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Abstract: Artificial intelligence (AI) is an interdisciplinary field that encompasses a wide range of
computer science disciplines, including image recognition, machine learning, human−computer
interaction, robotics and so on. Recently, AI, especially deep learning algorithms, has shown excellent
performance in the field of image recognition, being able to automatically perform quantitative
evaluation of complex medical image features to improve diagnostic accuracy and efficiency. AI
has a wider and deeper application in the medical field of diagnosis, treatment and prognosis.
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China and Southeast Asian countries
and is the most common head and neck cancer in the region. Detecting and treating NPC early is
crucial for a good prognosis. This paper describes the basic concepts of AI, including traditional
machine learning and deep learning algorithms, and their clinical applications of detecting and
assessing NPC lesions, facilitating treatment and predicting prognosis. The main limitations of
current AI technologies are briefly described, including interpretability issues, privacy and security
and the need for large amounts of annotated data. Finally, we discuss the remaining challenges and
the promising future of using AI to diagnose and treat NPC.

Keywords: artificial intelligence; nasopharyngeal carcinoma; nasopharyngoscopy; pathological
biopsy; diagnosis; treatment; prognosis

1. Introduction

Nasopharyngeal carcinoma (NPC), an epithelial carcinoma developing in the nasophar-
ynx mucosal, is often observed at the pharyngeal recess [1]. Diagnosing NPC involves an
endoscopy followed by an endoscopic biopsy of the suspected site [2,3]. Endoscopic biopsy
may miss small cancers located submucosally or laterally to the pharyngeal crypt, which
presents significant diagnostic challenges. Early diagnosis of NPC is difficult because of the
late onset of symptoms and special anatomical structure. In most cases, NPC patients are di-
agnosed late, resulting in poor prognoses [4]. Local control rates have reached 95% in early
NPC cases owing to the swift advancement of imaging techniques and radiotherapy [5].
Advanced-stage patients still have dismal outcomes, while advanced radiotherapy tech-
niques and chemotherapy strategies have improved NPC prognosis [6,7]. Thus, it would
be interesting to know if artificial intelligence (AI) can improve the diagnosis, therapy and
prognosis prediction of NPC.

AI is a subdiscipline of computer science that recognizes the nature of intelligence and
creates a new type of intelligent machine that can exhibit human-like behaviors [8]. AI is
utilized in many areas, including medicine, communication, transportation and finance,
among others [9]. AI is mainly used for disease diagnosis, treatment and prognosis predic-
tion in the medicine area. Medical AI has two major branches: virtual and physical [10].
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The virtual part of AI is composed of deep learning (DL) and machine learning (ML), which
offer a potential way to construct robust computer-assisted approaches. The physical part
of AI encompasses robots and medical devices [10]. Several recent studies have shown that
AI can improve early diagnosis efficiency as well as the prognosis of NPC patients, through
its application in diagnosis and treatment [11–13].

There are some reviews on the application of AI in NPC [13,14]. However, AI tech-
niques are advancing so fast that it is necessary to update these reviews frequently. In
this review, we analyze and summarize the research progress and clinical application of
AI technologies in the diagnosis, treatment and prognosis prediction of NPC. We provide
a complete picture of the current status of AI in the main clinical areas. We also study
the state of the clinical implementation of AI and the effort needed to make progress in
this area. We hope that this information will be helpful to both clinicians and researchers
interested in the utilization of AI in the clinical care of NPC.

2. AI and Its Technologies

In the last decades, many medical imaging techniques have played a key role in
the early detection, diagnosis and treatment of diseases, such as ultrasound, computed
tomography (CT), magnetic resonance imaging (MRI) and positron emission computed
tomography (PET-CT) [15]. Recently, significant advances have been made in AI, which
allows machines to automatically analyze and interpret complex data [16]. AI is frequently
used in some medical fields like oncology, radiology and pathology, which require accurate
and plentiful image data analysis. Physicians usually detect, describe and monitor head
and neck diseases by visually assessing head and neck medical images. This assessment is
often based on experience and can be subjective. In contrast to qualitative reasoning, AI
can make quantitative assessments by automatically recognizing imaging information [17].
AI, including traditional ML and DL, enables physicians to make more accurate and faster
imaging diagnoses and greatly reduces workload.

Traditional ML algorithms are one of the AI approaches in medical imaging, which
heavily rely on the pre-defined engineering features. These are defined by mathematical
equations (e.g., tumor texture) and thus can be quantified using computer programs.
Features are entered into ML models to help physicians classify patients and make clinical
decisions. Traditional ML includes a large number of established methods, such as k-
nearest neighbors (KNN), support vector machines (SVM), random forests (RF) and so on.
These methods are widely used in radiology to convert image data into feature vectors
through image processing methods. Predictive models are built by using these vectors
to derive certain information from the same image data and then generating traditional
ML. Radiomics have been evaluated in some small retrospective studies, which attempt to
predict tissue subtypes, response to certain treatments, prognosis and other information
from medical images of tumors.

DL, as a subset of ML, is based on a neural network structure inspired by the human
brain. ML models must define and extract features from images and their performance
depends on the quality of the features. In contrast, DL algorithms do not have to define
features in advance [18]. They can automatically learn features and perform image classifi-
cation and task processing. This data-driven model is more informative and practical. DL
algorithms commonly used in medical image analysis and processing include the artificial
neural network (ANN), deep neural network (DNN), convolutional neural network (CNN)
and recurrent neural network (RNN). Currently, CNN is the most popular type of DL
architecture in the field of medical image analysis [19]. The CNN consists of multiple
layers, usually including convolutional, pooling and fully connected layers. The pixels in
an image are aggregated and transformed by clustering through the convolutional layer to
automatically extract high-level features. The deep convolutional neural network (DCNN)
uses more convolutional layers and a larger parameter space to fit large-scale datasets.
U-net uses full convolutional layers and image enhancement to obtain good accuracy with
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limited datasets. RNN is particularly unique in processing time series data. Different DL
algorithms have different characteristics and application scenarios.

3. Screening of Studies

We performed a search using the following query: (“artificial intelligence” OR “ma-
chine learning” OR “deep learning”) AND (“nasopharyngeal carcinoma” OR “nasopharyn-
geal cancer”). Using the search phrase, a search of research articles from the past 15 years
to March 2023 was performed on Springer, Google Scholar, PubMed and Embase. Because
there are no indicators or validation protocols of consensus for the evaluation of each
model’s performance, a holistic profile of this field was provided instead of a meta-analysis.
From this perspective, loose inclusion and exclusion criteria were set (Table 1). Finally, a
total of 76 studies were included after following the inclusion and exclusion criteria.

Table 1. Inclusion and exclusion criteria of the study.

Exclusion Inclusion

Papers that were not written in English. Journal articles published in the English language.
Full text of the document is not accessible on the internet. Full-text papers that are accessible.
Relevant studies that are not based on deep learning or machine
learning were used for modeling. Machine learning algorithms were used for modeling.

The information of samples, the image data used, the modeling
method or evaluation method are not described. Deep learning algorithms were used for modeling.

Conferences papers, literature reviews and editorial materials
that do not belong to original researchers.

The samples, the image data used, the modeling method and
evaluation method are described in detail.

Only studies using AI techniques in NPC were selected. Table 1 shows the exclusion
and inclusion criteria which were applied to papers based on the purpose of our review.

4. Applications of AI to NPC

In the Lancet, a train of reviews entitled “Nasopharyngeal carcinoma” is published
every few years [1,20–22]. In recent years, medical AI has been gaining popularity in the
research of NPC. Many researchers have devoted themselves to NPC prediction of tumor
detection, prognosis and efficacy of radiotherapy and chemotherapy (Figure 1).

