes et al. (2020) assessing current evidence in the
field found that mean IL-6 concentrations were 2.9-fold higher in patients with complicated
COVID-19 compared to patients with noncomplicated COVID-19, and elevated IL-6 was
associated with adverse clinical outcomes [32].

Research has shown cannabinoids to be potent anti-inflammatory agents in the treat-
ment of inflammatory diseases. Studies by Suryavanshi et al. (2022) found that CBD and
THC significantly reduced levels of IL-6, IL-8, and TNF-α after LPS challenge in THP-1
macrophages and primary human bronchial epithelial cells (HBECs). Additionally, CBD
attenuated the phosphorylation of nuclear factor-kB and inhibited the generation of ox-
idative stress [33]. Similarly, in a mouse model of acute respiratory distress syndrome
(ARDS), treatment with THC led to a 100% survival rate, a reduction in the infiltration
of immune cells into the lungs, and a reduction in the proinflammatory cytokines IFN-γ,
IL-1β, IL-2, IL-6, and TNF-α. Similar trends were also observed for the chemokines CCL2,
CCL5, and CXCL1 [34]. These results are promising, as ARDS is one of the major trig-
gers of mortality associated with COVID-19 infections, and patients suffering from severe
forms of COVID-19 have been shown to exhibit ARDS, cytokine storms, and pulmonary
failure [35]. Comparably, studies by Khodadadi et al. (2020) found that administration of
CBD downregulated levels of proinflammatory cytokines IL-6, IFN-γ, and TNF-α, reduced
the number of infiltrating neutrophils and macrophages in the lungs, and improved clinical
symptoms of Poly I:C-induced ARDS [36].

Results from these studies demonstrate the effectiveness of cannabinoids in alleviating
cytokine storms and reducing the infiltration of inflammatory cells. Future studies should
build upon these results, examining the potential effect of cannabinoids in treating ARDS
and cytokine storms seen in COVID-19 patients.

3. Cannabinoids for Post-Acute “Long” COVID-19
3.1. Neuropsychiatric Sequela

Individuals suffering from COVID-19 have reported a range of psychiatric symptoms
persisting or presenting months following the initial infection. A study conducted by
Mazza et al. (2020) screened 402 adults one month following COVID-19 hospitalization
for clinical signs of depression, anxiety, post-traumatic stress injury (PTSI), insomnia, and
obsessive-compulsive (OC) symptomatology. They found that 56% of patients scored in
the pathological range in at least one clinical dimension. Furthermore, patients with a
positive previous psychiatric diagnosis showed increased scores on most measures [37].
Comparable results were found in a retrospective cohort study of 62,354 COVID-19 cases in
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the USA. The study found that in patients with no previous psychiatric history, a diagnosis
of COVID-19 was associated with an increased incidence of a first psychiatric diagnosis in
the following 14 to 90 days compared to following other health events, including influenza
and other respiratory tract infections. Additionally, they found that the psychiatric effects
of COVID-19 were broad but not uniform, with patients suffering from elevated rates of
anxiety disorders, insomnia, and dementia [38].

The literature suggests that SARS-CoV-2 infection mediates dysregulation of the innate
immune responses, leading to cytokine release syndrome with elevated pro-inflammatory
cytokines and delayed IFN responses. Excess IL-6 and IL-1β with a simultaneous decrease
in type I IFN levels has been reported to be positively correlated with disease severity and
could drive neurological effects as a result of an altered blood–brain barrier (BBB) [39].

The endocannabinoid system is known to be involved in many neurological pro-
cesses, including brain development, memory formation, learning, mood, anxiety, depres-
sion, analgesia, and drug addiction [40]. Modulation of the endocannabinoid system has
been explored as a therapeutic for multiple neurological disorders, including Parkinson’s,
Alzheimer’s, Huntington’s, multiple sclerosis, traumatic brain injury, stroke, epilepsy,
anxiety, PTSI, and depression [41–43], indicating a potential role of ECS modulation as
a therapeutic for persistent psychiatric symptoms associated with post-acute COVID-19
syndrome (Figure 3).
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3.1.1. Depression

Depressive symptoms and clinically significant depression are commonly reported
among individuals suffering from post-COVID-19 syndrome. The prevalence of depressive
symptoms in the United States increased over 3-fold during the COVID-19 pandemic
compared to prior years [44]. Additionally, studies by Taquet et al. (2021) reported that the
incidence of mood disorders in the 6 months following COVID-19 infection was significantly
greater than after influenza or other respiratory tract infections [38]. Although it remains
unknown whether depressive symptoms associated with post-COVID-19 syndrome are
a consequence of the viral infection itself or related to the socio-economic outcomes of
the pandemic, this increase in prevalence calls for novel approaches for the treatment
of depression.

