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Abstract: Background: The purpose of this study was to evaluate the impact of software updating
on measurements of the glenoid inclination and version, along with humeral head subluxation
performed by an automated 3D planning program. The hypothesis was that the software update
could significantly modify the values of the glenoid inclination and version, as well as of the humeral
head subluxation. Methods: A comprehensive pool of 76 shoulder computed tomography (CT) scans
of patients who underwent total shoulder arthroplasty (TSA) or reverse total shoulder arthroplasty
(RTSA) were analyzed with the automated program Blueprint in 2018 and again in 2020 after a
software update. Results: A statistically significant difference of 8.1 ± 8.2 and 5.4 ± 7.8 (mean
difference of −2.8 ± 5.0, p < 0.001) was indeed reached when comparing the mean glenoid inclination
achieved with Blueprint 2018 and Blueprint 2020, respectively. The glenoid version, as well as the
humeral head subluxation evaluations, were not significantly different between the two software
versions, with mean values being −9.4 ± 8.9 and −9.0 ± 7.4 and 60.1 ± 12.6 and 61.8 ± 12.0,
respectively (p = 0.708 and p = 0.115, respectively). In 22% of CT scans, the software update determined
a variation of the glenoid inclination of more than 5◦ or 10◦. Conclusion: The present study shows the
software update of an automated preoperative planning program may significantly modify the values
of glenoid inclination. Even though without a significant difference, variations were also found for
the glenoid version and humeral head subluxation. Accordingly, these results should further advise
surgeons to carefully and critically evaluate data acquired with automated software.

Keywords: automated software; preoperative planning; shoulder arthroplasty; software update

1. Introduction

Total shoulder replacement represents a feasible and effective option for several de-
generative shoulder conditions, with both anatomic (TSA) and reverse prosthesis design
(RTSA) [1,2]. Results have improved over time in terms of patient satisfaction, pain relief
and shoulder function. However, glenoid placement may strongly affect the long-term out-
comes for potential glenoid loosening, instability and scapular notching [3–9]. Accordingly,
broad knowledge of preoperative glenoid deformity is crucial to approaching any scenario
for a correct implantation of the glenoid prosthetic component.

Preoperative glenohumeral pathoanatomy has been traditionally evaluated with ra-
diographs [10], but with computed tomography (CT) scans, the variability in glenoid
morphology and its consequences for shoulder arthroplasty are more accurately stud-
ied [2,11]. Based on the CT scan potential, several 2D and 3D models were developed to
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preoperatively characterize the glenoid version, inclination and joint alignment. To address
the variability of preoperative models with manual interference and improve measurement
accuracy accordingly, three-dimensional (3D) automated software have been developed
to plan glenohumeral arthroplasty [1,12]. This technology enables the surgeon to assess
preoperatively the optimal positioning of the glenoid component for any clinical scenario
and predict the inclination and version correction, as well as the backside contact. Moreover,
these may provide a virtual reproduction of impingement-free range of motion and create
patient-specific instrumentation (PSI) [3,11,13].

Accordingly, an automated software can help significantly in preoperative planning to
reduce the inter- and intra-observed variability of manual methods. However, to improve
glenoid parameters, the proprietary algorithm for the image is subjected to modification
over time. Thus, a software update could result in variations of the inclination, version
and humeral head subluxation. Nonetheless, there is no evidence thus far on the effect
that software updating could have on preoperative glenoid measurements and then on
implant positioning.

The purpose of this study was to evaluate the impact of software updating on mea-
surements of the glenoid inclination and version, along with the humeral head subluxation,
performed by an automated 3D planning program and then to statistically analyze the
relevance of these variations. The hypothesis was that the software update could signifi-
cantly modify the values of the glenoid inclination and version, as well as of the humeral
head subluxation.