4.1. AI and NPC Diagnosis

The diagnosis of NPC is a prerequisite for appropriate treatment, which can be divided
into qualitative and staging diagnoses. Currently, qualitative diagnosis of NPC is domi-
nated by the collection of biopsy tissue during endoscopy for pathological examination.
Staging diagnosis mainly depends on imaging examinations, such as CT, MRI and PET-CT.

The fiberoptic nasopharyngoscope is a fiberoptic device that can magnify suspicious
lesions up to thousands of times through the microscope’s visualization technique. The
surgeon can use their own surgical forceps to biopsy the suspicious lesion tissue. The
biopsy tissue is then selected and made into paraffin sections for histological examination
under the microscope, with the help of electron microscopy or immunohistochemistry if
necessary. CT scans a certain thickness of the human body with an X-ray beam, and the
detector receives the X-rays passing through that layer. The converter converts the X-rays
into digital signals, and the computer uses the digital signals to generate images. MRI uses
the principle of nuclear magnetic resonance to detect the electromagnetic waves emitted by
an applied gradient magnetic field. The magnetic field is based on the attenuation of the
energy released in different structural environments within a substance, and can be used
to map the internal structure of an object. PET-CT selectively reflects the metabolism of
tissues and organs based on tracers, and the physiological, pathological, biochemical and
metabolic changes of human tissues at the molecular level. At the same time, CT images
are corrected for full energy attenuation of nuclear medicine images. Thus, the nuclear
medicine images are able to completely achieve quantitative purposes and highly improve
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the accuracy of diagnosis, which realizes the complementary information of functional
images and anatomical images.
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Figure 1. The application of AI in NPC diagnosis and treatment.

It is difficult to perform accurate tumor diagnosis owing to the complexity of tumor
symptoms and individual differences. AI technologies can help clinicians reduce their
workload and improve the readability of imaging images, which leads to the improvement
of accuracy and efficiency in diagnosing.

4.1.1. AI Application in Nasopharyngoscopy

Nasopharyngoscopy allows direct observation of lesions on the nasopharyngeal wall,
and physicians can analyze and screen lesion images to determine whether the lesions are
associated with NPC. NPC diagnosis is currently done by visualizing suspicious tissue
sites through using white-light reflectance endoscopy and taking biopsies. In previous
studies, researchers developed different AI models using nasopharyngeal endoscopic
images to distinguish NPC from nasopharyngeal benign hyperplasia. The studies showed
that detection of NPC was not significantly different [23] or even performed better than that
of radiologists [24]. In 2018, Mohammed et al. had three studies focusing on the detection
of NPC using neural networks based on nasopharyngeal endoscopic images [25–27]. In
all three studies, they used different neural network models and all achieved very good
accuracy, sensitivity and specificity. Using 27,536 white-light imaging nasopharyngoscopy
images, Li et al. developed a DL model for detecting NPC, reporting an accuracy of 88.7%
and 88.0% on retrospective and prospective test sets, respectively [28].

However, conventional white-light endoscopy tends to miss superficial mucosal le-
sions. For this, Xu et al. designed and trained a Siamese DCNN, which can use white
light and narrowband imaging images to enhance the performance of classification for the
identification of NPC and non-carcinoma. They collected 4783 nasopharyngoscopy images
for DL and validated the predictive power of the model for nasopharyngoscopy results.
The overall accuracy and sensitivity of the model were 95.7% and 97.0% according to the
prediction level of the patients [29].



J. Clin. Med. 2023, 12, 3077 5 of 24

Furthermore, the identification of normal tissues and treated NPC is a clinical chal-
lenge. For this reason, researchers developed a DL-based platform for fiber-optic Raman
diagnostics. This platform utilizes multi-layer Raman-specific CNN. The optimized model
can distinguish NPC from control and post-treatment patients with 82.09% diagnostic
accuracy. The research team took a closer look at the saliency map of the best model. This
map reveals specific Raman signatures associated with cancer-associated biomolecular
variations [30].

4.1.2. AI Application in Pathological Biopsy

A pathological biopsy in diagnosing NPC is required but remains challenging be-
cause of the non-keratinized carcinomas with little differentiation and many admixed
lymphocytes in most samples. However, the diagnostic results of biopsy samples are often
subjectively assessed by pathologists, which can lead to differences between observers. Di-
agnosing NPC by pathologists is ineffective and usually causes inconsistency in the results.
Biopsy samples can be automatically classified and diagnosed by using AI techniques,
which can improve diagnostic accuracy and efficiency, and reduce costs. The researchers
trained and validated a DL model using 726 NPC biopsy specimens, reporting 0.9900
and 0.9848 areas under receiver operator characteristic curves (AUCs) at patch level and
slide level, respectively [31]. Other researchers have also developed similar DL-dependent
automated pathology diagnosis models. The model is based on the validation dataset
and achieves an AUC of 0.869 for NPC diagnosis [32]. The outcomes indicate that the DL
algorithm can recognize NPC and help pathologists improve their efficiency and accuracy.

In conclusion, AI plays an important role in recognizing and processing images, and
in tissue segmentation in NPC (Table 2). While some applications of AI have yet to be fully
realized, its potential in assisting NPC diagnosis is unquestionable.

Table 2. Summary of AI models for NPC diagnosis session.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best Algorithm
Performance

Wong et al., 2021
[23]

NPC early
detection CNN 412 individuals CNN AUC: 0.960

Ke et sl., 2020 [24] NPC detection and
segmentation SC-DenseNet 4100 individuals SC-DenseNet Accuracy: 0.978

Mohammed et al.,
2018 [25] NPC detection ANN 381 endoscopic images ANN Accuracy: 0.962

Mohammed et al.,
2020 [26] NPC detection ANN, region

growing method 249 endoscopic images ANN Precision: 0.957

Abd Ghani et al.,
2020 [27] NPC detection ANN, SVM, KNN 381 endoscopic images ANN Accuracy: 0.941

Li et al., 2018 [28] NPC detection fully convolutional
network

27,536 biopsy-proven
images of 7951 patients

fully convolu-
tional

network

Overall
Accuracy: 0.887

Xu et al., 2022 [29] NPC diagnosis DCNN 4783 nasopharyngoscopy
images of 671 patients DCNN AUC: 0.986

Shu et al., 2021 [30]
NPC diagnosis and

post-treatment
follow-up

RS-CNN
15,354 FP/HW in vivo
Raman spectra of 418

subjects
RS-CNN Overall accuracy:

0.821

Chuang et al., 2020
[31] NPC identification CNN 726 nasopharyngeal

biopsies CNN AUC: 0.985

Diao et al., 2020
[32] NPC identification Inception-v3 1970 whole slide images of

731 cases Inception-v3 AUC: 0.930

AI, artificial intelligence; NPC, nasopharyngeal carcinoma; CNN, convolutional neural network; AUC, area
under the receiver operator characteristic curve; ANN, artificial neural network; SVM, support vector machines;
KNN, k-nearest Neighbors; DCNN, deep convolutional neural network; FP, fingerprint; HW, high -wavenumber;
RS-CNN, Raman-specified convolutional neural networks.

4.2. AI and NPC Therapy

Major treatments for NPC include radiotherapy, chemotherapy and other integrated
approaches. The application of AI techniques in NPC treatment can help clinicians design
more personalized and accurate treatment plans for patients. The prediction of chemother-
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apy response and the precision of the radiotherapy process are usually combined with AI
techniques in NPC therapy.