Pre-clinical studies using animal models have found anti-depressant-like responses to
cannabis in behavioral tests, including the forced swim test (FST) and the tail suspension
test (TST), two paradigms frequently used to evaluate the anti-depressant potential of
agents. These tests are based on the principle that when an animal is exposed to a stressful
and inescapable situation, it will first make efforts to escape but will eventually exhibit
immobility that may be considered to reflect a measure of behavioral despair [45]. Studies
by Zanelati et al. (2010) found that rats treated acutely or chronically (one single treatment
or daily over 14 days) with 30 mg/kg of CBD had a reduction in immobility time and
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an increase in swimming time in the FST, compared to untreated controls [46]. Similarly,
studies by Sartim et al. (2016) found that the administration of CBD (10–60 nmol) into the
infralimbic and prelimbic subregions of rat brains significantly reduced immobility time
in the FST [47]. Lastly, studies by Silote et al. (2021) found that administration of CBD
produced anti-depressant-like effects in mice in the TST. However, significant effects were
only seen in male mice and not females, indicating a potential sex-dependent effect of CBD
as an anti-depressant [48].

Although, to date, no clinical trials have assessed the efficacy of cannabinoids for the
treatment of depression, their use has been assessed in observational studies. Studies by
Martin et al. (2021) found that medicinal cannabis use was associated with a significant
decrease in depressive symptoms, an effect that was not observed in controls [49]. Similarly,
Mangoo et al. (2022) examined the efficacy of 129 patients treated with cannabis-based
medicinal products (CBMPs) for depression. Their results found that CBMP treatment
was associated with a reduction in depression severity and an increase in health-related
quality of life after 1, 3, and 6 months of treatment [50]. Lastly, an ongoing observational
clinical trial (NCT04965740) is exploring the use of medicinal cannabis as a treatment for
depression, PTSI, and anxiety in first responders and military personnel. The goal of this
pilot trial is to collect data that will help inform and guide the development of a larger
patient-oriented study and the design of a clinical program enhancing therapy treatments
for these groups [51].

Human studies have found mixed effects of cannabinoid treatments on depression.
Epidemiological studies have shown that non-medicinal or recreational use of cannabis,
which is typically high in ∆9-THC, may be associated with an increased risk of developing
depressive symptoms [52]. Studies on cannabis abuse as a risk factor for depression found
that in participants with no baseline depressive symptoms, those with a diagnosis of
cannabis abuse were four times more likely to develop depressive symptoms than those
without a diagnosis of cannabis abuse [53]. Similar results were seen in studies by Lee et al.
(2008), which found that heavy cannabis users, defined as those who smoke six or more
cones of cannabis daily, were four times more likely to report moderate to severe depressive
symptoms across three Aboriginal communities [54]. However, non-medical cannabis use
may be used as a method of self-medication to cope with depressive episodes and may not
be representative of its efficacy when used at a prescribed dosage. Furthermore, studies
have shown synthetic forms of ∆9-THC to be effective anti-depressants at low doses and
not at high doses, where the reverse effect of worsening of depressive symptoms was
observed [55]. Non-medicinal cannabis is typically high in ∆9-THC, and when smoked,
the amount of ∆9-THC delivered can vary from person to person. This may account for the
observed discrepancies between epidemiological studies examining the effects of smoking
cannabis and randomized control trials where the dosage of cannabinoids delivered is fixed.

3.1.2. Mood and Anxiety Disorders

Mood and anxiety disorders have been reported in many patients suffering from
post-acute COVID-19 syndrome. A cohort study conducted at Jin Yin-tan Hospital in China
found that 23% of patients suffered from persistent symptoms of anxiety 6 months after
symptom onset [56]. The endocannabinoid system is extensively distributed across the
central nervous system (CNS) and plays a crucial role in the modulation of emotional
responses, including fear, anxiety, and stress responses [57].