2. Materials and Methods

This study is a retrospective analysis of a pool of preoperative CT scans of patients
who underwent TSA or RTSA from 2016 to 2018 in a single hospital center (Miulli Hospital,
Acquaviva delle Fonti, Bari, Italy). The scans were analyzed with the automated software
Blueprint (Blueprint, Stryker, Kalamazoo, MI, USA) in the same period when the patients
were scheduled to undergo surgery in order to evaluate the glenoid version, glenoid
inclination and humeral head subluxation. The software version was the same for this
period, which was defined as Time Zero. We re-analyzed the same group of 76 CT scans
in 2020 with the aim to assess if and how the software update of the automated 3D
preoperative planning program could affect the glenoid assessment. All the CT scans
were performed using a standardized protocol and were suitable to be studied with the
updated program. In this way, data were recorded to obtain two groups, dubbed Time Zero
Blueprint and Blueprint 2020. Retroversion was recorded as a negative value and superior
inclination as positive, and subluxation was expressed as a percentage of the humeral head
posterior to the scapular plane.

This study was approved by the IRB of the authors’ affiliated institutions. All patients
signed the informed consent to be enrolled in the study. Most of the patients included
in the study (70 out of 76) underwent RTSA because of a non-functional shoulder with
a massive and irreparable rotator cuff tear (20 patients), post traumatic osteoarthritis
(11 patients), rheumatoid arthritis (2 patients), rotator cuff arthropathy (28 patients) or
primary glenohumeral arthritis (9 patients). TSA was performed in the remaining 6 patients
(8%) suffering from primary glenohumeral arthritis with A1, A2, B1 glenoid morphology,
according to Walch classification [1], and a good-quality rotator cuff.

In all cases, patients preoperatively underwent radiographic study of both shoulders
in anterior to posterior (AP), Neer and Bernageau view. All CT scan were done at the same
radiological center, with the same machine and according to a standardized protocol [13].
CT scans were performed in all patients with a minimum of 1 mm slice thickness, starting
a few slices above the AC joint and including the entire scapula. Based on 2D CT imaging,
an expert musculoskeletal radiologist classified the glenoid morphology on the coronal
and transversal planes according to Sirveaux [14] and Walch [15], respectively.

The present study explores and compares two versions of the same automated preop-
erative planning software. The evolution of the former Glenosys software (Imascap, Brest,
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France), Blueprint software allows an automated definition of crucial anatomic parameters
for a preoperative planning program, such as the glenoid version, glenoid inclination and
humeral head posterior subluxation. A detailed description of the automated process
of the scapula and humerus analysis and reference planes definition was described by
Boileau et al. [2].

Briefly, this system uses image recognition technology to automatically isolate, using
thousands of points within the scapula, a best-fit scapula plane, including the glenoid area,
and a 3D model of the scapula. The typical curvature of the scapular blade may complicate
the definition of the plane orientation, but the application of a cloud of point reduces the
effect of the curvature on the plane definition. A similar approach is applied to define the
best-fit sphere of the glenoid surface and of the humeral head. An averaged estimation
of the best-fit sphere approaching both the paleogleloid and neoglenoid surface is used
in cases with a biconcave glenoid. The glenoid version is measured as the angle between
the scapular plane and the glenoid centerline projected on the transverse scapular plane.
The glenoid inclination is assessed in reference to a transverse line that is calculated with
points picked at the center of the Y shape of the trionum scapolae. As these points are
arranged in a curved shape, the transverse axis is calculated as a straight line, with the
least-square method applied to all the points. The humeral head subluxation is measured
as the volume of the humeral head sphere posterior to the midcoronal plane of the glenoid
sphere in reference to the volume of the whole humeral head. No manual subtraction
of bone fragments is performed with this planning program. In addition, the automated
software creates a 3D reconstruction of the scapula and humerus, on which it performs a
trial of the potential implant types and sizes. In this way, the program predicts the backside
contact, and then the need for augmentation may create patient-specific instrumentation
and virtually reproduce an impingement-free range of motion.

Statistical Analysis

Data are reported as the mean ± standard deviation or a number with percentage. Dif-
ferences were tested with the paired sample t-test. A p value of 0.05 or less was considered
statistically significant. In addition, differences between each paired values of the glenoid
version and inclination were gathered in the following groups: less than 5◦ difference,
5◦–10◦ difference and more than 10◦ difference. As defined in previous studies [12,16], this
analysis was performed considering a gap of 5◦, as it is regarded as the slightest clinically
relevant value. All analyses were conducted using STATA software, version 16 (Stata-Corp
LP, College Station, TX, USA).