4.2.1. AI Application in NPC Chemotherapy

Chemotherapy combined with radiotherapy is a great improvement in treating ad-
vanced NPC. Accurate pre-chemotherapy assessment can help NPC patients choose per-
sonalized treatment and improve their prognosis. In 2020, a research group developed
a radiological map that integrates clinical data with radiomic features to predict the re-
sponse and survival of NPC patients who received induced chemotherapy (IC). Based on
survival analysis, IC responders had a significant advantage over non-responders in terms
of progression-free survival [33]. In a study by Yang et al., CT texture analysis was used
as a basis for developing a DL model to identify responders and non-responders to NPC
IC. They extracted the DL features of the pre-trained CNN by a transfer learning method,
and established the best performance model ResNet50 by SVM classification. The model
demonstrated an AUC of 0.811 [34]. These models could be used to predict the treatment
response to IC in locally advanced NPC, and might be a practical tool in deciding treatment
strategies.

A pre-trained network is a saved CNN that has been previously trained on a large
dataset. The original dataset is large and general enough that the spatial hierarchy learned
by the pre-trained network can be used as an effective model for extracting features from
the visual world. Even if the new problem and task are different from the original task, the
learned features are portable between problems, which is an important advantage of DL. It
makes DL very effective for small data problems.

To assess the effectiveness of DL on PET-CT-based radiomics for individual IC in
advanced NPC, Peng et al. created radiomic signatures and nomograms. Based on a nomo-
gram imaging analysis, high-risk and low-risk patients were divided into two groups, with
high-risk patients benefiting from IC and low-risk patients not. Using it as a management
tool for advanced NPC in the future would be a novel and helpful innovation [35].

4.2.2. AI Application in NPC Radiotherapy

Radiotherapy is an indispensable treatment for NPC, in which tumor target segmen-
tation and dose calculation are particularly critical. However, the overall radiotherapy
planning process is always affected by image quality and the heavy workload of contouring
tumor targets. Researchers have applied AI to radiotherapy planning to address these
issues.

Image quality is fundamental to the whole of radiotherapy planning. However, high-
quality CT images are usually not available owing to machine limitations and avoidance of
human radiation during radiotherapy. AI can be used to enhance image quality. Tomother-
apy uses megavoltage CT to verify the set-up and adapt radiotherapy, but its high noise
and low contrast make the images inferior. In a study by Chen et al., synthetic kilovoltage
CT was generated by using a DL approach. In the phantom study, synthetic kilovoltage
CT showed significantly higher signal-to-noise ratio, image homogeneity and contrast
ratio than megavoltage CT [36]. Li et al. used DCNN to generate synthetic CT images
based on cone-beam CT and applied the images to dose calculation for NPC [37]. Similarly,
Wang et al. applied DCNN to produce CT images based on T2-weighted MRI. Compared
with real CT, most of the soft tissue and bone areas can be accurately reconstructed with
synthetic CT [38]. Researchers developed an advanced DCNN architecture to generate
synthetic CT images from MRI for intensity-modulated proton therapy treatment planning
for NPC patients. The (3 mm/3%) gamma passing rates were above 97.32% for all synthetic
CT images [39]. Through these methods, the image quality can be enhanced, which is
conducive to tumor segmentation and dose calculation.

In addition, unimodal images are usually unable to provide enough information to
accurately depict the tumor target region. As complementary information is provided
by multiple form images, better radiotherapy treatment plans can be developed. In 2011,
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one study constructed a method utilizing weighted CT-MRI registration images for NPC
delineation, called “SNAKE” [40]. Ma et al. developed a multi-modal segmentation
structure using CNN, which is composed of multi-modal CNN and combined CNN for
automatic NPC segmentation of CT and MR images [41]. Chen et al. developed a novel
multi-modal MRI fusion network to accurately segment NPC [42]. Zhao et al. presented a
method for automatically segmenting NPCs on dual-modality PET-CT images based on
completely convolutional networks with auxiliary paths [43].

In current clinical practice, targets and organs-at-risk (OARs) are normally delin-
eated manually by clinicians on CT images, which is tedious and time consuming. To
address these issues, many automatic segmentation methods have been proposed by re-
searchers. In one study, researchers proposed an adaptive thresholding technique based
on self-organizing maps for semiautomated segmentation of NPC [44]. In addition, the
team developed techniques based on region growing for segmentation of CT images for
identifying NPC regions [45,46]. Bai et al. proposed an NPC-Seg DL algorithm for NPC
segmentation using a location segmentation framework. In this study, the proposed al-
gorithm was evaluated online on the StructseG-NPC dataset, and a 61.81% average dice
similarity coefficient (DSC) was obtained on the test dataset [47]. Daoud et al. proposed a
CNN model based on DL using a two-stage segmentation strategy to determine the final
NPC segmentation by integrating three results obtained from coronal, axial and sagittal
images. The study concluded that the DSCs of their proposed system were 0.87, 0.85 and
0.91 in the axial, coronal and sagittal profiles, respectively [48]. Li et al. created a DL model
called U-net for NPC segmentation. After the training of the U-net model, the overall
DSC of primary tumor was 74.00% [49]. In addition, many researchers have developed
some improved models based on the U-net model to delineate the target volume of NPC.
Through the training of the model, the final model obtained good DSC (0.827–0.84) [50–52].
Men et al. constructed an end-to-end deep deconvolutional neural network (DDNN) to
segment nasopharyngeal gross tumor volume and clinical target volume. The performance
of the DDNN and VGG-16 models are compared. The DSC values of DDNN were 80.9% of
nasopharyngeal gross tumor volume and 82.6% of clinical target volume, while the DSC
values of VGG-16 were 72.3% and 73.7%, respectively [53].

MRI images provide better soft tissue contrast compared with CT images, which facili-
tates accurate segmentation of the tumor target. There have been many studies on building
various algorithms for NPC segmentation on MRI images. NPC contours were determined
from MRI images using the nearest neighbor graph model and distance regularized level
set evolution [54,55]. Li et al. utilized CNN to create an automatic NPC segmentation
model based on enhanced MRI, and the trained model obtained a DSC of 0.89 [56]. Lin
et al. built a 3D CNN architecture based on VoxResNet to automatically draw primary
gross tumor volume profiles. In this study, 1021 NPCs were included and the trained
model achieved a DSC of 0.79 [57]. Researchers developed a 3D CNN with long-range
jump connections and multi-scale feature pyramids for NPC segmentation. The model has
been trained and achieved a DSC of 0.737 in the tests [58]. Ye et al. successfully developed
a fully automatic NPC segmentation method using dense connectivity embedding U-net
and dual-sequence MRI images, with an average DSC of 0.87 in seven external subjects
with NPC [59]. Luo et al. proposed the augmentation-invariant Strategy and combined it
with the DL model. The final experimental results show that the augmentation-invariant
Strategy is superior to the widely used nnU-net, which can perform highly accurate gross
tumor volume segmentation on MRI for NPC [60].

NPC is highly malignant and invasive. Therefore, it is difficult to distinguish the
boundaries between tumor tissue and normal tissue in a complex MRI context. In order to
solve this background problem, researchers developed a coarse-to-fine deep neural network.
The model firstly predicts the coarse mask based on the well-designed segmentation
module, and then the boundary rendering module, which uses the semantic information
from different feature mapping layers to refine the boundary of the coarse mask. The
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dataset encompassed 2000 MRI sections from 596 patients, and the model had a DSC of
0.703 [61].