Pre-clinical and animal studies have shown evidence that supports the non-psychotropic
cannabinoid, CBD, as a treatment for mood and anxiety disorders. Multiple studies assess-
ing the effects of CBD in animal models of anxiety, including the elevated plus maze, the
Vogel conflict test, and contextual fear conditioning, found CBD to have an anxiolytic effect
at doses ranging from 1–10 mg/kg [58–62]. Furthermore, the effects of CBD have been stud-
ied on human experimental anxiety. Studies by Zuardi et al. (1993) found that CBD (300 mg)
decreased anxiety following a simulated public speaking test [63]. Similarly, Bergamaschi
et al. (2011) found that pre-treatment with CBD (600 mg) significantly reduced anxiety,
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cognitive impairment, and discomfort in speech performance in control subjects and pa-
tients suffering from untreated generalized social anxiety disorder following a simulation
of the public speaking test [64]. Lastly, a recent review published by O’Sullivan et al. (2021)
summarizes findings from clinical randomized control trials, observational studies, and
case reports demonstrating the anxiolytic effects of CBD in treating patients with symptoms
of anxiety, suffering from generalized anxiety disorder, sleep disorders, Crohn’s disease,
depression, and PTSD [65].

3.1.3. Post-Traumatic Stress Injury

Post-Traumatic Stress Injury (PTSI) is a neurological condition where individuals suffer
from persistent, recurring memories of traumatic events and are unable to repress such
memories. In a systemic review assessing the neuropsychiatric sequelae of COVID-19, PTSI
has been reported as a persistent symptom associated with post-acute COVID-19 syndrome
in 20 research articles, with PTSI ranging from 6.5% to 42.8% of the included patients [66].

Recently, there has been an increase in research on the therapeutic potential of cannabis
and synthetic cannabinoids. Studies by Roitman et al. (2014) have demonstrated the efficacy
of ∆9-THC, a phytocannabinoid CBR1 receptor agonist, in treating PTSI. Their results found
that treatment twice a day with 5 mg of orally absorbable ∆9-THC significantly improved
global symptom severity in ten outpatients with chronic PTSI [67]. Additionally, studies by
Cameron et al. (2014) have assessed the efficacy of synthetic cannabinoids in treating PTSI.
They found that daily treatment with nabilone (0.5–6.0 mg), a synthetic cannabinoid CBR1
receptor agonist, significantly improved PTSI symptoms and PTSI-associated insomnia
in a population of mentally ill inmates [68]. Similarly, Fraser et al. (2009) reviewed the
charts of 47 patients diagnosed with PTSI. These patients had been referred to the author’s
private outpatient clinic and were treated nightly with nabilone at a starting dose of 0.5 mg.
The dose was titrated up or down to effect, with an effective dose range of 0.2 mg to
4 mg. Their results found that 72% of patients experience total cessation or lessening of
the severity of PTSI-associated nightmares, and some patients reported a reduction in
daytime flashbacks [69].

3.1.4. Insomnia

A one-year follow-up cohort study monitoring persistent symptoms in 303 patients
who were diagnosed with COVID-19 reported a prevalence of sleep disorders in 47% of
patients [70]. Recently, cannabinoids have gained acceptance in the medical community as
a treatment for insomnia. In an animal model, activation of the CBR1 receptor through the
administration of ∆9-THC has been shown to promote sleep, and these effects were blocked
with the selective CBR1 antagonist SR141716A, suggesting that ∆9-THC is modulating sleep
by the CBR1 receptors [71]. A systematic review and meta-analysis evaluating the efficacy
of cannabinoids in the treatment of insomnia found favorable effects of cannabinoids on the
Pittsburgh Sleep Quality Questionnaire, Insomnia Severity Index (ISI), and sleep latency
test [72]. Similar results were seen by Walsh et al. (2020), who developed a sublingual
cannabinoid extract (ZTL-101) containing 3 mg of ∆9-THC, 0.3 mg of cannabinol (CBN),
and 0.15 mg of CBD to treat chronic insomnia. This was the first randomized double-blind
placebo-controlled crossover trial assessing the use of cannabis-based drugs to treat chronic
insomnia, and their results showed that ZTL-101 significantly improved ISI scores, total
sleep time, and self-reported sleep latency [72]. Together, these results support further
investigation into novel cannabinoid therapies for the treatment of insomnia.