3. Results

A comprehensive group of 76 patients (76 CT scans) were examined, with any CT
scan analyzed in 2018 suitable to be processed by Blueprint 2020. No patient was excluded
from reanalysis. The mean patient age was 73 ± 6 years (range from 54 to 82 years) for
the 18 men and 58 women included. According to the classification by Walch et al. [15],
there were 48 A1, 8 A2, 13 B1, 6 B2 and 1 C glenoid. The glenoid was classified, based on
Sirveaux’s Classification [14], as E0 in 32 patients, E1 in 38, E2 in 2, E3 in 3 and E4 in 1. The
demographic and glenoid morphology classifications are shown in Table 1.

Table 1. Characteristics of study population.

Patients (number) 76
Age (years) 73 ± 6
Males 18 (24%)
Females 58 (76%)
Side

Right 48 (63%)
Left 28 (37%)
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Table 1. Cont.

Walch modified classification
A1 48 (63%)
A2 8 (11%)
B1 13 (17%)
B2 6 (8%)
C 1 (1%)

Sirveaux–Favard Classification
E0 32 (42%)
E1 38 (50%)
E2 2 (3%)
E3 3 (4%)
E4 1 (1%)

The mean glenoid version was −9.4 ± 8.9 and −9.0 ± 7.4 with Time Zero Blueprint
and Blueprint 2020, respectively, and no significant differences were reported (mean dif-
ference = 0.4 ± 8.5, p = 0.708; Table 2). A statistically significant difference was indeed
reached when comparing the mean glenoid inclination achieved with Time Zero Blueprint
and Blueprint 2020, measured at 8.1 ± 8.2 and 5.4 ± 7.8, respectively (mean difference of
−2.8 ± 5.0, p < 0.001; Table 2; Figure 1).

Table 2. Glenoid and joint alignment measurements achieved with Time Zero Blueprint and Blueprint
2020. Values are represented as mean with standard deviation.

Time Zero Blueprint Blueprint 2020 Difference p Value

Glenoid version (◦) −9.4 ± 8.9 −9.0 ± 7.4 +0.4 ± 8.5 0.708
Glenoid inclination (◦) 8.1 ± 8.2 5.4 ± 7.8 −2.8 ± 5.0 <0.001
Humeral head
subluxation (%) 60.1 ± 12.6 61.8 ± 12.0 +1.8 ± 5.3 0.115
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Figure 1. Two images depicting glenoid and joint alignment parameters of same patient with Time
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The humeral head subluxation evaluations were not significantly different among
the two software versions, with 60.1 ± 12.6 and 61.8 ± 12.0, respectively (mean differ-
ence = 1.8 ± 5.3, p = 0.115; Table 2). Figure 2 shows a Bland–Altman plot comparing the
glenoid and joint alignment parameters with the two software versions. A difference >5◦

between the two software versions was found in 68 patients (89%), 5◦–10◦ in 6 patients (8%)
and >10◦ in 2 patients (3%). The difference was more evident for inclination measurements,
where a difference >5◦ was found in 59 patients (78%), between 5◦ and 10◦ in 13 patients
(17%) and >10◦ in 4 patients (5%). When the analysis was restricted to patients with
Walch classification types A1 and A2, the differences in the glenoid inclination assessment
were more remarkable (mean difference of −3.0 ± 5.5 in A1-A2 types and −2.0 ± 3.4 for
B1-B2-B3-C types, with p < 0.001 and p = 0.017, respectively).
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(a), glenoid inclination (b) and humeral head subluxation (c).

4. Discussion

The main finding of this study is that an automated software update may significantly
modify the glenoid inclination over time. Important variations were also observed in the
glenoid version and humeral head subluxation, even though they did not differ significantly.
Therefore, we assume that the data of preoperative planning for shoulder arthroplasty
performed with 3D automated software must always be considered critically in terms of
the consequences of updating the software.