CNN shows promising prospects for cancer segmentation on contrast-enhanced MRI,
but some patients are not suitable for the use of contrast media. To address this issue,
Wong et al. used U-net to delineate the primary NPC on non-contrast augmented MRI and
compared it to the contrast-enhanced MRI. U-net showed similar performance (DSC = 0.71)
of fat suppressant (FS)-T2W as enhanced -T1W, and CNN showed promise in depicting
NPCs on FS-T2W images when contrast injection was desired [62].

Automated and precise segmentation of OAR can lead to more precise radiotherapy
planning and reduce the risk of radioactive side effects. Researchers created a risk organ
detection and segmentation network based on DL, and the DSCs of high-risk organ seg-
mentation on CT images ranged from 0.689 to 0.934 [63]. Zhong et al. proposed a cascade
network structure combining DL and the Boosting algorithm for segmentation of the organs-
at-risk involving parotid gland, thyroid gland and optic nerve, with corresponding DSCs
of 0.92, 0.92 and 0.89, respectively [64]. Peng et al. designed OrganNet, an improved full
convolutional neural network for automatic segmentation of OARs, with an average DSC
of 83.75% [65]. Zhao et al. designed an AU-net model based on 3D U-net to automatically
segment the OARs of NPC and obtained a mean DSC value of 0.86 ± 0.02 [66].

The determination of radiotherapy dose also plays an important role in radiotherapy
planning. Researchers developed a gated recurrent unit-based RNN model based on dosi-
metric information to predict treatment plans for NPC. An improved method is proposed
to further improve the dose-volume histogram (DVH) prediction precision and the feasi-
bility of this method for small sample patient data [67]. It is shown that the regenerated
experimental plans (EPs) guided by the gated recurrent unit-based RNN prediction model
achieve good agreement with the clinical plans (CPs). EPs save better doses for many OARs
while still meeting acceptable criteria for planning tumor volume (PTV) [68,69]. Yue et al.
developed a DL method for dose prediction of radiotherapy for NPC based on distance
information and mask information. The predicted dose error and DVH error of the method
were 7.51% and 11.6% lower, respectively, than those of the mask-based method [70]. Sun
et al. developed a DL network based on U-net to predict the dose distribution of patients
based on the anatomical structure information of patients. A total of 117 NPC cases were
included in this study, which showed better organ retention and suboptimal planning
target volume coverage using the voxel strategy [71]. Jiao et al. developed a generalized
regression neural network using geometric and dosimetric information to predict OAR
DVHs. The results showed that the R2 value increased by ~6.7% and the mean absolute
error value decreased by ~46.7% after adding the dosimetric information to the DVH
prediction [72]. Similarly, Chen et al. designed a CNN -based network based on a DL
approach to directly predict the DVHs of OARs. The predicted differences between D2%
and D50 can be controlled to within 2.32 and 0.69 Gy [73].

Some patients with NPC will develop complications after radiotherapy, which can
affect the quality of life and lifespan. However, early diagnosis of the complications is a
challenge. AI can be applied to the initial prediction of possible complications after NPC
radiotherapy. Previous research used the random forest model to construct a radiolog-
ical model for the early detection of radiation-induced temporal lobe injury (RTLI). In
this model, RTLI can be dynamically predicted in advance, allowing early detection and
the possibility of taking preventive measures to limit its progression [74]. Similarly, Bin
et al. extracted radiological features from MRI and built a ML model to generate features.
A nomogram integrating clinical factors was used to predict RTLI within 5 years after
radiotherapy in patients with T4/N0-3/M0 NPC. The C-index of the validation cohort
was 0.82 [75]. Ren et al. developed a prediction model based on a ML algorithm with
dosimetric features. The model outperforms conventional dose-volume factors in predict-
ing possible radiation-induced hypothyroidism in NPC patients receiving radiotherapy
early and taking preventive measures for NPC patients. For prediction performance, the
dosiomics-based prediction model showed better results at the optimal AUC value of 0.7,
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while the dose-volume factor-based prediction model showed better results at 0.61 [76].
To predict radiation-induced xerostomia, Chao et al. developed a clustering model that
included inhomogeneous dose distributions within the parotid gland. The team com-
bined clustering models with ML techniques to provide a promising tool for predicting
xerostomia in head-and-neck-cancer patients [77].

4.2.3. AI Application in the Personalized and Precise Treatment of NPC

Personalized and precise cancer treatment has become a major topic in NPC. Patients
with locally advanced NPC can choose concurrent chemotherapy (CCRT) or IC plus CCRT
as treatment options. However, their choice remains ambiguous. A DL-based NPC treat-
ment decision model developed by researchers can predict the prognosis of patients with
T3N1M0 NPC under different therapy regimens and recommend the optimized therapy
accordingly. It is expected to be a potential tool to promote the individualized treatment
of NPC [78]. The ability to discriminate between the different risks associated with NPC
relapse in patients and to tailor individual treatment has become increasingly important.
An AI model designed by researchers can divide relapse patients into different risk groups,
which has great guidance potential for personalized treatment [79]. Targeted therapy is also
important in treating NPC patients. Researchers developed a mathematical algorithm using
SVM to predict the prognosis of NPC with advanced localization. The algorithm integrated
the expression levels of multiple tissue molecular biomarkers representing tumor-genesis
signaling pathways and serological biomarkers associated with EBV. It may guide future
targeted therapies targeting related signaling pathways [80]. Moreover, the application of
AI in clinical management is not easy to ignore. Previous research developed an automatic
ML scoring system based on MRI data, which surpassed the American Joint Committee on
Cancer (AJCC) [81] TNM system in the prognosis of NPC. Using the new scoring system
can help improve counseling and personalized management of patients with NPC and help
them achieve better outcomes [82].

With the arrival of the big data era, NPC therapy will become more personalized and
precise (Table 3). The development of AI can not only effectively relieve clinicians, but also
provide more accurate and humane medical services to patients.

Table 3. Summary of AI applications for NPC treatment sessions.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best Algorithm
Performance

Zhao et al., 2020
[33]

IC treatment
response and

survival prediction
SVM Multi-MR images

of 123 patients SVM C-index: 0.863

Yang et al., 2022
[34]

IC treatment
response

prediction

CNN, Xception,
VGG16,
VGG19,

InceptionV3,
InceptionResNetV2

Medical records of
297 patients CNN AUC: 0.811

Peng et al., 2019
[35]

IC treatment
response

prediction
DCNN PET-CT images of

707 patients DCNN C-index: 0.722

Chen et al., 2021
[36]

Synthetic CT
generation and

tumor
segmentation

CycleGAN-
Resnet,

CycleGAN-
Unet

Planning kV-CT
and MV-CT images

of 270 patients

CycleGAN-
Resnet

Improvement:
CNR 184.0%

image uniformity 34.7%
SNR 199.0%
DSC: 0.790

Li et al., 2019 [37]
synthesized CT
generation and

dose calculations
DCNN 70 CBCT/CT

paired images DCNN

MAE: improved from (60,
120) to (6, 27) HU

PTVnx70 1%/1 mm
gamma pass rates:

98.6% ± 2.9%
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Table 3. Cont.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best Algorithm
Performance