3.2. Pain

Pain has been frequently reported as a lasting symptom, burdening patients suffering
from post-acute COVID-19 syndrome. Studies by Sykes et al. (2020) reported myalgia as
a lasting symptom in 51.5% of patients [73]. Similarly, Lombardo et al. (2021) found that
48% of patients experienced prevalent symptoms of pain 12 months following an acute
COVID-19 diagnosis [70]. Multiple forms of pain have been associated with post-acute
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COVID-19 syndrome, including back pain, body pain, arthralgia, abdominal pain, and
chest pain [74].

Pain and inflammation are part of the body’s physiological response to infection. Local
vasodilation increases capillary permeability, and the release of pro-inflammatory mediators
leads to the sensation of pain and hyperalgesia. Once the condition causing the damage
is resolved, the associated pain and inflammation typically subside. However, in cases
where the diseased condition and the associated pain and inflammation do not resolve, the
inflammatory response progresses towards subacute or chronic inflammation, characterized
by an overexpression of pro-inflammatory genes and a dysregulation of cellular signaling
and barrier function [75]. Although the mechanisms causing long-term COVID-associated
pain remain unclear, it has been suggested that the inflammatory response caused by the
virus may affect the central and peripheral nervous systems, promoting the perpetuation
of pain [73]. Additionally, it is likely that a portion of the associated pain experienced
by previously hospitalized patients may be due to prolonged intubation and immobility,
which often results in weakness, rapid deconditioning, and joint-related pain [76]. Chronic
pain is a key factor affecting patients’ quality of life. Cannabinoid receptor modulation has
been studied for the treatment of pain in various disease models, presenting as a potential
novel approach to treating pain associated with post-acute COVID-19 syndrome.

Preclinical studies have demonstrated the potential anti-nociceptive activity of cannabi-
noid receptor agonists. Several studies examine these analgesic effects in models of healthy
rodents subjected to painful experiences. Studies by Malan et al. (2002) found that the
selective CBR2 agonist AM1241 produces anti-nociception in rats exposed to thermal stim-
uli. These effects were blocked with the CBR2 antagonist AM630 but not with the CBR1
antagonist AM251, demonstrating the CBR2-mediated analgesic activity [77]. Similarly,
studies by Martin et al. (1998) found that systemic administration of the CBR agonists
WIN55,212-2 and HU-210 produced anti-nociception in the rat tail-flick reflex. When admin-
istered together, both compounds significantly increased tail-flick latencies by over 50% [78].
Lastly, studies by Harris et al. (2019) examined the analgesic effects of C. sativa extracts
in a rat model of acute pain. They found that the full C. sativa extract, the extract without
terpenes, and the isolated ∆9-THC all produced dose-dependent increases in hotplate and
tail-flick latencies [79].

In addition to acute animal models of pain, studies have also shown the potential of
endocannabinoid receptor modulation for the treatment of pain in humans. Data from
clinical trials assessing synthetic and plant-derived cannabis-based medicines for the
treatment of chronic neuropathic pain have shown promising results. A double-blind,
randomized placebo-controlled crossover trial by Wilsey et al. (2013) examined the efficacy
of vaporized cannabis for the treatment of neuropathic pain. Their results found that 57%
of participants exposed to a low dose (1.29% ∆9-THC) and 61% of participants exposed
to a medium dose (3.53% ∆9-THC) reported a 30% reduction in pain intensity. There
was no significant difference between the two active dose groups. However, an analgesic
response to vaporized cannabis was seen compared to placebo [80]. In a follow-up study,
Wilsey et al. (2016) examined the effects of vaporized cannabis containing either placebo,
2.9%, or 6.7% ∆9-THC in patients with neuropathic pain related to disease or injury of
the spinal cord. Administration of ∆9-THC at both active doses showed a significant
decrease in pain intensity compared to placebo on an 11-point numerical pain rating
scale. Furthermore, vaporized cannabis positively and significantly improved all of the
measured multidimensional pain descriptors, except itching, on the Neuropathic Pain
Scale (NPS) [81].