Glenoid loosening represented one of the most common causes of revision, with
important risks factors recognized as excessive glenoid retroversion for TSA, and for
RTSA, height and superior inclination, or too much retroversion or medialization [16–19].
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Scapular notching (inferior, posterior or anterior) and implant instability are other severe
complications linked to an improper glenoid replacement [6,8]. Accordingly, an accurate
preoperative assessment is helpful to evaluate glenoid deformity and bone loss and then
plan appropriate intraoperative correction.

Preoperative planning for shoulder arthroplasty was initially performed with plain
radiographs, but soon after, it was replaced with 2D CT scans for more detailed imaging
of bone tissue [20]. As a matter of fact, the accuracy of glenoid evaluation with 2D CT
scans was discovered to be impaired by the plane selection on which the measurements
are made [16,21–24]. Then, multiple studies clearly demonstrated a better assessment of
the glenoid version and inclination with 3D CT reconstruction [21,23,25]. The 3D auto-
mated software was developed to provide glenoid parameters, unimpaired by external
interference, thereby avoiding inter- and intra-observer variability. Moreover, these auto-
mated platforms may direct surgeons and all component staff towards definitive implanted
prosthesis, anticipate potential bone or metallic augmentation, and reduce intraopera-
tive unexpected events and related avoidable distress of staff as much as possible. This
time- and energy-sparing practice should ultimately improve the accuracy of the implant
placement and long-term outcomes.

Although all preoperative planning methods are CT scan-based, different landmarks
and reference planes may introduce significant variability in the results achieved [22,23].
Traditional 2D and 3D methods determine the scapular plane by the manual positioning
of three scapular points (glenoid center, most inferior point and the intersection between
the scapular spine and the medial border of the scapula) and the glenoid plane with three
points, as well, or with the best-fit sphere approach [2,25–28]. Conversely, the automated
software obtains the scapular plane by elaborating thousands of 3D points of the scapular
body and the glenoid plane by an automated definition of the best-fit sphere on the glenoid
surface [2].

The reliability of glenoid measurements with fully automated 3D-planning software
was previously demonstrated in an in vitro study on a non-arthritic shoulder [11,29] and
then confirmed by Boileau et al. in vivo for arthritic scapulae [2].

Conversely, other studies have raised concern about the benefit afforded by automated
software for preoperative planning [1,12,16,30]. In 2018, Denard et al. carefully compared
the automated software Blueprint with the semi-automated program VIP (Arthrex, Naples,
FL, USA) in 63 patients undergoing primary shoulder arthroplasty. In 57% of the cases
(36 out of total 63 patients), either the inclination or the version varied by 5◦ or more, and
in nearly 25% of the cases, the inclination or version varied more than 10◦ [12].

Erickson et al. recently compared the glenoid version and inclination achieved with
four software programs (Blueprint, VIP, GPS and Materialise) and five surgeons [1]. Among
the software analyzed, Blueprint presented the lowest agreement with surgeons’ measure-
ments, with 56% of the version and 65% of the inclination within 5◦ of surgeons’ values. The
authors explained this lower agreement as being due to a different geometrical algorithm
and different mathematical calculations utilized. Moreover, they showed that software
were prone to overestimate the glenoid version and humeral head subluxation (meant as
increased retroversion and posterior subluxation). The high agreement among surgeons’
measurements was indeed deeply skewed by the coronal and axial plane selection, which
were previously defined by a single senior author.

These findings were confirmed by a previous article of Chalmers et al. in 2017, which
compared values delivered by Blueprint software with those measured on corrected and
uncorrected CT scans of B2-type glenoid deformities [16]. Although the means of the
values were not extremely different, the automated software produced values 3.5◦ more
retroverted than both the corrected and uncorrected CT images [16].

Similarly, in 2019, Shukla et al. compared automated Blueprint software with the
manual measuring technique. They found statistically significant differences, even though
the differences of the values between the two methods were within 4◦ [30]. Referring to
surgeries performed between 2013 and 2016, on average, the values delivered by Blueprint
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showed the glenoid more retroverted and superior-inclined compared to the plan achieved
with the manual technique [30].