Wang et al., 2019
[38]

synthetic CT
generation DCNN CT/MRI images of

33 patients DCNN

MAE:
Soft tissue

97 ± 13 HU
Bone 357 ± 44 HU

Chen et al., 2022
[39]

synthetic CT
generation DCNN CT/MRI images of

206 patients DCNN
The (3 mm/3%) gamma
passing rates were above

97.32%

Fitton et al., 2011
[40] NPC delineation “Snake”

algorithm
CT-MR images of

5 patients
“Snake”

algorithm

Reducing the average
delineation time by 6 min

per case

Ma et al., 2019 [41] NPC segmentation
C-CNN,
M-CNN,
S-CNN

CT-MR images of
90 patients C-CNN

PPV:
CT image 0.714 ± 0.089
MR image 0.797 ± 0.109

Chen et al., 2020
[42] NPC segmentation 3D-CNN,

U-net,3D U-net
MRI images of

149 patients 3D-CNN DSC: 0.724

Zhao et al., 2019
[43] NPC segmentation

Fully
convolutional

neural
networks

PET-CT scans
images of

30 patients

Fully
convolutional

neural
networks

Mean dice score: 0.875

Weerayuth
Chanapai et al.,

2009 [44]
NPC Segmentation SOM

Technique
CT images of
131 patients

SOM
Technique

CR: 0.620
PM: 0.730

Tatanun et al., 2010
[45] NPC segmentation

Region
growing

technique

97 CT Images of
12 cases

Region
growing

technique
Accuracy: 0.951

Chanapai et al.,
2012 [46]

NPC region
segmentation

Seeded region
growing

technique

578 CT images of
31 patients

Seeded region
growing

technique

CR: 0.690
PM: 0.825

Bai et al., 2021 [47] GTV segmentation ResNeXt-50
U-net

CT images of
60 patients

ResNeXt-50
U-net DSC: 0.618

Daoud et al., 2019
[48] NPC segmentation CNN, U-net CT images of

70 patients CNN DSC: 0.910

Li et al., 2019 [49] NPC Segmentation U-net CT images of
502 patients U-net DSC: 0.740

Xue et al., 2020 [50] CTVp1
segmentation SI-net 150 NPC patients SI-net DSC: 0.840

Jin et al., 2020 [51] GTV
Segmentation ResSE-UNet

1757 annotated
CT slices of
90 patients

ResSE-UNet DSC: 0.840

Wang et al., 2020
[52] GTV delineation

3D U-net, 3D
CNN, 2D
DDNN

CT images and
corresponding

manually
delineated target

of 205 patients

3D U-net DSC: 0.827

Men et al., 2017
[53]

Target
segmentation

DDNN,
VGG-16 230 patients DDNN

DSC:
GTVnx 0.809

CTV 0.826

Huang et al., 2013
[54] NPC Segmentation

Clustering and
Classification-

Based Methods
with Learning,

SVM

253 MRI slices

Clustering and
Classification-

Based Methods
with Learning

PPV: 0.9345
Sensitivity: 0.9776

Huang et al., 2015
[55] NPC segmentation

Distance
regularized

level set
evolution

MR images of
26 patients

Distance
regularized

level set
evolution

CR: 0.913
PM: 91.840
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Table 3. Cont.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best Algorithm
Performance

Li et al., 2018 [56] NPC segmentation CNN MR images of
29 patients CNN DSC: 0.890

Lin et al., 2019 [57] NPC segmentation 3D CNN MR images of
1021 patients 3D CNN DSC: 0.790

Guo et al., 2020
[58] NPC segmentation

3D-CNN, 3D
U-net, V-net,

DDnet,
DeepLab-like,
CNN-based

MRI images of
120 patients 3D-CNN DSC: 0.737

Ye et al., 2020 [59] NPC segmentation

Dense
connectivity
embedding

U-net

MRI images of
44 patients

Dense
connectivity
embedding

U-net

DSC: 0.870

Luo et al., 2023 [60] GTV delineation

augmentation-
invariant
Strategy,
nnU-net

MRI images of
1057 patients

augmentation-
invariant
Strategy

DSC: 0.88

Li et al., 2020 [61] NPC segmentation

ResNet-101,
U-net,

Attention
U-net,

BASNet,
DANet,
Unet++,

RefineNet

2000 MRI slices
of 596 patients ResNet-101 DSC: 0.703

Wong et al., 2021
[62] NPC delineation U-net, CNN

non-contrast-
enhanced MRI of

195 patients
U-net DSC: 0.710

Liang et al., 2019
[63]

OARs detection
and segmentation CNN CT images of

180 patients CNN DSC: 0.689–0.934

Zhong et al., 2019
[64]

OARs
segmentation

Boosting-based
cascaded CNN,

FCN, U-net

CT images of
140 patients

Boosting-based
cascaded CNN

DSC:
Parotids 0.923
Thyroids 0.923

Optic nerves 0.893

Peng et al., 2023
[65]

OARs
segmentation

fully
convolutional

neural
network, U-net

CT images of
310 patients

fully
convolutional

neural network
DSC: 0.8375

Zhao et al., 2022
[66]

OARs
segmentation U-net CT images of

147 patients U-net DSC: 0.86

Zhuang et al., 2021
[67] DVH prediction GRU-RNN 80 VMAT plans GRU-RNN

coefficient r:
EUD 0.976

Maximum dose 0.968

Cao et al., 2020 [68] DVH prediction GRU-RNN 100 VMAT plans GRU-RNN
PTV70

CPs: 70.71 ± 0.83
EPs: 70.77 ± 0.28

Zhuang et al., 2019
[69] DVH prediction GRU-RNN 124 VMAT plans GRU-RNN

PTV70
CPs: 70.90 ± 0.54
EPs: 71.40 ± 0.51

Yue et al., 2022 [70] Dose prediction 3D U-net
Radiotherapy

datasets of
161 patients

3D U-net GTVnx 3 mm/3% gamma
pass rate: 95.445%

Sun et al., 2022 [71] Dose prediction U-net 117 NPC patients U-net PTV70.4 D95(Gy):
70.4 ± 0.0
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Table 3. Cont.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best Algorithm
Performance

Jiao et al., 2019 [72] DVH prediction GRNN 106 nine-field
IMRT plans GRNN Brainstem R2: 0.98 ± 0.02

Spinal cord R2: 0.98 ± 0.02

Chen et al., 2021
[73]

OARs DVHs
prediction CNN 180 cases CNN

D2%(Gy):
Brain stem PRV

0.06 ± 4.31
Spinal cord PRV
−0.69 ± 1.77

Zhang et al., 2020
[74]

RTLI early
detection RF MR images of

242 patients RF AUC: 0.83

Bin et al., 2022 [75] RTLI prediction SVM, RF
98 stage

T4/N0e3/M0 pa-
tients

SVM C-index: 0.82

Ren et al., 2021 [76]
Radiation-induced

hypothyroidism
prediction

LR, SVM, RF,
KNN 145 patients LR AUC: 0.70

Chao et al., 2022
[77]

Radiotherapy-
induced

xerostomia
prediction

SVM, KNN, RF 155 HNC patients KNN Mean accuracy: 0.68–0.7

Zhong et al., 2021
[78] Treatment decision SE-ResNet

MRI images of 638
stage

T3N1M0 patients
SE-ResNet HR: 0.17 and 6.24

Zhao et al., 2022
[79]

Risk stratification
and survival
prediction

light-weighted
DCNN

PET-CT images
and OS of

420 patients

light-weighted
DCNN C-index: 0.732

Jiang et al., 2016
[80]

Synchronous
metastases

NPC patients’
prognostic
classifier

SVM

Hematological
markers and

clinical
characteristics of

347 patients

SVM HR: 3.45

Cui et al., 2020 [82] NPC classification
system Rigde, Lasso MR images of

792 patients Rigde
AUC:

OS 0.796
LRFS 0.721

AI, artificial intelligence; NPC, nasopharyngeal carcinoma; IC, Induction chemotherapy; MR, magnetic resonance;
SVM, support vector machine; CNN, convolutional neural network; AUC, areas under receiver operator charac-
teristic curve; PET-CT, positron emission tomography with computed tomography; DCNN, deep convolutional
neural network; CT, computed tomography; kV-CT, kilovoltage computed tomography; MV-CT, megavoltage
computed tomography; CNR, contrast-to-noise ratio; SNR, signal-to-noise ratio; DSC, dice similarity coefficient;
CBCT, cone-beam computed tomography; MAE, mean absolute error; HU, Hounsfield units; PTVnx, 70 Gy to the
planning target volume of the nasopharynx; MRI, magnetic resonance imaging; C-CNN, combined convolutional
neural network; M-CNN, multi-modality convolutional neural network; S-CNN, single-modality convolutional
neural network; PPV, positive predictive value; SOM, self-organizing map; CR, corresponding ratio; PM, perfect
match; GTV, gross tumor volume; LR, logistic regression; KNN, k-nearest neighbor; CTVp1, primary tumor
clinical target volume; SI-Net, sequential and iterative U-net; ResSE-UNet, Residual Squeeze-and-Excitation
U-net; DDNN, deep deconvolutional neural network; CTV, clinical target volume; OARs, organs at risks; DVH,
dose-volume histogram; VMAT, volumetric modulated arc therapy; GRU-RNN, gated recurrent unit-based
recurrent neural network; EUD, equivalent uniform dose; CPs, clinical plans; EPs, experimental plans; IMRT,
intensity-modulated radiation therapy; GRNN, generalized regression neural network; PRV, planning organ at
risk volume; RTLI, radiation-induced temporal lobe injury; RF, random forest; HNC, head-and-neck-cancer; HR,
hazard ratio; OS, overall survival; LRFS, local-region relapse-free survival.

4.3. AI and NPC Prognosis Prediction

Although great progress has been made in NPC treatment, the long-term prognosis
of NPC patients is still unsatisfactory. The traditional TNM/AJCC staging system fails to
provide the expected prognostic effect and to predict patient progression. In contrast, AI
can accurately predict cancer survival time and progression through processing data and
analyzing important features.
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MRI images and clinical data are frequently used by researchers to build predictive
models for NPC prognosis. Zhong et al. established a radiomic nomogram to predict
disease-free survival. In the test cohort, the C-index of radiomic nomogram was 0.788 [83].
Researchers used SVM to construct radiomic ML models to predict disease progression,
the models had good performance [84,85]. Li et al. combined radiomics and ML to predict
the recurrence of NPC after radiotherapy, compared the centralized typical algorithm and
the results showed that ANN achieved the best prediction accuracy of 0.812 [86]. Qiang
et al. developed a prognosis model based on 3D DenseNet to predict disease-free survival
of patients with non-metastatic NPC. A total of 1636 NPC patients were enrolled in the
study. The model divided patients into low- and high-risk groups according to the cut-off
value of risk score. The results showed that the model could correctly differentiate the two
groups of patients (hazard ratio = 0.62) [87]. Similarly, Du et al. developed a DCNN model
to assess the risk of non-metastatic NPC patients. In the validation set of 3-year disease
progression, the AUC of the model was 0.828 [88]. In addition, several researchers have
constructed similar DL models for prognostic prediction and risk stratification of NPC,
all of which have good performance [78,89,90]. For NPC patients, survival prediction is
of utmost importance. Jing et al. developed an end-to-end multi-modality deep survival
network (MDSN) to precisely predict the risk of tumor progression of NPC patients. The
model is compared with four traditional popular survival methods. Finally, the established
MDSN performs best with a C-index of 0.651 [91]. Chen et al. used ML to develop a
survival model based on tumor burden characteristics and all clinical factors. The study
enrolled 1643 patients. The C-indexes were 0.766 and 0.760 in the internal validation and
external validation sets [92].

PET-CT has particular advantages in sensitivity, specificity and accuracy in NPC
recurrence and distant metastases. Meng et al. proposed a model based on pretreatment
PET-CT images that can be used both to predict survival and segment advanced NPC. They
adopt a hard-sharing segmentation backbone to aid in the extraction of regional attributes
associated with the primary tumors and lessen the influence of irrelevant background
data. Additionally, they also adopt a cascaded survival network to take the prognostic
information from primary tumors and further utilize the tumor data acquired from the
segmentation backbone [93]. Gu et al. developed an end-to-end multi-modal DL-based
radiomics model to extract deep features from pre-processed PET-CT images and predict
the 5-year progression-free survival. The team also incorporated TNM staging into the
model to further improve prognostic power. A total of 257 patients with advanced NPC
were enrolled and divided into internal and external cohorts. The AUC of the internal and
external cohorts were 0.842 and 0.823, respectively [94].

Pathological images can also be used to construct a prognostic model for AI. Re-
searchers integrated MRI-based radiological features and DCNN models based on pathol-
ogy images and clinical features of NPC patients to construct a multi-scale nomogram to
predict failure-free survival of NPC patients. The results showed that the C-index of the in-
ternal and external trial cohorts were 0.828 and 0.834, respectively [95]. In a previous study,
the software QuPath (version 0.1.3. Queen’s University) was used to extract pathological
microscopic features of NPC patients and the neural network DeepSurv to analyze the
pathological microscopic features (DSPMF). In studies, DSPMF has proven to be a reliable
prognostic tool and may guide treatment decisions for NPC patients [96].

Other researchers have used RNA data to build AI prediction models. In NPC, some
miRNAs have prognostic power. Chen et al. combined miRNA expression data from
various profiling platforms and constructed a predictive model using 6-miRNAsignatures.
According to the functional analysis, the six miRNAs are principally involved in oncogenic
signaling pathways, virus infection pathways and B-cell expression [97]. A metastatic and
highly invasive cancer, NPC exhibits different molecular profiles and clinical outcomes in
terms of their clinical characteristics. Zhao et al. applied ML techniques to RNA-Seq data
from NPC tumor biopsies to identify 13 significant genes between the recurrence/metastasis
and non-recurrence/metastasis groups. A 4-mRNA signature was identified using these
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genes. It shows good predictive value for NPC. A positive prognostic value was found
for this signature for NPC. Moreover, the 4-mRNA signature was related to the immune
response as well as cell proliferation [98]. Zhang et al. used the deep network to predict the
prognosis of NPC based on MRI and gene expression, and the AUC was 0.88 [99].

AI makes it possible to predict outcomes based on diverse factors prior to treatment,
which is beneficial for the whole diagnosis and treatment process (Table 4). In the near
future, AI techniques will help doctors make rational and personalized medical decisions,
including accurate diagnoses, personalized treatment and prognosis assessment for NPC
patients.

Table 4. Summary of AI models for NPC prognosis session.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best
Algorithm

Performance

Zhong et al., 2020 [83] Survival prediction DCNN MRI images of 638
stage T3N1M0 patients DCNN C-index: 0.788

Zhuo et al., 2019 [84] survival Stratification SVM 658 non-
metastatic patients SVM C-index: 0.814

Du et al., 2019 [85] Early progression
prediction SVM

MRI images of
277 nonmetastatic pa-

tients
SVM AUC: 0.80

Li et al., 2018 [86] Recurrence prediction ANN, KNN,
SVM 306 patients ANN Accuracy:

0.812

Qiang et al., 2019 [87] Disease-free survival
prediction 3D DenseNet MRI images of 1636

nonmetastatic patients 3D DenseNet HR: 0.62

Du et al., 2019 [88] Risk assessment DCNN
MRI images of

596 nonmetastatic pa-
tients

DCNN AUC: 0.828

Qiang et al., 2021 [89] Risk
stratification 3D CNN

MR images and
clinical data of
3444 patients

3D CNN C-index: 0.776

Zhang et al., 2021 [90] DMFS prediction and
treatment decision DCNN 233 patients DCNN AUC: 0.796