In addition to vaporized cannabis products, recent research has been interested in
isolating the major components of cannabis responsible for the analgesic properties and
treating patients with such medicinal extracts. A case study by Romeyke and Westfal (2022)
studied the analgesic effects of cannabis extract THC/CBD 10:10 mg in a patient suffering
from multilocular chronic acute exacerbated pain syndrome. This study found that the
administration of THC/CBD, stepped from 0.5 mL/day to 1 mL/day over the course of
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15 days, resulted in a decrease in pain intensity from 8/10 to 4/10 on the visual analogue
scale and an improvement in the quality of sleep [82].

Lastly, a randomized, double-blind, placebo-controlled clinical trial by Nurmikko et al. (2007)
studied the efficacy of Sativex® oromucosal spray (2.7 mg ∆9-THC: 2.5 mg CBD) on neuro-
pathic pain. They found a significant reduction in pain intensity scores in patients receiving
Sativex® compared to placebo, as well as improvements in NPS score, sleep, dynamic
allodynia, punctate allodynia, and Patient’s Global Impression of Change score. Currently,
Sativex® is approved as an adjunctive treatment for symptomatic relief of spasticity in
patients with MS in Europe, New Zealand, and Canada [83].

Cannabinoids have also been tested for the treatment of painful conditions, includ-
ing headaches, back, chest, and abdominal pain, all of which are symptoms commonly
experienced by patients suffering from long-term COVID-19. A randomized, double-
blind, active-controlled, crossover study compared nabilone (0.5 mg/day) to ibuprofen
(400 mg/day) for treating medication-overuse headaches. This study found nabilone more
effective than ibuprofen in reducing pain intensity and daily analgesic consumption [84].
Furthermore, a study by Pinsger et al. (2006) investigated the efficacy of nabilone as
an add-on treatment in patients with chronic pain. It was found that nabilone (0.5 to
1 mg/day) decreased the average headache intensity and increased the number of days
without headaches. Nabilone also decreased the average back pain intensity and increased
quality of life scores [85]. Similarly, a retrospective study by Ueberall et al. (2021) compared
the efficacy of nabiximol oromucosal spray vs long-acting opioids for the treatment of neu-
ropathic back pain. Both treatments showed a significant improvement in pain symptoms
compared to baseline, with all between-group differences significantly favoring cannabi-
noids [86]. Oral cannabinoids such as dronabonial have also shown promise in treating
chest pain. Studies by Malik et al. (2017) found treatment with dronabinol significantly
increased pain threshold and reduced pain intensity in patients suffering from noncardiac
chest pain [87]. Lastly, cannabinoids have commonly been used for symptom relief of
abdominal pain associated with inflammatory bowel disorders (IBDs) [88–91]. Studies
by Storr et al. (2014) assessed cannabis usage in patients with IBDs. Their results found
that 17.6% of IBD patients used cannabis for symptom relief, 83.9% of whom reported
that cannabis improved abdominal pain [92]. Similarly, Naftali et al. (2011) performed
a retrospective, observational study to describe the effects of cannabis use on patients
suffering from Crohn’s disease. They found that cannabis significantly improved scores on
the Harvey Bradshaw index, which assesses abdominal pain, general well-being, number of
liquid stools, abdominal mass, and complications [93]. The authors later completed the first
randomized, double-blind, placebo-controlled trial treating Crohn’s disease patients with
marijuana cigarettes (300 mg/day). Patients in the cannabis group reported significantly
less abdominal pain compared to placebo. Furthermore, two patients who treated severe
abdominal pain with opiates stopped opiates during the study [94].