To the best of our knowledge, however, the present study is the first showing criticism
of the software update with regard to the measurement of preoperative values, particularly
in terms of the inclination. Moreover, even though a significant difference and a specific
trend were not reached, variations were also found for both the glenoid version and the
humeral head subluxation, with a mean difference of 0.4 ± 8.5 and 0.8 ± 5.3, respectively.

The reason for the demonstrated difference between the two software versions remains
somewhat unclear. The automated subtraction of the humeral head may play a major role
in determining the difference found between Time Zero Blueprint and the 2020 edition.
The Blueprint program automatically removes the humeral head and any bone fragments,
without any manual assistance. As observed by Denard et al., the accuracy of Blueprint
may be influenced by factors related to the joint space narrowing and humeral head osteo-
phytes [12]. In severe osteoarthritis with osteophytes and significant joint space narrowing,
the automated process may fail to completely remove the humeral head or remove glenoid
segments, skewing the final glenoid evaluation. In their paper, Denard et al. found the
presence of extra bone fragments or missing segments in 30.6% of the CT scans analyzed
with Blueprint [12]. Interestingly, the difference between Blueprint and VIP programs in
the glenoid version assessment varied by 5◦ or more, from 19.4% of all evaluated cases to
45.5% when the analysis was restricted to patients with bone subtraction abnormalities [12].
Moreover, another reason for variations in the glenoid inclination measurements could
stem from the transverse axis determination. The transverse axis is calculated with points
picked at the center of the Y shape. Since these points are aligned forming a curve, the
transverse axis is calculated as a straight line, with the least-square method applied to all
the points. In the 2018 analysis, only the points of the two lateral thirds were considered
to calculate the mean transverse axis. Then, a modification was made in 2020, taking into
consideration the entire curvature of the points till the trigonum, with potential variation
in the transverse axis determination. As recently demonstrated [31], a revised orientation
of the transverse axis can significantly modify the glenoid inclination measurement.

Several companies have developed methods of performing preoperative glenoid
measurements. However, remarkable differences can be observed comparing several
methods since different companies use different measurement techniques [32]. Moreover,
as the present study further remarks, an advanced and sophisticated automated software
program is in an ongoing process of implementation and refinement. The software update
is, in fact, intended as an improvement of the technology, which helps the preoperative
planning. Nonetheless, this update needs subsequent validation. At the same time, the
introduction of automated programs has certainly removed the inter- and intra-surgeon
variability of manual measurements. However, while 3D automated software can achieve
more detailed information on glenohumeral pathoanatomy, and a software update should
improve the program accuracy over time, it remains unclear whether this additional
information provides significantly better clinical outcomes for the patients.

This study has several limitations. The number of CT scans analyzed is relatively
small. The patients with Walch type B and C glenoid deformities, for instance, were
particularly limited for evaluating the effect of the software update in cases of more severe
glenoid deformity. Conversely, this limited sample may have caused underestimation of
the variation afforded by the software update.

Another potential limitation may be represented by case selection. In the present
study, we considered the CT scans of several shoulder conditions, including degenerative,
inflammatory and post-traumatic conditions. In the last case, the history of a previous
trauma could have resulted in bone fragments or severe glenoid deformities that may
potentially mislead the automated software. This was indeed part of our goal, that is, to
check and probe the software reliability, even with complex deformities.

The main strength of the study relies on the solid data achieved directly by the software,
without any kind of external spoiling. No kind of human interpretation or data processing
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was possible or necessary since the platform directly extrapolated the glenoid version,
glenoid inclination and humeral subluxation.

5. Conclusions

The present study shows that a software update of an automated preoperative plan-
ning program may significantly modify the values of the glenoid inclination. Even though
not significantly different, variations were also found for the glenoid version and humeral
head subluxation. Consequently, these results should further advise surgeons to carefully
and critically evaluate data achieved with automated software.
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