Jing et al., 2020 [91] Disease progression
prediction

MDSN,
BoostCI,

LASSO -COX

Multi-parametric
MRIs images of

1417 patients
MDSN C-index: 0.651

Chen et al., 2021 [92] Distant metastasis
prediction XGBoost MRIs images of

1643 patients XGBoost C-index: 0.760

Meng et al., 2022 [93]
Joint survival

prediction and tumor
segmentation

3D end-to-end
DeepMTS,

LASSO-COX,
DeepSurv, 2D
CNN-based
survival, 3D

deep survival
network

PET-CT images and
clinical data of

193 patients

3D end-to-end
DeepMTS

C-index: 0.722
DSC: 0.760

Gu et al., 2022 [94] 5-year PFS prediction 3D CNN PET/CT images of 257
of patients 3D CNN AUC: 0.823

Zhang et al., 2020 [95] Prognosis prediction DCNN

MRI images and
biopsy specimens

whole-slide images
of 220 patients

DCNN C-index: 0.834

Liu et al., 2020 [96] Prognosis prediction
Neural

network
DeepSurv

H&E–stained slides of
1229 patients

Neural
network

DeepSurv
C-index: 0.723
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Table 4. Cont.

Author, Year Purpose Algorithms Dataset Best
Algorithm

Best
Algorithm

Performance

Chen et al., 2021 [97] Prognosis prediction
Ridge

regression,
elastic net

miRNA expression
profiles and clinical
data of 612 patients

Ridge
regression,
elastic net

5-year OS
AUC: 0.70

Zhao et al., 2021 [98] Prognosis prediction RF RNA-Seq data of 60
tumor biopsies RF AUC: OS 0.893

PFS 0.86.

Zhang et al., 2022 [99] Prognosis prediction DNN
MRI images and gene
expression profiles of

151 patients
DNN AUC: 0.88

AI, artificial intelligence; NPC, nasopharyngeal carcinoma; MRI, magnetic resonance imaging; DCNN, deep
convolutional neural network; SVM, support vector machine; KNN, k-nearest neighbor; AUC, areas under receiver
operator characteristic curve; HR, hazard ratio; CNN, convolutional neural network; DMFS, distant metastasis-free
survival; MDSN, multi-modality deep survival network; PET-CT, positron emission tomography with computed
tomography; DeepMTS, deep multi-task Survival; DSC, dice similarity coefficient; PFS, progression-free survival;
H&E, Hematoxylin-eosin; OS, overall survival; RF, random forest; DNN, deep neural network.

4.4. Current State-of-the-Art AI Algorithms for NPC Diagnosis and Treatment

AI models require a large number of datasets for training and validation, and we have
listed some sample images from various datasets in Figure 2.

AI can help doctors with statistics on pathology, physical examination reports, etc. It
can analyze and mine patients’ medical data through technologies such as big data and deep
mining to automatically identify patients’ clinical variables and indicators. A large part of
the medical data comes from medical images, such as CT images, MRI images and PET-CT
images. AI can help diagnose and treat diseases by learning a lot from medical images.
CNNs have excellent performance in image recognition and image segmentation. In studies
on diagnosis [28], treatment response prediction [33] and prognosis prediction [93] of NPC
based on various images, researchers have obtained the best performance with improved
models based on classical CNNs, usually using AUC and DSC as performance metrics.
The FCN-based U-net model also shows very good performance for image segmentation,
showing excellent performance in target segmentation [59] and dose prediction [69].
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Figure 2. Sample images from various datasets: (a) endoscopic image (Mohammed et al., 2020 [26]);
(b) whole slide image (Chuang et al., 2020 [31]); (c) CT image (Daoud et al., 2019 [48]); (d) MRI image
(Guo et al., 2020 [58]); (e) PET image (Zhao et al., 2019 [43]); (f) CT-MR image (Wang et al., 2019 [38]);
(g) CBCT-CT image (Li et al., 2019 [49]); (h) DVH image (Zhuang et al., 2021 [67]).
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The distribution of studies based on the best performing algorithms is shown in
Figure 3. Many studies have improved on the classical model to create new algorithmic
models. Among the AI algorithms, DCNN and CNN perform very well. However, the
research results are based on each study independently and are not directly comparable
due to the use of different datasets and/or evaluation metrics.

4.5. Common Training and Testing Methodologies

The performance of AI algorithms is influenced by many factors. We evaluated dataset
size, class balance, validation strategy and data processing strategy, all of which have a
direct impact on training and testing performance. A summary is given in Table 5.

Most of the research papers cited datasets with less than 1000 cases. In addition,
only one study addressed and discussed the class balance. AI requires special strategies
to manage limited and unbalanced data to reduce the impact on training and testing
procedures (e.g., data augmentation techniques). Most studies use validation set and cross
validation methods for model validation. The validation set method is the simplest method.
It divides the entire data set into a training set and a test set. This method uses only a
portion of the data for model training and is suitable for cases where the amount of data is
relatively large. Cross validation uses the data repeatedly followed by slicing and dicing of
the obtained sample data. We then combine the data into multiple different training and
testing sets. This strategy is common in small datasets. The cross validation method will
be repeated until each part is used as test data at least once. However, cross validation
does not ensure the quality of ML models, as potentially biased or unbalanced data leads
to biased evaluations. Some papers failed to describe any validation strategy.
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Figure 3. Artificial intelligence algorithms with the best performance in the papers included in our
review.
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Table 5. Summary of Training and Testing Methodologies.

Author, Year Publicly
Available Balanced Classes Validation Strategy Data Handing

Strategy

Wong et al., 2021 [23] No No Cross validation -
Ke et al., 2020 [24] No No Validation set Excluding

Mohammed et al., 2018 [25] No No - -
Mohammed et al., 2020 [26] No No Cross validation -
Abd Ghani et al., 2020 [27] No No - -

Li et al., 2018 [28] No No Validation set Excluding
Xu et al., 2022 [29] No No Cross validation -
Shu et al., 2021 [30] No No Validation set -

Chuang et al., 2020 [31] No No Validation set -
Diao et al., 2020 [32] No No Validation set -
Zhao et al., 2020 [33] No No Validation set Excluding
Yang et al., 2022 [34] No No Validation set Excluding
Peng et al., 2019 [35] No No Validation set Excluding
Chen et al., 2021 [36] No No Validation set Excluding

Li et al., 2019 [37] No No Validation set Excluding
Wang et al., 2019 [38] No No Validation set Excluding
Chen et al., 2022 [39] No No - Excluding
Fitton et al., 2011 [40] No No - -

Ma et al., 2019 [41] No No - Excluding
Chen et al., 2020 [42] No No Cross validation Excluding
Zhao et al., 2019 [43] No Yes Cross validation Excluding

Chanapai et al., 2009 [44] No No Validation set Excluding
Tatanun et al., 2010 [45] No No - Excluding

Chanapai et al., 2012 [46] No No Validation set Excluding
Bai et al., 2021 [47] No No Cross validation Excluding

Daoud et al., 2019 [48] No No Cross validation Excluding
Li et al., 2019 [49] No No Validation set Excluding

Xue et al., 2020 [50] No No Validation set Excluding
Jin et al., 2020 [51] No No Validation set Excluding

Wang et al., 2020 [52] No No Cross validation Excluding
Men et al., 2017 [53] No No Validation set Excluding

Huang et al., 2013 [54] No No Validation set Excluding
Huang et al., 2015 [55] No No - Excluding