Inflammatory pain is a major clinical problem affecting patients’ quality of life. As
CBR2s are primarily expressed in immune cells, including macrophages, microglial cells,
lymphoid myeloids, and mast cells, they present a potential target for treating inflammatory
pain. Studies by Yuill et al. (2017) found that the selective CBR2 agonist (JWH-133) pro-
duced dose-dependent anti-nociception effects in both the acute and inflammatory phases
of the formalin test. Furthermore, administration of the CBR2 antagonist SR2 blocked the
anti-nociception effects of JWH-133, demonstrating that these effects are mediated through
activation of CBR2 [95]. Similarly, studies by Hsieh et al. (2011) assessed the efficacy of
CBR2 agonists in the complete Freund’s adjuvant (CFA) model of chronic inflammatory
pain. They found that CFA administration into the central footpad leads to the upregula-
tion of CBR2. Treatment with the CBR2 selective agonist A-836339 produced a significant
reversal of the CFA-induced decrease in paw withdrawal latency. Systemic administration
of the CBR2 selective antagonist SR144528 reversed the A-836339 anti-hyperalgesia effect
while the CBR1 selective antagonist did not, indicating that the effects of A-836339 are
mediated through activation of the CBR2 [96]. In humans, cannabinoids have shown
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efficacy in reducing the inflammatory pain associated with MS and arthritis. Studies by
Rog et al. (2005) found that administration of an oromucosal spray containing 2.7 mg of
∆9-THC and 2.5 mg of CBD significantly reduced the mean intensity of pain and sleep dis-
turbances compared to placebo [97]. Similarly, Svendsen et al. (2004) demonstrated that the
oral synthetic cannabinoid dronabinol significantly lowered pain intensity scores compared
to placebo [98]. Lastly, studies by Blake et al. (2006) found that Sativex® oromucosal spray
significantly improved pain on movement, pain at rest, and quality of life scores compared
to placebo in patients suffering from pain caused by rheumatoid arthritis [99].

Results from the studies discussed above demonstrate evidence supporting the anal-
gesic effects of cannabinoids for the treatment of pain. Although further research is required
and should focus on exploring the benefits of cannabinoids in controlled clinical trials,
these results support the notion that cannabinoids should be considered as a treatment
option in the management of pain associated with long COVID-19.

3.3. Appetite

The World Health Organization (WHO) defines the most common symptoms of post-
acute COVID-19 to include fatigue, shortness of breath, cognitive dysfunction, persistent
cough, and pain. However, the definition also includes gastrointestinal (GI) issues such
as altered sense of smell and taste, diarrhea, and constipation. In a systematic review of
50 studies by Choudhury et al. (2022), it was found that GI symptoms as part of long-
term COVID-19 occurred in 22% of patients. These symptoms included loss of taste, loss
of appetite, abdominal pain, nausea and vomiting, and diarrhea [100]. Although the
mechanisms behind the GI manifestations occurring following the COVID-19 infection are
not completely understood, they are thought to be related to the increased expression of
ACE-2 in the small bowel mucosa. Prolonged viral shedding in fecal samples has been
reported for nearly five weeks after the patients’ respiratory samples tested negative for
SARS-CoV-2 RNA and could be related to some of the GI symptoms associated with
long COVID-19 [101]. Although the GI manifestations of long COVID-19 are not well
recognized, they are frequently reported in patients suffering from post-acute long COVID-
19 and are likely to result in work-related absences and a decrease in quality of life. Recently,
cannabinoids have been shown to reduce chemotherapy-induced nausea and vomiting
and to improve appetite in those with cancer and HIV/AIDS [102,103]. As such, the
endocannabinoid system presents a potential pharmacological target to modify eating
behaviors and responsiveness to food in those suffering from GI manifestations associated
with post-acute COVID-19.

In an observation study by Weng et al. (2021) analyzing symptoms of post-acute long
COVID-19 12 weeks following the initial infection, nausea and vomiting were reported in
18% and 9% of patients, respectively [104]. The efficacy of cannabis-based medications has
been tested for chemotherapy-induced nausea and vomiting in adults with cancer. Clinical
studies by Meiri et al. (2007) found that oral administration of dronabinol (2.5 mg) showed
similar efficacy in reducing the intensity of nausea and number of vomiting episodes
as ondansetron, a medication commonly administered to prevent nausea and vomiting
in cancer patients. Furthermore, dronabinol performed significantly better at treating
nausea intensity than placebo [105]. A systematic review by Smith et al. (2015) found that
cannabinoids were highly effective anti-emetics. Patients who received cannabinoids were
five times more likely to report a complete absence of vomiting and three times more likely
to report a complete absence of both nausea and vomiting compared to those who received
placebo. Additionally, there was no significant difference between cannabinoids and the
anti-emetic prochlorperazine in the proportion of patients reporting no nausea, no vomiting,
or complete absence of the two [106]. Similar results were reported in a systematic review
by Rocha et al. (2008), who found that dronabinol had better acute anti-emetic efficacy than
conventional anti-emetic drugs (prochlorperazine, chlorpromazine, domperidone, haloperidol,
alizapride, and metoclopramide) on cancer patients treated with chemotherapeutic agents.
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Patients taking dronabinol reported fewer vomiting episodes and a greater improvement in
the severity of nausea compared to conventional anti-emetics [107].

In addition to the reported nausea and vomiting, olfactory dysfunctions following
viral infections have profound impacts on quality of life as they alter the typical eating
experience and how food tastes and smells. In addition to loss of taste/smell, parosmia
and dysgeusia have been reported as symptoms of post-acute COVID-19. These symptoms
are related to a loss of appetite, with patients reporting a fear of eating due to food tasting
and smelling unpleasant [108].

The endocannabinoid system is known to be involved in appetite, eating behavior,
and body weight regulation. Endocannabinoids acting at the CBR1 stimulate appetite,
partly through interactions with orexigenic and anorexigenic signals. The endocannabi-
noids anandamide and 2-AG have been shown to promote feeding when administered into
hypothalamic nuclei and into the shell of the nucleus accumbens, regions firmly associated
with eating motivation [109]. Preclinical studies have shown that the exogenous cannabi-
noid ∆9-THC and the endocannabinoid anandamide stimulate eating in rats. Williams et al.
(2002) found that administration of ∆9-THC (0.56 to 1.8 mg/kg) produced hyperphagia
and increased consumption of a high-fat diet when administered to rats. Furthermore,
the hyperphagia and preference for a high-fat diet produced by ∆9-THC administration
were blocked by the CBR1 inverse agonist SR-141716 [110]. In a clinical study assessing
the use of dronabinol as a treatment for AIDS-related anorexia, Beal et al. (1995 found
that dronabinol (2.5 mg, twice daily) significantly increased appetite above baseline. Fur-
thermore, weight remained stable in dronabinol patients, while patients receiving placebo
had a mean loss of 0.4 kg [111]. Currently, dronabinol and nabilone are approved by the
FDA for HIV/AIDS-induced loss of appetite and for nausea and vomiting associated with
cancer chemotherapy in adult patients who failed conventional anti-emetics [112].

4. Therapeutic Applications
4.1. Routes of Administration

Throughout this review, many routes of administration are discussed, including
oral oils, capsules, and solutions (e.g., Dronabinol and Nabilone), oromucosal sprays
(e.g., Sativex® and Nabiximols), and smoked or vaporized cannabis. In the studies dis-
cussed above, routes of administration vary, and little is known to what degree results can
be generalized to other routes of administration. It is well known that the effects of medical
cannabis vary by route of administration in terms of onset of action, desired benefits,
and side effects, but there is a lack of research comparing the medicinal benefits across
administration routes. Although smoking and vaporizing cannabis are often preferred by
patients, as they provide the fastest onset of effects, it is possible that the potential benefits
of cannabinoid treatments are outweighed by the negative respiratory health consequences
associated with smoking. Studies have suggested that the use of cannabis vaporizers is
associated with fewer respiratory symptoms than smoking cannabis, as they do not heat
marijuana to the point of combustion [113]. However, limited research has been conducted
comparing the long-term respiratory effects of the two methods of administration, which is
often complicated by the co-morbidity of cannabis and cigarette smoking. Nevertheless,
long-term smoke inhalation through smoking or vaporizers is likely to reduce respiratory
health and is not suggested as a treatment for a respiratory virus. Alternative routes of
administration, such as oral oils, capsules, and oromucosal sprays, have the potential to
reduce the respiratory health risks associated with smoking cannabis and are known to
have longer-lasting effects but slower onset.