Li et al., 2018 [56] No No Cross validation Excluding
Lin et al., 2019 [57] No No Validation set Excluding
Guo et al., 2020 [58] No No Cross validation Excluding
Ye et al., 2020 [59] No No Cross validation Excluding

Luo et al., 2023 [60] No No Validation set Excluding
Li et al., 2020 [61] No No Validation set Excluding

Wong et al., 2021 [62] No No Cross validation Excluding
Liang et al., 2019 [63] No No - Excluding
Zhong et al., 2019 [64] No No Validation set Excluding
Peng et al., 2023 [65] No No Cross validation Excluding
Zhao et al., 2022 [66] No No Cross validation Excluding

Zhuang et al., 2021 [67] No No Validation set Excluding
Cao et al., 2020 [68] No No Validation set Excluding

Zhuang et al., 2019 [69] No No Validation set Excluding
Yue et al., 2022 [70] No No Validation set Excluding
Sun et al., 2022 [71] No No Validation set Excluding
Jiao et al., 2019 [72] No No Validation set Excluding

Chen et al., 2021 [73] No No Validation set Excluding
Zhang et al., 2020 [74] No No Validation set Excluding

Bin et al., 2022 [75] No No Cross validation Excluding
Ren et al., 2021 [76] No No Cross validation Excluding

Chao et al., 2022 [77] No No Cross validation Excluding
Zhong et al., 2021 [78] No No Validation set Excluding
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Table 5. Cont.

Author, Year Publicly
Available Balanced Classes Validation Strategy Data Handing

Strategy

Zhao et al., 2022 [79] No No Validation set Excluding
Jiang et al., 2016 [80] No No Validation set Excluding
Cui et al., 2020 [82] No No Cross validation Excluding

Zhong et al., 2020 [83] No No Cross validation Excluding
Zhuo et al., 2019 [84] No No Validation set Excluding

Du et al., 2019 [85] No No Validation set Excluding
Li et al., 2018 [86] No No Cross validation Excluding

Qiang et al., 2019 [87] No No Validation set Excluding
Du et al., 2019 [88] No No Validation set Excluding

Qiang et al., 2021 [89] No No Validation set Excluding
Zhang et al., 2021 [90] No No Validation set Excluding

Jing et al., 2020 [91] No No Validation set Excluding
Chen et al., 2021 [92] No No Validation set Excluding
Meng et al., 2022 [93] No No Cross validation Excluding

Gu et al., 2022 [94] No No Validation set Excluding
Zhang et al., 2020 [95] No No Validation set Excluding

Liu et al., 2020 [96] No No Validation set Excluding
Chen et al., 2021 [97] No No Validation set Excluding
Zhao et al., 2021 [98] No No Validation set Excluding

Zhang et al., 2022 [99] No No - Excluding

Health data contain many missing values. AI algorithms are unable to handle missing
values during data pre-processing, which leads to the deteriorated performance of the
algorithms. According to Table 4, excluding cases with incomplete data is the most common
strategy. However, this strategy suffers from significant information loss and performs
poorly when missing values surpass the entire dataset. Some studies lack a data processing
strategy and a detailed description of the management of the missing value cases. AI
solutions are trained and tested on private/restricted datasets. These datasets either hold
sensitive patient information, or belong to medical institutions that cannot or do not wish
to make their data publicly available. Dataset availability improves reproducibility and
transparency of research [100,101]. However, as all research papers used private data, the
availability of datasets for AI applications in NPC remains a concern.

5. Current Challenges

Although there is rapid development of AI techniques in the clinical research of NPC,
the application of AI remains immature [102]. Some challenges need to be addressed in
order to translate these studies into clinically valuable applications.

As the survival period of NPC is prolonged, more and more patients are suffering from
post-radiotherapy radiation brain injury, treatment failure and post-treatment recurrence
and metastasis. These patients have complicated conditions and a poor prognosis, which
has been causing hardships for treatment. To tackle the above mentioned problems, we
need to find the economic, efficient and clinically optimal treatment plan for NPC. Because
AI has the advantage of objectively analyzing and processing large amounts of data, AI is
supposed to take part in establishing precise treatment ideas, including early screening,
precise staging, precise target imaging, optimal treatment of recurrent metastatic NPC and
the selection of combination treatment modalities. Prediction models constructed by AI
algorithms require a large number of high-quality clinical data to improve their accuracy,
sensitivity and specificity, so standardized data annotation and multicenter data sources
are needed. Researchers have developed improved algorithms to handle small samples,
with less accuracy [103]. At present, the AI algorithms of NPC are mostly limited to the
data of a single medical institution [13]. It may lead to overfitting of the model, and the
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model is not fully applicable to a wider range of scenarios. Therefore, external validation is
necessary before widespread clinical adaptation of AI applications.

In addition, AI predictions are called “black box” because the selection process and
weighting process of AI algorithms are not clear. In other words, interpretability is an
important consideration when applying AI to NPC. At present, there are two main solutions
to this problem: interpretable models and model-independent interpretation methods [104].
Both approaches increase computational complexity. Therefore, much work remains to be
done to improve the interpretability of the model.

Moreover, much of the research on the utilization of AI in NPC has been designed
retrospectively. However, the encouraging results obtained in these studies need to be
confirmed by further prospective and multicenter studies owing to possible selection bias
in the retrospective study design.

Furthermore, privacy protection and data security are major challenges for AI. Building
AI applications for NPC requires a large amount of clinical data from patients, requiring
privacy protection and data security. Currently, there are no suitable technical solutions to
alleviate this problem while meeting the growing demands of data-driven science [105].
Establishing a secure and reliable multicenter data sharing platform for the NPC is a
possible way.

A common defect of current AI tools is their inability to deal with multi-tasking. No
integrated AI system has been developed to detect multiple abnormalities in the human
body. Disease and treatment require the use of multiple tools, in which the synergistic
union is complicated. Leveraging AI solutions bring many benefits, while their deployment
is difficult. For healthcare organizations, efforts are needed to bridge the skills gap by
educating staff about AI systems and professional capabilities and building patient trust
in AI.

6. Conclusions and Prospect

Literature reviews are broadly categorized as systematic and narrative. Systematic
reviews are more rigorous in their methodology and less subject to bias than narrative
reviews. However, the aim of this paper is to outline the dynamics of research advances in
AI in the diagnosis and treatment of NPC and to present the challenges and future of the
field. For this purpose, we have chosen to present a narrative review. To ensure the quality
of the studies, we clarify the inclusion and exclusion criteria of the study, integrate and
analyze the studies, pay attention to the shortcomings of the studied literature and ensure
an objective evaluation attitude to give the reader a quick overview of the objective and
comprehensive state of research in this field.

AI has shown great potential for applications in various clinical aspects of NPC, with
the explosive growth of clinical data and research progress in ML and DL. The applications
of AI to NPC are as follows: (1) understanding cancer at the molecular level through DL;
(2) supporting the diagnosis and prognosis of NPC based on images and pathological
specimens; (3) to promote personalized, accurate diagnosis and treatment of NPC. As AI
techniques continue to advance, AI will have a great impact on the NPC clinical area. We
believe that AI will be more closely combined with all aspects of medicine in the near future.
We can rely on AI techniques to develop less invasive techniques than nasopharyngoscopy,
with diagnostic accuracy close to that of pathological biopsies. We can build AI models
based on clinical data to help healthy people understand early warning of NPC. AI will be
closely integrated with radiotherapy to develop more personalized radiotherapy plans and
conduct more effective whole-process efficacy evaluations. In the future, we can establish
a large sample size and cross-population ethnic database to support the prediction of
prognosis by AI techniques [106], to help researchers find the biggest prognostic factors
and establish future prospective prognostic intervention studies.
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