To date, there is a broad range of cannabis-based products available in many countries
with a prescription or through authorized retailers where cannabis is legal. However, very
little is known about the efficacy, dose, or side effects of commonly used, commercially
available cannabis products. These products often contain a combination of cannabinoids
and hundreds of other compounds with poorly understood effects. Synthetic cannabinoid
products have similar effects to natural cannabis but show differences in their selectivity,
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potency, and function. Although their dose can be carefully titrated, these drugs bind
cannabinoid receptors with a higher affinity than cannabis, are more potent, and have the
potential for adverse effects. Future research is needed to compare the various routes of
administration, forms, and combinations of cannabinoids.

4.2. Limitations and Recommendations

Cannabis and cannabinoid-based drugs have shown promise in preventing viral entry,
acting as an anti-inflammatory agent, and improving many symptoms associated with
post-acute SARS-CoV-2 infections. However, these results do not come without limitations.
Firstly, the potential for the use of cannabis and cannabinoid-based drugs is limited to
adults. Although limited studies have been conducted assessing its therapeutic use in
youth and early adulthood, research has shown that cannabis use in these populations may
alter neurodevelopment and increase the risk of psychotic symptoms [114]. Additionally,
cannabinoid products, like many other treatments, should not be used by individuals who
are pregnant, planning to become pregnant, or breastfeeding.

Secondly, there is a lack of standardization for commercially available cannabis prod-
ucts. Levels of cannabinoids can vary significantly depending on the strain, growth
conditions, and preparation methods. This variability makes it difficult to ensure consistent
dosing. Furthermore, individuals may react differently to cannabis. It is important to
note that many factors (i.e., metabolism, health conditions, genetics) may influence how
a patient reacts to cannabis, and like most therapies, cannabinoid therapies should be
individualized for the patient. Each patient should have a comprehensive assessment and
risk–benefit discussion to avoid potential complications. A conservative dosing and titra-
tion protocol beginning with a lower and slower dose may be preferred to assess tolerability.
When prescribing cannabis, clinicians should also consider the chemical phenotype of the
cannabis plant, as different strains contain different concentrations and combinations of
cannabinoids. Medicinal cannabis can be bred to have a specific chemical phenotype that is
high in the desired cannabinoid. Cannabis containing cannabinoids activating the CBR1,
such as ∆9-THC, can cause unwanted psychoactive effects that need to be considered even
at low doses. These central effects can cause a decrease in alertness, prevent the patient
from operating heavy machinery, and may have occupational and recreational hazards. Pre-
scribing clinicians may consider dosing CBR1 agonists in the evenings to prevent potential
issues with work and day-to-day activities.

Lastly, there is a lack of well-controlled, double-blind, randomized clinical trials
assessing the medicinal benefits of cannabis and cannabinoid-based products. Studies are
generally short in duration and have small sample sizes. More clinical trials are needed,
as well as additional research on the pharmacology, pharmacokinetics, and mechanism of
action of medical cannabis, in order to develop more targeted treatments.

5. Conclusions

Endocannabinoid system modulation presents as a potential target in early and post-
acute SARS-CoV-2 infections. The existing literature suggests that the ECS plays a crucial
role in regulating the immune system and inflammatory processes. Cannabinoids have the
potential to be used as a preventive approach to limiting the susceptibility and severity of
COVID-19 infections by preventing viral entry, mitigating oxidative stress, and alleviat-
ing the associated cytokine storm. Furthermore, cannabis and cannabinoid-based drugs
have shown promise in treating many symptoms associated with post-acute COVID-19
syndrome. Although ECS modulation holds potential as a treatment strategy, it is im-
portant to acknowledge the limitations of this scoping review. The majority of studies
supporting ECS modulation as a treatment strategy have been conducted in contexts other
than COVID-19, and therefore extrapolation of these findings to SARS-CoV-2 infections
requires caution. To fully understand the efficacy and safety of cannabinoid-based drugs
in the context of COVID-19, further research is required. Clinical trials and well-designed
studies are necessary to assess the underlying mechanisms, determine optimal dosages
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and dosing schedules, and investigate the safety and potential side effects associated with
ECS modulation in the context of viral infections. Therefore, despite the promising outlook,
a comprehensive understanding of these aspects is crucial for establishing the therapeutic
potential of cannabinoids and ECS modulation on the onset of COVID-19 and lingering
symptoms associated with long COVID-19.
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